Что такое стресс его плюсы и минусы. Положительные стороны стресса

text_fields

text_fields

arrow_upward

В покоящихся мы­шечных волокнах при отсутствии импульсации мотонейрона по­перечные миозиновые мостики не прикреплены к актиновым миофиламентам. Тропомиозин расположен таким образом, что бло­кирует участки актина, способные взаимодействовать с попере­чными мостиками миозина. Тропонин тормозит миозин - АТФ-азную активность и поэтому АТФ не расщепляется. Мышечные волокна находятся в расслабленном состоянии.

При сокращении мышцы длина А-дисков не меняется, J-диски укорачиваются, а Н-зона А-дисков может исчезать (рис. 4.3.).

Рис.4.3. Сокращение мышцы. А — Поперечные мостики между актином и миозином разомкнуты. Мышца находится в расслабленном состоянии.
Б — Замыкание поперечных мостиков между актином и миозином. Совершение головками мостиков гребковых движений по направлению к центру саркомера. Скольжение актиновых нитей вдоль миозиновых, укорочение саркомера, развитие тяги.

Эти данные явились основой для создания теории, объясняющей сокра­щение мышцы механизмом скольжения (теорией скольжения) тон­ких актиновых миофиламентов вдоль толстых миозиновых. В ре­зультате этого миозиновые миофиламенты втягиваются между окру­жающими их актиновыми. Это приводит к укорочению каждого саркомера, а значит, и всего мышечного волокна.

Молекулярный механизм сокращения мышечного волокна состоит в том, что возникающий в области концевой пластинки потенциал действия распространяется по системе поперечных трубочек вглубь волокна, вызывает деполяризацию мембран цистерн саркоплазмати-ческого ретикулума и освобождение из них ионов кальция. Свобод­ные ионы кальция в межфибриллярном пространстве запускают процесс сокращения. Совокупность процессов, обуславливающих распространение потенциала действия вглубь мышечного волокна, выход ионов кальция их саркоплазматического ретикулума, взаимо­действие сократительных белков и укорочение мышечного волокна называют «электромеханическим сопряжением». Временная последо­вательность между возникновением потенциала действия мышечного волокна, поступлением ионов кальция к миофибриллам и развитием сокращения волокна показана на рисунке 4.4.

Рис.4.4. Схема временной последовательности развития
потенциала действия (ПД), освобождения ионов кальция (Са2+) и развития изометрического сокращения мышцы.

При концентрации ионов Са 2+ в межмиофибриллярном пространстве ниже 10″ тропомиозин располагается таким образом, что блокирует прикрепление поперечных миозиновых мостиков к нитям актина. По­перечные мостики миозина не взаимодействуют с нитями актина. Продвижение относительно друг друга нитей актина и миозина отсут­ствует. Поэтому мышечное волокно находится в расслабленном состо­янии. При возбуждении волокна Са 2+ выходит из цистерн саркоплазматического ретикулума и, следовательно, концентрация его вблизи миофибрилл возрастает. Под влиянием активирующих ионов Са 2+ молекула тропонина изменяет свою форму таким образом, что вытал­кивает тропомиозин в желобок между двумя нитями актина, освобож­дая тем самым участки для прикрепления миозиновых поперечных мостиков к актину. В результате поперечные мостики прикрепляются к актиновым нитям. Поскольку головки миозина совершают «гребковые» движения в сторону центра саркомера происходит «втягивание» актиновых миофиламентов в промежутки между толстыми миозиновыми нитями и укорочение мышцы.

Источник энергии для сокращения мышечных волокон

text_fields

text_fields

arrow_upward


Источником энергии для сокращения мышечных волокон служит АТФ. С инактивацией тропонина ионами кальция активируются каталитические центры для расщепления АТФ на головках миозина. Фермент миозиновая АТФ-аза гидролизует АТФ, расположенный на головке миозина, что обеспечивает энергией поперечные мостики. Освобождающиеся при гидролизе АТФ молекула АДФ и неоргани­ческий фосфат используются для последующего ресинтеза АТФ. На миозиновом поперечном мостике образуется новая молекула АТФ. При этом происходит разъединение поперечного мостика с нитью актина. Повторное прикрепление и отсоединение мостиков продол­жается до тех пор, пока концентрация кальция внутри миофибрилл не снижается до подпороговой величины. Тогда мышечные волокна начинают расслабляться.

