Что такое рациональная дробь примеры. Рациональная дробь

Прежде всего, чтобы научиться работать с рациональными дробями без ошибок, необходимо выучить формулы сокращённого умножения. И не просто выучить — их необходимо распознавать даже тогда, когда в роли слагаемых выступают синусы, логарифмы и корни.

Однако основным инструментом остаётся разложение числителя и знаменателя рациональной дроби на множители. Этого можно добиться тремя различными способами:

  1. Собственно, по формула сокращённого умножения: они позволяют свернуть многочлен в один или несколько множителей;
  2. С помощью разложения квадратного трёхчлена на множители через дискриминант. Этот же способ позволяет убедиться, что какой-либо трёхчлен на множители вообще не раскладывается;
  3. Метод группировки — самый сложный инструмент, но это единственный способ, который работает, если не сработали два предыдущих.

Как вы уже, наверное, догадались из названия этого видео, мы вновь поговорим о рациональных дробях. Буквально несколько минут назад у меня закончилось занятие с одним десятиклассником, и там мы разбирали именно эти выражения. Поэтому данный урок будет предназначен именно для старшеклассников.

Наверняка у многих сейчас возникнет вопрос: «Зачем ученикам 10-11 классов изучать такие простые вещи как рациональные дроби, ведь это проходится в 8 классе?». Но в том то и беда, что большинство людей эту тему именно «проходят». Они в 10-11 классе уже не помнят, как делается умножение, деление, вычитание и сложение рациональных дробей из 8-го класса, а ведь именно на этих простых знаниях строятся дальнейшие, более сложные конструкции, как решение логарифмических, тригонометрических уравнений и многих других сложных выражений, поэтому без рациональных дробей делать в старших классах практически нечего.

Формулы для решения задач

Давайте перейдем к делу. Прежде всего, нам потребуется два факта — два комплекта формул. Прежде всего, необходимо знать формулы сокращенного умножения:

  • ${{a}^{2}}-{{b}^{2}}=\left(a-b \right)\left(a+b \right)$ — разность квадратов;
  • ${{a}^{2}}\pm 2ab+{{b}^{2}}={{\left(a\pm b \right)}^{2}}$ — квадрат суммы или разности;
  • ${{a}^{3}}+{{b}^{3}}=\left(a+b \right)\left({{a}^{2}}-ab+{{b}^{2}} \right)$ — сумма кубов;
  • ${{a}^{3}}-{{b}^{3}}=\left(a-b \right)\left({{a}^{2}}+ab+{{b}^{2}} \right)$ — разность кубов.

В чистом виде они ни в каких примерах и в реальных серьезных выражениях не встречаются. Поэтому наша задача состоит в том, чтобы научиться видеть под буквами $a$ и $b$ гораздо более сложные конструкции, например, логарифмы, корни, синусы и т.д. Научиться видеть это можно лишь при помощи постоянной практики. Именно поэтому решать рациональные дроби совершенно необходимо.

Вторая, совершенно очевидная формула — это разложение квадратного трехчлена на множители:

${{x}_{1}}$; ${{x}_{2}}$ — корни.

С теоретической частью мы разобрались. Но как решать реальные рациональные дроби, которые рассматриваются в 8 классе? Сейчас мы и потренируемся.

Задача № 1

\[\frac{27{{a}^{3}}-64{{b}^{3}}}{{{b}^{3}}-4}:\frac{9{{a}^{2}}+12ab+16{{b}^{2}}}{{{b}^{2}}+4b+4}\]

Давайте попробуем применить вышеописанные формулы к решению рациональных дробей. Прежде всего, хочу объяснить, зачем вообще нужно разложение на множители. Дело в том, что при первом взгляде на первую часть задания хочется сократить куб с квадратом, но делать этого категорически нельзя, потому что они являются слагаемыми в числителе и в знаменателе, но ни в коем случае не множителями.

Вообще, что такое сокращение? Сокращение — это использование основного правила работы с такими выражениями. Основное свойство дроби заключается в том, что мы можем числитель и знаменатель можем умножить на одно и то же число, отличное от «нуля». В данном случае, когда мы сокращаем, то, наоборот, делим на одно и то же число, отличное от «нуля». Однако мы должны все слагаемые, стоящие в знаменателе, разделить на одно и то же число. Делать так нельзя. И сокращать числитель со знаменателем мы вправе лишь тогда, когда оба они разложены на множители. Давайте это и сделаем.

Теперь необходимо посмотреть, сколько слагаемых находится в том или ином элементе, в соответствии с этим узнать, какую формулу необходимо использовать.

