Как решать графические уравнения. Доверяй, но проверяй: решение уравнений графически

С квадратными уравнениями вы уже встречались в курсе алгебры 7-го класса. Напомним, что квадратным уравнением называют уравнение вида ах 2 + bх + с = 0, где а, b, с — любые числа (коэффициенты), причем а . Используя наши знания о некоторых функциях и их графиках, мы в состоянии уже теперь, не дожидаясь систематического изучения темы «Квадратные уравнения», решать некоторые квадратные уравнения, причем различными способами; мы рассмотрим эти способы на примере одного квадратного уравнения.

Пример. Решить уравнение х 2 - 2х - 3 = 0.
Решение.
I способ . Построим график функции у = х 2 - 2х - 3, воспользовавшись алгоритмом из § 13:

1) Имеем: а = 1, b = -2, х 0 = = 1, у 0 = f(1)= 1 2 - 2 - 3= -4. Значит, вершиной параболы служит точка (1; -4), а осью параболы — прямая х = 1.

2) Возьмем на оси х две точки, симметричные относительно оси параболы, например точки х = -1 и х = 3.

Имеем f(-1) = f(3) = 0. Построим на координатной плоскости точки (-1; 0) и (3; 0).

3) Через точки (-1; 0), (1; -4), (3; 0) проводим параболу (рис. 68).

Корнями уравнения х 2 - 2х - 3 = 0 являются абсциссы точек пересечения параболы с осью х; значит, корни уравнения таковы: х 1 = - 1, х 2 — 3.

II способ. Преобразуем уравнение к виду х 2 = 2х + 3. Построим в одной системе координат графики функций у — х 2 и у = 2х + 3 (рис. 69). Они пересекаются в двух точках А(- 1; 1) и В(3; 9). Корнями уравнения служат абсциссы точек А и В, значит, х 1 = - 1, х 2 — 3.


III способ . Преобразуем уравнение к виду х 2 - 3 = 2х. Построим в одной системе координат графики функций у = х 2 - 3 и у = 2х (рис. 70). Они пересекаются в двух точках А(-1; - 2) и В (3; 6). Корнями уравнения являются абсциссы точек А и В, поэтому х 1 = - 1, х 2 = 3.

IV способ. Преобразуем уравнение к виду х 2 -2х 4-1-4 = 0
и далее
х 2 - 2х + 1 = 4, т. е. (х - IJ = 4.
Построим в одной системе координат параболу у = (х - 1) 2 и прямую y = 4 (рис. 71). Они пересекаются в двух точках А(-1; 4) и В(3; 4). Корнями уравнения служат абсциссы точек А и В, поэтому х 1 = -1, х 2 = 3.

V способ. Разделив почленно обе части уравнения на х, получим


Построим в одной системе координат гиперболу и прямую у = х - 2 (рис. 72).

Они пересекаются в двух точках А (-1; -3) и В(3; 1). Корнями уравнения являются абсциссы точек А и В, следовательно, х 1 = - 1, х 2 = 3.

Итак, квадратное уравнение х 2 - 2х - 3 = 0 мы решили графически пятью способами. Давайте проанализируем, в чем суть этих способов.

I способ. Строят график функции у точки его пересечения с осью х.

II способ. Преобразуют уравнение к виду ах 2 = -bх - с, строят параболу у = ах 2 и прямую у = -bх - с, находят точки их пересечения (корнями уравнения служат абсциссы точек пересечения, если, разумеется, таковые имеются).

III способ. Преобразуют уравнение к виду ах 2 + с = - bх,строят параболу у — ах 2 + с и прямую у = -bх (она проходит через начало координат); находят точки их пересечения.

IV способ. Применяя метод выделения полного квадрата, преобразуют уравнение к виду

Строят параболу у = а (х + I) 2 и прямую у = - m, параллельную оси х; находят точки пересечения параболы и прямой.

V способ. Преобразуют уравнение к виду


Строят гиперболу (это — гипербола при условии, что ) и прямую у = — ах — b; находят точки их пересечения.

Заметим, что первые четыре способа применимы к любым уравнениям вида ах 2 + bх + с = 0, а пятый — только к тем, у которых с . На практике можно выбирать тот способ, который вам кажется наиболее приспособленным к данному уравнению или который вам больше нравится (или более понятен).