При однократном движении поперечных мостиков вдоль актино­вых нитей (гребковых движениях) саркомер укорачивается примерно на 1% его длины. Следовательно, для полного изотонического со­кращения мышцы необходимо совершить около 50 таких гребковых движений. Только ритмическое прикрепление и отсоединение голо­вок миозина может втянуть нити актина вдоль миозиновых и со­вершить требуемое укорочение целой мышцы. Напряжение, разви­ваемое мышечным волокном, зависит от числа одновременно зам­кнутых поперечных мостиков. Скорость развития напряжения или укорочения волокна определяется частотой замыкания поперечных мостиков, образуемых в единицу времени, то есть скоростью их прикрепления к актиновым миофиламентам. С увеличением скорос­ти укорочения мышцы число одновременно прикрепленных попере­чных мостиков в каждый момент времени уменьшается. Этим и можно объяснить уменьшение силы сокращения мышцы с увеличе­нием скорости ее укорочения.

При одиночном сокращении процесс укорочения мышечного во­локна заканчивается через 15-50 мс, так как активирующие его ионы кальция возвращаются при помощи кальциевого насоса в цистерны саркоплазматического ретикулума. Происходит расслабле­ние мышцы.

Поскольку возврат ионов кальция в цистерны саркоплазматичес­кого ретикулума идет против диффузионного градиента, то этот процесс требует затрат энергии. Ее источником служит АТФ. Одна молекула АТФ затрачивается на возврат 2-х ионов кальция из межфибриллярного пространства в цистерны. При снижении содер­жания ионов кальция до подпорогового уровня (ниже 10 V) моле­кулы тропонина принимают форму, характерную для состояния покоя. При этом вновь тропомиозин блокирует участки для при­крепления поперечных мостиков к нитям актина. Все это приводит к расслаблению мышцы вплоть до момента прихода очередного потока нервных импульсов, когда описанный выше процесс повто­ряется. Таким образом, кальций в мышечных волокнах играет роль внутриклеточного посредника, связывающего процессы возбуждения и сокращения.

Режимы и типы мышечных сокращений

text_fields

text_fields

arrow_upward

3.1. Одиночное сокращени

Режим сокращений мы­шечных волокон определяется частотой импульсации мотонейронов. Механический ответ мышечного волокна или отдельной мышцы на однократное их раздражение называется одиночным сокращением .

При одиночном сокращении выделяют:

1. Фазу развития напряжения или укорочения;

2. Фазу расслабления или удлинения (рис.4.5.).

Рис.4.5. Развитие во времени потенциала действия (А) и изометрического сокращения мышцы, приводящей большой палец кисти (Б).
1 - фаза развития напряжения; 2 - фаза расслабления.

Фаза расслабления продолжается примерно в два раза дольше, чем фаза напряжения. Длительность этих фаз зависит от морфофункциональных свойств мышечного волокна: у наиболее быстро сокращающихся волокон глазных мышц фаза напряжения составляет 7-10 мс, а у наиболее медленных волокон камбаловидной мышцы - 50-100 мс.

В естественных условиях мышечные волокна двигательной едини­цы и скелетная мышца в целом работают в режиме одиночного сокращения только в том случае, когда длительность интервала между последовательными импульсами мотонейрона равна или пре­вышает длительность одиночного сокращения иннервируемых им мышечных волокон. Так, режим одиночного сокращения медленных волокон камбаловидной мышцы человека обеспечивается при частоте импульсации мотонейрона менее 10 имп/с, а быстрых волокон глазодвигательных мышц - при частоте импульсации мотонейрона менее 50 имп/с.

В режиме одиночного сокращения мышца способна работать дли­тельное время без развития утомления. Однако в связи с тем, что длительность одиночного сокращения невелика, развиваемое мы­шечными волокнами напряжение не достигает максимально возмож­ных величин. При относительно высокой частоте импульсации мо­тонейронов каждый последующий раздражающий импульс приходит­ся на фазу предшествующего напряжения волокона, то есть до того момента, когда оно начинает расслабляться. В этом случае механи­ческие эффекты каждого предыдущего сокращения суммируются с последующим. Причем величина механического ответа на каждый последующий импульс меньше, чем на предыдущий. После несколь­ких первых импульсов последующие ответы мышечных волокон не изменяют достигнутого напряжения, а лишь поддерживают его. Та­кой режим сокращения называется гладким тетанусом (рис.4.6.). В подобном режиме двигательные единицы мышц человека работают при развитии максимальных изометрических усилий. При гладком тетанусе развиваемое ДЕ напряжение в 2-4 раза больше, чем при одиночных сокращениях.