Преобразуем каждое выражение в точный куб:

Перепишем числитель:

\[{{\left(3a \right)}^{3}}-{{\left(4b \right)}^{3}}=\left(3a-4b \right)\left({{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}} \right)\]

Давайте посмотрим на знаменатель. Разложим его по формуле разности квадратов:

\[{{b}^{2}}-4={{b}^{2}}-{{2}^{2}}=\left(b-2 \right)\left(b+2 \right)\]

Теперь посмотрим на вторую часть выражения:

Числитель:

Осталось разобраться со знаменателем:

\[{{b}^{2}}+2\cdot 2b+{{2}^{2}}={{\left(b+2 \right)}^{2}}\]

Давайте перепишем всю конструкцию с учетом вышеперечисленных фактов:

\[\frac{\left(3a-4b \right)\left({{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}} \right)}{\left(b-2 \right)\left(b+2 \right)}\cdot \frac{{{\left(b+2 \right)}^{2}}}{{{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}}}=\]

\[=\frac{\left(3a-4b \right)\left(b+2 \right)}{\left(b-2 \right)}\]

Нюансы умножения рациональных дробей

Ключевой вывод из этих построений следующий:

  • Далеко не каждый многочлен раскладывается на множители.
  • Даже если он и раскладывается, необходимо внимательно смотреть, по какой именно формуле сокращенного умножения.

Для этого, во-первых, нужно оценить, сколько всего слагаемых (если их два, то все, что мы можем сделать, то это разложить их либо по сумме разности квадратов, либо по сумме или разности кубов; а если их три, то это, однозначно, либо квадрат суммы, либо квадрат разности). Очень часто бывает так, что или числитель, или знаменатель вообще не требует разложения на множители, он может быть линейным, либо дискриминант его будет отрицательным.

Задача № 2

\[\frac{3-6x}{2{{x}^{2}}+4x+8}\cdot \frac{2x+1}{{{x}^{2}}+4-4x}\cdot \frac{8-{{x}^{3}}}{4{{x}^{2}}-1}\]

В целом, схема решения этой задачи ничем не отличается от предыдущей — просто действий будет больше, и они станут разнообразнее.

Начнем с первой дроби: посмотрим на ее числитель и сделаем возможные преобразования:

Теперь посмотрим на знаменатель:

Со второй дробью: в числителе вообще ничего нельзя сделать, потому что это линейное выражение, и вынести из него какой-либо множитель нельзя. Посмотрим на знаменатель:

\[{{x}^{2}}-4x+4={{x}^{2}}-2\cdot 2x+{{2}^{2}}={{\left(x-2 \right)}^{2}}\]

Идем к третьей дроби. Числитель:

Разберемся со знаменателем последней дроби:

Перепишем выражение с учетом вышеописанных фактов:

\[\frac{3\left(1-2x \right)}{2\left({{x}^{2}}+2x+4 \right)}\cdot \frac{2x+1}{{{\left(x-2 \right)}^{2}}}\cdot \frac{\left(2-x \right)\left({{2}^{2}}+2x+{{x}^{2}} \right)}{\left(2x-1 \right)\left(2x+1 \right)}=\]

\[=\frac{-3}{2\left(2-x \right)}=-\frac{3}{2\left(2-x \right)}=\frac{3}{2\left(x-2 \right)}\]

Нюансы решения

Как видите, далеко не все и не всегда упирается в формулы сокращенного умножения — иногда просто достаточно вынести за скобки константу или переменную. Однако бывает и обратная ситуация, когда слагаемых настолько много или они так построены, что формулы сокращенного умножения к ним вообще невозможно. В этом случае к нам на помощь приходит универсальный инструмент, а именно, метод группировки. Именно это мы сейчас и применим в следующей задаче.

Задача № 3

\[\frac{{{a}^{2}}+ab}{5a-{{a}^{2}}+{{b}^{2}}-5b}\cdot \frac{{{a}^{2}}-{{b}^{2}}+25-10a}{{{a}^{2}}-{{b}^{2}}}\]

Разберем первую часть:

\[{{a}^{2}}+ab=a\left(a+b \right)\]

\[=5\left(a-b \right)-\left(a-b \right)\left(a+b \right)=\left(a-b \right)\left(5-1\left(a+b \right) \right)=\]

\[=\left(a-b \right)\left(5-a-b \right)\]

Давайте перепишем исходное выражение:

\[\frac{a\left(a+b \right)}{\left(a-b \right)\left(5-a-b \right)}\cdot \frac{{{a}^{2}}-{{b}^{2}}+25-10a}{{{a}^{2}}-{{b}^{2}}}\]