Замечание . Несмотря на обилие способов графического решения квадратных уравнений, уверенности в том, что любое квадратное уравнение мы
сможем решить графически, нет. Пусть, например, нужно решить уравнение х 2 - х - 3 = 0 (специально возьмем уравнение, похожее на то, что было в
рассмотренном примере). Попробуем его решить, например, вторым способом: преобразуем уравнение к виду х 2 = х + 3, построим параболу у = х 2 и
прямую у = х + 3, они пересекаются в точках А и В (рис. 73), значит, уравнение имеет два корня. Но чему равны эти корни, мы с помощью чертежа
сказать не можем — точки А и В имеют не такие «хорошие» координаты, как в приведенном выше примере. А теперь рассмотрим уравнение
х 2 - 16х— 95 = 0. Попробуем его решить, скажем, третьим способом. Преобразуем уравнение к виду х 2 — 95 = 16х. Здесь надо построить параболу
у = х 2 - 95 и прямую у = 16х. Но ограниченные размеры листа тетради не позволяют этого сделать, ведь параболу у = х 2 надо опустить на 95 клеток вниз.

Итак, графические способы решения квадратного уравнения красивы и приятны, но не дают стопроцентной гарантии решения любого квадратного уравнения. Учтем это в далнейшем.

>>Математика: Графическое решение уравнений

Графическое решение уравнений

Подытожим наши знания о графиках функций. Мы с вами научились строить графики следующих функций:

у =b (прямую, параллельную оси х);

y = kx (прямую, проходящую через начало координат);

y - kx + m (прямую);

у = х 2 (параболу).

Знание этих графиков позволит нам в случае необходимости заменить аналитическую модель геометрической (графической), например, вместо модели у = х 2 (которая представляет собой равенство с двумя переменными х и у) рассматривать параболу в координатной плоскости. В частности, это иногда полезно для решения уравнений. Как это делается, обсудим на нескольких примерах.

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

На этом видеоуроке к изучению предлагается тема «Функция y=x 2 . Графическое решение уравнений». В ходе этого занятия учащиеся смогут познакомиться с новым способом решения уравнений - графическим, который основан на знании свойств графиков функций. Учитель покажет, как можно решить графическим способом функцию y=x 2 .

Тема: Функция

Урок: Функция . Графическое решение уравнений

Графическое решение уравнений основано на знании графиков функций и их свойств. Перечислим функции, графики которых мы знаем:

1) , графиком является прямая линия, параллельная оси абсцисс, проходящая через точку на оси ординат. Рассмотрим пример: у=1:

При различных значениях мы получаем семейство прямых параллельных оси абсцисс.

2) Функция прямой пропорциональности график данной функции - это прямая, проходящая через начало координат. Рассмотрим пример:

Данные графики мы уже строили в предыдущих уроках, напомним, что для построения каждой прямой нужно выбрать точку, удовлетворяющую ей, а второй точкой взять начало координат.

Напомним роль коэффициента k: при функция возрастает, угол между прямой и положительным направлением оси х острый; при функция убывает, угол между прямой и положительным направлением оси х тупой. Кроме того, между двумя параметрами k одного знака существует следующее соотношение: при положительных k чем он больше, тем быстрее функция возрастает, а при отрицательных - функция быстрее убывает при больших значениях k по модулю.

3) Линейная функция . При - получаем точку пересечения с осью ординат и все прямые такого вида проходят через точку (0; m). Кроме того, при функция возрастает, угол между прямой и положительным направлением оси х острый; при функция убывает, угол между прямой и положительным направлением оси х тупой. И конечно величина k влияет на скорость изменения значения функции.

4). Графиком данной функции является парабола.

Рассмотрим примеры.

Пример 1 - графически решить уравнение:

Функции подобного вида мы не знаем, поэтому нужно преобразить заданное уравнение, чтобы работать с известными функциями:

Мы получили в обоих частях уравнения знакомые функции:

Построим графики функций:

Графики имеют две точки пересечения: (-1; 1); (2; 4)

Проверим, правильно ли найдено решение, подставим координаты в уравнение:

Первая точка найдена правильно.

, , , , , ,

Вторая точка также найдена верно.

Итак, решениями уравнения являются и

Поступаем аналогично предыдущему примеру: преобразуем заданное уравнение до известных нам функций, построим их графики, найдем токи пересечения и отсюда укажем решения.

Получаем две функции:

Построим графики:

Данные графики не имеют точек пересечения, значит заданное уравнение не имеет решений

Вывод: в данном уроке мы провели обзор известных нам функций и их графиков, вспомнили их свойства и рассмотрели графический способ решения уравнений.

1. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 7. 6 издание. М.: Просвещение. 2010 г.

2. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7. М.: ВЕНТАНА-ГРАФ

3. Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е. и др. Алгебра 7 .М.: Просвещение. 2006 г.

Задание 1: Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. Алгебра 7, № 494, ст.110;

Задание 2: Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. Алгебра 7, № 495, ст.110;

Задание 3: Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. Алгебра 7, № 496, ст.110;

Одним из способов решения уравнений является графический способ. Он основан на построении графиков функции и определения точек их пересечения. Рассмотрим графический способ решения квадратного уравнения a*x^2+b*x+c=0.