Рис.4.6. Одиночные (а) и тетанические (б,в,г,д) сокращения скелетной мышцы. Накладывание волн сокращения друг на друга и образование тетануса при частотах раздражения: 5 -15 раз/с; в — 20 раз/с; г — 25 раз/с; д — более 40 раз в 1 сек (гладкий тетанус).

В тех случаях, когда промежутки между последовательными им­пульсами мотонейрона меньше времени полного цикла одиночного сокращения, но больше длительности фазы напряжения, сила со­кращения ДЕ колеблется. Этот режим сокращения называется зуб­ чатым тетанусом (рис. 4.6.).

Гладкий тетанус для быстрых и медленных мыши достигается при разных частотах импульсации мотонейронов. Зависит это от времени одиночного сокращения. Так, гладкий тетанус для быстрой глазо­двигательной мышцы проявляется при частотах свыше 150-200 имп/с, а у медленной камбаловидной мышцы - при частоте около 30 имп/с. В режиме тетанического сокращения мышца способна работать лишь короткое время. Это объясняется тем, что из-за отсутствия периода расслабления она не может восстановить свой энергетический потенциал и работает как бы «в долг».

Механическая реакция целой мышцы при ее возбуждении

Механическая реакция целой мышцы при ее возбуждении выра­жается в двух формах - в развитии напряжения и в укорочении. В естественных условиях деятельности в организме человека степень укорочения мышцы может быть различной.

По величине укорочения различают три типа мышечного сокращения:

1. Изотоничес­кий - это сокращение мышцы, при которой ее волокна укорачи­ваются при постоянной внешней нагрузке. В реальных движениях чисто изотоническое сокращение практически отсутствует;

2. Изо­метрический - это тип активации мышцы, при котором она развивает напряжение без изменения своей длины. Изометрическое сокращение лежит в основе статической работы;

3. Ауксотонический или анизотонический тип - это режим, в котором мыш­ца развивает напряжение и укорачивается. Именно такие сокраще­ния имеют место в организме при естественных локомоциях - ходьбе, беге и т.д.

3.2. Динамическое сокращени

Изотонический и анизотонический типы сокра­щения лежат в основе динамической работы локомоторного аппа­рата человека.

При динамической работе выделяют:

1. Концентрический тип сокращения - когда внешняя нагрузка меньше, чем развива­емое мышцей напряжение. При этом она укорачивается и вызывает движение;

2. Эксцентрический тип сокращения - когда внешняя нагрузка больше, чем напряжение мышцы. В этих условиях мышца, напрягаясь, все же растягивается (удлиняется), совершая при этом отрицательную (уступающую) динамическую работу

Работа № 9.

Изотоническое сокращение развивается в том случае, если к мышце не прилагается никакой нагрузки. Если появляется нагрузка, мышца должна генерировать большую силу, чтобы передвинуть ее. Латентный период также будет удлинятся, так как он требует больше времени для развития необходимой силы, которая генерируется мышцей. Скорость сокращения зависит от нагрузки, которой мышца противодействует. Максимальная скорость достигается при минимальной нагрузке и наоборот более высокая нагрузка сопровождается замедлением скорости мышечного сокращения.

Выберите клавишу «Эксперимент» на верхней панели экрана, а затем -работу «Изотоническое сокращение». Появившийся экран (рис. 4) сходен с экраном работы «Одиночный стимул». Заметьте, что дополнительные дисплеи «Мышечная длина» (Muscle length ) и «Скорость» (Velosity ) добавлены ниже экрана осциллографа, а мышца с левой стороны экрана теперь свободно свисает на нижнем ее конце. Грузовой ящик под мышцей открыт; внутри его находятся четыре весовых категории, каждая из которых может быть приложена к мышце. Выше грузового ящика находится передвижная платформа, которой вы можете управлять при нажатии кнопок (+ ) или (- ) под обозначением «Высота платформы» (Platform Height ). В этой работе вы прикладываете вес к концу мышцы, чтобы наблюдать изотоническое сокращение.

Ход работы:

1. Потенциал устанавливаем на отметке 8,2, а высоту платформы - на 75 мм.

2. Нажмите на отметку 0,5 г. веса в грузовом ящике и прикрепите груз к свисающему свободному концу мышцы. Вес будет растягивать мышцу, и достигать опоры на платформе.