Теперь разберемся со второй скобкой:

\[{{a}^{2}}-{{b}^{2}}+25-10a={{a}^{2}}-10a+25-{{b}^{2}}=\left({{a}^{2}}-2\cdot 5a+{{5}^{2}} \right)-{{b}^{2}}=\]

\[={{\left(a-5 \right)}^{2}}-{{b}^{2}}=\left(a-5-b \right)\left(a-5+b \right)\]

Так как два элемента не получилось сгруппировать, то мы сгруппировали три. Осталось разобраться лишь со знаменателем последней дроби:

\[{{a}^{2}}-{{b}^{2}}=\left(a-b \right)\left(a+b \right)\]

Теперь перепишем всю нашу конструкцию:

\[\frac{a\left(a+b \right)}{\left(a-b \right)\left(5-a-b \right)}\cdot \frac{\left(a-5-b \right)\left(a-5+b \right)}{\left(a-b \right)\left(a+b \right)}=\frac{a\left(b-a+5 \right)}{{{\left(a-b \right)}^{2}}}\]

Задача решена, и больше ничего упростить здесь нельзя.

Нюансы решения

С группировкой мы разобрались и получили еще один очень мощный инструмент, который расширяет возможности по разложению на множители. Но проблема в том, что в реальной жизни нам никто не будет давать вот такие рафинированные примеры, где есть несколько дробей, у которых нужно лишь разложить на множитель числитель и знаменатель, а потом по возможности их сократить. Реальные выражения будут гораздо сложнее.

Скорее всего, помимо умножения и деления там будут присутствовать вычитания и сложения, всевозможные скобки — вообщем, придется учитывать порядок действий. Но самое страшное, что при вычитании и сложении дробей с разными знаменателями их придется приводить к одному общему. Для этого каждый из них нужно будет раскладывать на множители, а потом преобразовывать эти дроби: приводить подобные и многое другое. Как это сделать правильно, быстро, и при этом получить однозначно правильный ответ? Именно об этом мы и поговорим сейчас на примере следующей конструкции.

Задача № 4

\[\left({{x}^{2}}+\frac{27}{x} \right)\cdot \left(\frac{1}{x+3}+\frac{1}{{{x}^{2}}-3x+9} \right)\]

Давайте выпишем первую дробь и попытаемся разобраться с ней отдельно:

\[{{x}^{2}}+\frac{27}{x}=\frac{{{x}^{2}}}{1}+\frac{27}{x}=\frac{{{x}^{3}}}{x}+\frac{27}{x}=\frac{{{x}^{3}}+27}{x}=\frac{{{x}^{3}}+{{3}^{3}}}{x}=\]

\[=\frac{\left(x+3 \right)\left({{x}^{2}}-3x+9 \right)}{x}\]

Переходим ко второй. Сразу посчитаем дискриминант знаменателя:

Он на множители не раскладывается, поэтому запишем следующее:

\[\frac{1}{x+3}+\frac{1}{{{x}^{2}}-3x+9}=\frac{{{x}^{2}}-3x+9+x+3}{\left(x+3 \right)\left({{x}^{2}}-3x+9 \right)}=\]

\[=\frac{{{x}^{2}}-2x+12}{\left(x+3 \right)\left({{x}^{2}}-3x+9 \right)}\]

Числитель выпишем отдельно:

\[{{x}^{2}}-2x+12=0\]

Следовательно, этот многочлен на множители не раскладывается.

Максимум, что мы могли сделать и разложить, мы уже сделали.

Итого переписываем нашу исходную конструкцию и получаем:

\[\frac{\left(x+3 \right)\left({{x}^{2}}-3x+9 \right)}{x}\cdot \frac{{{x}^{2}}-2x+12}{\left(x+3 \right)\left({{x}^{2}}-3x+9 \right)}=\frac{{{x}^{2}}-2x+12}{x}\]

Все, задача решена.

Если честно, это была не такая уж и сложная задача: там все легко раскладывалось на множители, быстро приводились подобные слагаемые, и все красиво сокращалось. Поэтому сейчас давайте попробуем решить задачку посерьезней.