Первый способ решения

Преобразуем уравнение a*x^2+b*x+c=0 к виду a*x^2 =-b*x-c. Строим графики двух функций y= a*x^2 (парабола) и y=-b*x-c (прямая). Ищем точки пересечения. Абсциссы точек пересечения и будут являться решением уравнения.

Покажем на примере: решить уравнение x^2-2*x-3=0.

Преобразуем его в x^2 =2*x+3. Строим в одной системе координат графики функции y= x^2 и y=2*x+3.

Графики пересекаются в двух точках. Их абсциссы будут являться корнями нашего уравнения.

Решение по формуле

Для убедительности проверим это решение аналитическим путем. Решим квадратное уравнение по формуле:

D = 4-4*1*(-3) = 16.

X1= (2+4)/2*1 = 3.

X2 = (2-4)/2*1 = -1.

Значит, решения совпадают.

Графический способ решения уравнений имеет и свой недостаток, с помощью него не всегда можно получить точное решение уравнения. Попробуем решить уравнение x^2=3+x.

Построим в одной системе координат параболу y=x^2 и прямую y=3+x.

Опять получили похожий рисунок. Прямая и парабола пересекаются в двух точках. Но точные значения абсцисс этих точек мы сказать не можем, только лишь приближенные: x≈-1,3 x≈2,3.

Если нас устраивают ответы такой точности, то можно воспользоваться этим методом, но такое бывает редко. Обычно нужны точные решения. Поэтому графический способ используют редко, и в основном для проверки уже имеющихся решений.

Нужна помощь в учебе?



Предыдущая тема:

Графическое решение уравнений

Расцвет, 2009

Введение

Необходимость решать квадратные уравнения еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения вавилоняне умели решать еще около 2000 лет до н.э. Правило решения этих уравнений, изложенное в Вавилонских текстах, совпадает по существу с современными, однако неизвестно, каким образом дошли вавилоняне до этого правила.

Формулы решения квадратных уравнений в Европе были впервые изложены в «Книге абака», написанной в 1202 году итальянским математиком Леонардо Фибоначчи. Его книга способствовала распространению алгебраических знаний не только в Италии, но и Германии, Франции и других странах Европы.

Но общее правило решения квадратных уравнений, при всевозможных комбинациях коэффициентов b и c было сформулировано в Европе лишь в 1544 году М. Штифелем.

В 1591 году Франсуа Виет ввел формулы для решения квадратных уравнений.

В древнем Вавилоне могли решить некоторые виды квадратных уравнений.

Диофант Александрийский и Евклид , Аль-Хорезми и Омар Хайям решали уравнения геометрическими и графическими способами.

В 7 классе мы изучали функции у = С, у = kx , у = kx + m , у = x 2 , у = – x 2 , в 8 классе – у = √ x , у = |x |, у = ax 2 + bx + c , у = k / x . В учебнике алгебры 9 класса я увидела ещё не известные мне функции: у = x 3 , у = x 4 , у = x 2 n , у = x - 2 n , у = 3 √x , ( x a ) 2 + (у – b ) 2 = r 2 и другие. Существуют правила построения графиков данных функций. Мне стало интересно, есть ли ещё функции, подчиняющиеся этим правилам.

Моя работа заключается в исследовании графиков функций и графическом решении уравнений.

1. Какие бывают функции

График функции – это множество всех точек координатной плоскости, абсциссы которых равны значениям аргументов, а ординаты – соответствующим значениям функции.

Линейная функция задаётся уравнением у = kx + b , гдеk и b – некоторые числа. Графиком этой функции является прямая.

Функция обратной пропорциональности у = k / x , где k¹ 0. График этой функции называется гиперболой.

Функция ( x a ) 2 + (у – b ) 2 = r 2 , где а , b и r – некоторые числа. Графиком этой функции является окружность радиуса r с центром в т. А (а , b ).

Квадратичная функция y = ax 2 + bx + c где а, b , с – некоторые числа и а ¹ 0. Графиком этой функции является парабола.

Уравнение у 2 ( a x ) = x 2 ( a + x ) . Графиком этого уравнения будет кривая, называемая строфоидой.

Уравнение ( x 2 + y 2 ) 2 = a ( x 2 y 2 ) . График этого уравнения называется лемнискатой Бернулли.

Уравнение. График этого уравнения называется астроидой.

Кривая(x 2 y 2 – 2 a x) 2 =4 a 2 (x 2 + y 2) . Эта кривая называется кардиоидой.

Функции: у = x 3 – кубическая парабола, у = x 4 , у = 1/ x 2 .

2. Понятие уравнения, его графического решения

Уравнение – выражение, содержащее переменную.

Решить уравнение – это значит найти все его корни, или доказать, что их нет.

Корень уравнения – это число, при подстановке которого в уравнение получается верное числовое равенство.