3. Нажмите кнопку «Стимуляция» (Stimulate ) и наблюдайте за записью. Наблюдайте увеличение силы, с последующим коротким плато, сопровождающимся фазой релаксации. Заметим, что показатель активной силы (Active ) остается тем же самым, как и вес, который прикрепляется к мышце (0,5 г).

Рисунок 12. Оборудование для эксперимента с изотоническим сокращением.

Сколько требуется времени, чтобы мышца генерировала 0,5 г. силы (мсек)?

4. Нажмите кнопку «Стимуляция» снова, наблюдайте за мышцей и экраном внимательно. Затем нажмите кнопку «Регистрировать результат».

В какой точке графика мышца укорачивается?

Вы можете наблюдать по графической записи, что мышца развивает увеличение силы до того, как она достигнет фазы плато. Почему укорочение мышцы не происходит до фазы плато?

5. Уберите вес 0,5 г. и прикрепите вес 1,0 г. к мышце. Оставьте предшествующую графическую запись на экране.

6. Нажмите кнопку «Стимуляция», а затем кнопку «Регистрировать результат».



Требуется ли растяжение для мышцы, чтобы достичь развития силы, необходимого для передвижения веса?

Отличается ли эта графическая запись от записи, сделанной с прикреплением веса 0,5 г. ?

7. Оставляя эти две графические записи из экране, повторите эксперимент с оставшимися весами. Нажимай кнопку «Регистрировать результат», после каждой серии. Зарегистрируйте полученные результаты в своем отчете.

8. После завершения регистрации данных для всех четырех весов, нажмите кнопку «Инструменты» (Tools) на верхней панели экрана и кнопку «Составить чертеж результатов»(Plot data) .

9. Передвигайте голубую квадратную полоску по оси Y до кривой «Скорость» (Velocity ) и по оси X до кривой «Вес» (Weight) .

1) При каком весе скорость сокращения является наибольшей?

2) Что происходит, когда вы прикрепляете вес 2,0 г. к мышце и стимулируете ее?

3) Чем эта запись отличается от других?

4) Какой вид сокращения вы наблюдаете?

10. Закройте окно экрана «Составить чертеж результатов» (Plot data| , нажимая на «X» в верхнем правом углу окна экрана. Если вы еще держите вес, прикрепленный к мышце, удалите его. Нажмите кнопку «Убрать следовые метки» (Clear Tracings), чтобы очистить экран осциллографа.

11. Поместите 0,5 г. веса на мышцу и поднимите платформу до 100 мм.

12. Нажмите кнопку «Стимуляция» и наблюдайте запись мышечного сокращения.

Какой вид записи вы получаете? Какова сила сокращения?

13. Нажмите кнопку «Record data », затем повторите этапы 12-13 для каждого оставшегося веса (не забывайте регистрировать результат после каждой серии со сменой веса). Зафиксируйте полученные результаты в своем отчете

Опишите вашу запись и объясните, что происходит на них?

14. Нажмите кнопку «Clear Tracings ».

15. Поместите вес 1,5 г. на мышцу.

16. Установить платформу на высоту 90 мм.

17. Нажать кнопку «Stimulate» , а затем «Record data ».

18. Повторите этапы 16-18, за исключением самого нижнего положения платформы, высотой 10 мм, пока не достигните 60 мм (то есть устанавливайте платформу на высоту 80, 70, а затем 60 мм).

19. Нажмите кнопку «Tools », а затем «Plot Data ».

20. Внутри окна экрана «Составить чертеж результатов» передвигайте голубую квадратную полоску по оси X до «Длина» (Length ), а по оси Y до «Скорость» (Velocity ).

Какая длина мышцы генерирует наибольшую скорость сокращения?

21. Закрыть окно «Plot Data », нажимая на символы «X» в верхнем правом углу окна экрана.

22. Зарегистрируйте полученные результаты в своем отчете. Нарисуйте кривые одиночного и тетанического сокращения.