Задача № 5

\[\left(\frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{{{x}^{3}}-8}-\frac{1}{x-2} \right)\cdot \left(\frac{{{x}^{2}}}{{{x}^{2}}-4}-\frac{2}{2-x} \right)\]

Сначала давайте разберемся с первой скобкой. С самого начала разложим на множители знаменатель второй дроби отдельно:

\[{{x}^{3}}-8={{x}^{3}}-{{2}^{3}}=\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)\]

\[\frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{{{x}^{3}}-8}-\frac{1}{{{x}^{2}}}=\]

\[=\frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}-\frac{1}{x-2}=\]

\[=\frac{x\left(x-2 \right)+{{x}^{2}}+8-\left({{x}^{2}}+2x+4 \right)}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}=\]

\[=\frac{{{x}^{2}}-2x+{{x}^{2}}+8-{{x}^{2}}-2x-4}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}=\]

\[=\frac{{{x}^{2}}-4x+4}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}=\frac{{{\left(x-2 \right)}^{2}}}{\left(x-2 \right)\left({{x}^{2}}+2x+4 \right)}=\frac{x-2}{{{x}^{2}}+2x+4}\]

Теперь поработаем со второй дробью:

\[\frac{{{x}^{2}}}{{{x}^{2}}-4}-\frac{2}{2-x}=\frac{{{x}^{2}}}{\left(x-2 \right)\left(x+2 \right)}-\frac{2}{2-x}=\frac{{{x}^{2}}+2\left(x-2 \right)}{\left(x-2 \right)\left(x+2 \right)}=\]

\[=\frac{{{x}^{2}}+2x+4}{\left(x-2 \right)\left(x+2 \right)}\]

Возвращаемся к нашей исходной конструкции и записываем:

\[\frac{x-2}{{{x}^{2}}+2x+4}\cdot \frac{{{x}^{2}}+2x+4}{\left(x-2 \right)\left(x+2 \right)}=\frac{1}{x+2}\]

Ключевые моменты

Еще раз ключевые факты сегодняшнего видеоурока:

  1. Необходимо знать «назубок» формулы сокращенного умножения — и не просто знать, а уметь видеть в тех выражениях, которые будут вам встречаться в реальных задачах. Помочь нам в этом может замечательное правило: если слагаемых два, то это либо разность квадратов, либо разность или сумма кубов; если три — это может быть только квадрат суммы или разности.
  2. Если какая-либо конструкция не раскладывается при помощи формул сокращенного умножения, то нам на помощь приходит либо стандартная формула разложения трехчленов на множители, либо метод группировки.
  3. Если что-то не получается, внимательно посмотрите на исходное выражение — а требуются ли вообще какие-то преобразования с ним. Возможно, достаточно будет просто вынести множитель за скобку, а это очень часто бывает просто константа.
  4. В сложных выражениях, где требуется выполнить несколько действий подряд, не забывайте приводить к общему знаменателю, и лишь после этого, когда все дроби приведены к нему, обязательно приведите подобное в новом числителе, а потом новый числитель еще раз разложите на множители — возможно, что-то сократится.

Вот и все, что я хотел вам рассказать сегодня о рациональных дробях. Если что-то непонятно — на сайте еще куча видеоуроков, а также куча задач для самостоятельного решения. Поэтому оставайтесь с нами!

Определение. Сумма целых неотрицательных степеней неизвестного Х, взятых с некоторыми числовыми коэфйфициентами, называется многочленом.

Здесь: - действительные числа.

n - cтепень многочлена.

Операции над многочленами.

1). При сложении (вычитании) двух многочленов складываются (вычитаются) коэффициенты при одинаковых степенях неизвестнолго х.

2). Два многочлена равны, если они имеют одинаковую степень и равные коэффициенты при одинаковых степенях Х.

3). Степень многочлена, получаемого при перемножении двух многочленов, равна сумме степеней перемножаемых многочленов.

4). Линейные операции над многочленами обладают свойствами ассоциативности, коммутативности и дистрибутивности.

5) Деление многочлена на многочлен можно осуществить по правилу «деление уголком».

Определение. Число х=а называется корнем многочлена, если подстановка его в многочлен обращает его в нуль, т. е.

Теорема Безу. Остаток от деления многочлена
на двучлен (х-а) равен значению многочлена при х=а, т. е.

Доказательство.

Пусть , где

Полагая в равенстве х=а, получим

1). При делении многочлена на двучлен (х-а) остатком всегда будет число.

2). Если а – корень многочлена, то многочлен делится на двучлен (х-а) без остатка.

3) При делении многочлена степени n на двучлен (х-а) в частном получаем многочлен степени (n-1).

Основная теорема алгебры. Любой многочлен смтепени n (n >1) имеет хотябы один корень (приводим без доказательства).