Решение уравнений графическим способом позволяет найти точное или приближенное значение корней, позволяет найти количество корней уравнения.

При построении графиков и решении уравнений используются свойства функции, поэтому метод чаще называют функционально-графическим.

Для решения уравнение «делим» на две части, вводим две функции, строим их графики, находим координаты точек пересечения графиков. Абсциссы этих точек и есть корни уравнения.

3. Алгоритм построения графика функции

Зная график функции у = f ( x ) , можно построить графики функций у = f ( x + m ) , у = f ( x )+ l и у = f ( x + m )+ l . Все эти графики получаются из графика функции у = f ( x ) с помощью преобразования параллельного переноса: на m единиц масштаба вправо или влево вдоль оси x и на l единиц масштаба вверх или вниз вдоль оси y .

4. Графическое решение квадратного уравнения

На примере квадратичной функции мы рассмотрим графическое решение квадратного уравнения. Графиком квадратичной функции является парабола.

Что знали о параболе древние греки?

Современная математическая символика возникла в 16 веке.

У древнегреческих же математиков ни координатного метода, ни понятия функции не было. Тем не менее, свойства параболы были изучены ими подробно. Изобретательность античных математиков просто поражает воображение, – ведь они могли использовать только чертежи и словесные описания зависимостей.

Наиболее полно исследовал параболу, гиперболу и эллипс Аполоний Пергский , живший в 3 веке до н.э. Он же дал этим кривым названия и указал, каким условиям удовлетворяют точки, лежащие на той или иной кривой (ведь формул-то не было!).

Существует алгоритм построения параболы:

Находим координаты вершины параболы А (х 0 ; у 0): х 0 =- b /2 a ;

Y 0 =ах о 2 +вх 0 +с;

Находим ось симметрии параболы (прямая х=х 0);

Составляем таблицу значений для построения контрольных точек;

Строим полученные точки и построим точки им симметричные относительно оси симметрии.

1. По алгоритму построим параболу y = x 2 – 2 x – 3 . Абсциссы точек пересечения с осью x и есть корни квадратного уравнения x 2 – 2 x – 3 = 0.

Существует пять способов графического решения этого уравнения.

2. Разобьём уравнение на две функции: y = x 2 и y = 2 x + 3

3. Разобьём уравнение на две функции: y = x 2 –3 и y =2 x . Корни уравнения – абсциссы точек пересечения параболы с прямой.

4. Преобразуем уравнениеx 2 – 2 x – 3 = 0 при помощи выделения полного квадрата на функции: y = ( x –1) 2 иy =4. Корни уравнения – абсциссы точек пересечения параболы с прямой.

5. Разделим почленно обе части уравненияx 2 – 2 x – 3 = 0 на x , получим x – 2 – 3/ x = 0 , разобьём данное уравнение на две функции: y = x – 2, y = 3/ x . Корни уравнения – абсциссы точек пересечения прямой и гиперболы.

5. Графическое решение уравнений степени n

Пример 1. Решить уравнение x 5 = 3 – 2 x .

y = x 5 , y = 3 – 2 x .

Ответ: x = 1.

Пример 2. Решить уравнение 3 x = 10 – x .

Корнями данного уравнения является абсцисса точки пересечения графиков двух функций: y = 3 x , y = 10 – x .

Ответ: x = 8.

Заключение

Рассмотрев графики функций: у = ax 2 + bx + c , у = k / x , у = √ x , у = |x |, у = x 3 , у = x 4 , у = 3 √x , я заметила, что все эти графики строятся по правилу параллельного переноса относительно осей x и y .

На примере решения квадратного уравнения можно сделать выводы, что графический способ применим и для уравнений степени n.

Графические способы решения уравнений красивы и понятны, но не дают стопроцентной гарантии решения любого уравнения. Абсциссы точек пересечения графиков могут быть приближёнными.

В 9 классе и в старших классах я буду ещё знакомиться с другими функциями. Мне интересно знать: подчиняются ли те функции правилам параллельного переноса при построении их графиков.

На следующий год мне хочется также рассмотреть вопросы графического решения систем уравнений и неравенств.

Литература

1. Алгебра. 7 класс. Ч. 1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. М.: Мнемозина, 2007.

2. Алгебра. 8 класс. Ч. 1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. М.: Мнемозина, 2007.

3. Алгебра. 9 класс. Ч. 1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. М.: Мнемозина, 2007.

4. Глейзер Г.И. История математики в школе. VII–VIII классы. – М.: Просвещение, 1982.

5. Журнал Математика №5 2009; №8 2007; №23 2008.

6. Графическое решение уравнений сайты в Интернете: Тол ВИКИ; stimul.biz/ru; wiki.iot.ru/images; berdsk.edu; pege 3–6.htm.