АНАЛИЗЫ КРОВИ

Краткий словарь используемых терминов

Hematocrit Determination -Определение гематокрита

Contaminated Disposal Container -Контейнер для загрязнений

Blood sample -Проба крови

Height of column of blood - Высота колонки крови

Height of red blood cell layers - Высота красных клеток крови

Height of white blood cell layers - Высота белых клеток крови

% WBC - Процент белых клеток крови

Рис. 13. Модель оборудования для определения гематокрита

Гематокритный показатель (гематокрит) свидетельствует о соотношении форменных элементов и плазмы крови. Для его выявления кровь центрифугируют в градуированной пробирке. В модельном наборе Вы видите 6 проб крови, в штативе сверху справа – капилляры для забора крови, рядом с пробирками кювета с расплавленным парафином. Слева – центрифуга и мерная линейка.

Алгоритм действий :

1. С помощью мышки берем капилляр и опускаем его кончик в первую пробирку с кровью. Затем переносим кончик капилляра в парафин (это нужно для того, чтобы герметизировать капилляр и не позволить крови вытечь). После этого помещаем капилляр в ячейку центрифуги.

2. Повторите эти шаги со всеми пробами крови.

3. Когда все ячейки центрифуги будут заполнены, установите время ее работы на 5 мин.

4. После прекращения работы центрифуги захватите первый капилляр и поместите его на мерную линейку и нажмите Record data для регистрации данных в таблицу результатов исследования. Уберите капилляр в контейнер для мусора.

5. Повторите это со всеми капиллярами.

6. Запишите данные таблицы в протокольную тетрадь и сделайте вывод.

Работа № 2. ИЗУЧЕНИЕ ОСЕДАНИЯ ЭРИТРОЦИТОВ .

Эритроциты, оставленные без движения, оседают на дно пробирки. Скорость их оседания зависит от количеств клеток и скорости их склеивания (агглютинации) в комочки.

Словарик :

Simple - Проба

Sodium chloride - Хлорид натрия

Blood sample -Проба крови

Высота эритроцитарного столбика - Distance RBCs have setting

Время прошедшее - Time elapsed

Sedimentation rate - Показатель осадка

Рис. 14. Оборудование для исследования СОЭ

Алгоритм действий :

1. Захватите из контейнера пробирки и расставьте и в штатив. Затем в каждую из шести пробирок поместите пробу крови из бутылочек слева вверху и добавьте 3,8% раствор Sodium citrate. Нажмите Mix для перемешивания содержимого.

2. С помощью мышки захватите первую пробирку и вылейте кровь в капилляр в штативе справа. Пустую пробирку выбросьте в контейнер для мусора.

3. Повторите это со всеми пробами крови.

Изометрическое сокращение Изотоническое сокращение

Человеку, занимающемуся различными физическими упражнениями, а тем более, тренирующемуся самостоятельно, полезно знать о том, как происходит сокращение целой мышцы .

Мышцы способны развивать максимальное усилие , когда они не сокращены или сокращены в незначительной степени . При изометрическом сокращении мышца напрягается, но не укорачивается. То есть, изометрическое сокращение осуществляется, когда два конца мышцы удерживаются раздельно на фиксированном расстоянии, и стимуляция вызывает развитие напряжения в мышце без изменения ее длины. Примером изометрического сокращения может быть удерживание штанги .

При изометрическом сокращении почти все мостики между актиновыми и миозиновыми волокнами образуются сразу, так как нет необходимости в образовании новых связей на новых местах, поскольку мышца не укорачивается. Поэтому мышца может развить большее усилие .

При изотоническом сокращении мышца укорачивается, не теряя напряжения . осуществляется, когда один конец мышцы свободен для движения, и мышца укорачивается, в это время развивая постоянную силу. Примером изотонического сокращения может быть подъем штанги . Только при очень быстрых движениях усилие может быть относительно небольшим.

Зависимость мышечного усилия от скорости сокращения мышцы объясняется функционированием отдельного саркомера. При быстром сокращении мышцы перемещаются очень быстро. Это предполагает, что в каждый момент времени должно распадаться определенное количество мостиков между нитями актина и миозина с тем, чтобы они могли возникнуть на новых местах. В результате может развиться относительно слабое усилие .

В действительности большая часть сокращений включает в себя оба элемента .

Итак, теперь мы имеем представление о том, что такое изометрическое сокращение мышцы , изотоническое сокращение мышцы, а также о сокращении целой мышцы . При изометрическом сокращении мышца напрягается, но не укорачивается. При изометрическом сокращении мышца может развить большее усилие . При изотоническом сокращении мышца укорачивается, не теряя напряжения . Большая часть сокращений включает в себя оба элемента .

Ознакомиться с обзором скелетных мышц очень полезно. Рекомендую! Читайте .