Следствие. Всякий многочлен степени n имеет ровно n корней и над полем комплексных чисел разлагается в произведение n линейных множителей, т. е. Среди корней многочлена могут быть повторяющиеся числа (кратные корни). У многочленов с действительными коэффициентами комплексные корни могут появляться только сопряжёнными парами. Докажем последнее утверждение.

Пусть
- комплексный корень многочлена, тогда На основании общего свойства комплексных чисел можно утверждать следовательно
- тоже корень.

Каждой паре комплексных сопряжённых корней многочлена соответствует квадратный трёхчлен с действительными коэфйфициентами.

здесь p , q - действительные числа (показать на примере).

Вывод. Всякий многочлен представим в виде произведения линейных множителей и квадратных трёхчленов с действительными коэффициентами.

Рациональные дроби.

Рациональной дробью называется отношение двух многочленов.

Если
, то рациональная дробь называается правильной. В противном случае дробь – неправильная. Всякую неправильную дробь можно представить в виде суммы многочлена (частного) и правильной рациональной дроби путём деления многочлена, стоящего в числителе, на многочлен, стоящий в знаменателе.

- неправильная рациональная дробь.

Данную неправильную рациональную дробь теперь можно представить в следующем виде.

С учётом показанного, в дальнейшем будем рассматривать только правильные рациональные дроби.

Существуют так называемые простейшие рациональные дроби – это дроби, не поддающиеся никакому упрощению. Эти простейшие дроби имеют вид:

Правильную рациональную дробь более сложного вида всегда можно представить в виде суммы простейших рациональных дробей. Набор дробей определяется набором корней многочлена, стоящего в знаменателе правильной несократимой рациональной дроби. Правило разложения дроби на простейшие следующее.

Пусть рациональная дробь представлена в следующем виде.

Здесь в числителе простейших дробей стоят неизвестные коэффициенты, которые всегда могут быть определены методом неопределённых коэффициентов. Суть метода состоит в приравнивании коэффициентов при одинаковых степенях Х у многочлена, стоящего в числителе исходной дроби и многочлена, стоящего в числителе дроби, полученной после приведения простейших дробей к общему знаменателю.

Приравняем коэффициенты при одинаковых степенях Х.

Решая систему уравнений относительно неизвестных коэффициентов, получим.

Итак, данная дробь представима набором следующих простейших дробей.

Приведением к общему знаменателю убеждаемся в правильности решения задачи.

Она имеет вид

где P(x) и Q(x) некоторые многочлены.

Различают правильные и неправильные рациональные дроби, по аналогии с обычными числовыми дробями. Рациональная дробь называется правильной, если порядок знаменателя больше порядка числителя, и неправильной, если наоборот.

Любую неправильную рациональную дробь можно преобразовать в сумму некоторого многочлена и правильной рациональной дроби

Любую рациональную дробь многочленов с вещественными коэффициентами можно представить как сумму рациональных дробей, знаменателями которых являются выражения (x a ) k (a - вещественный корень Q(x)) либо (x 2 + p x + q ) k (где x 2 + p x + q не имеет действительных корней), причём степени k не больше кратности соответствующих корней в многочлене Q(x). На основании этого утверждения основана теорема об интегрируемости рациональной дроби. Согласно ей, любая рациональная дробь может быть интегрирована в элементарных функциях, что делает класс рациональных дробей весьма важным в математическом анализе.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Рациональная дробь" в других словарях:

    Рациональная функция это дробь, числителем и знаменателем которой являются многочлены. Она имеет вид где, многочлены от любого числа переменных. Частным случаем являются рациональные функции одного переменного: , где… … Википедия

    У этого термина существуют и другие значения, см. Дробь. 8 / 13 числитель числитель знаменатель знаменатель Две записи одной дроби Дробь в математике число, состоящее из одной или нескольких частей… … Википедия

    В Викисловаре есть статья «дробь» Наименование символа «⁄» (другое, распространённое по большей части в английском языке, название символа солидус (англ.), или слэш), например, в номерах домов. Так номер дома «5/17» читается «пять… … Википедия

    1) Р. ф. функция w=R(z), где R(z) рациональное выражение от z, т. е. выражение, полученное из независимого переменного z и нек рого конечного набора чисел (действительных или комплексных) посредством конечного числа арифметич. действий. Р. ф.… … Математическая энциклопедия

    Четверти Рациональное число (лат. ratio отношение, деление, дробь) число, представляемое обыкновенной дробью, где m целое число, а n натуральное число. При этом число m называется числителем, а число n знаменателем дроби. Таку … Википедия

    Четверти Рациональное число (лат. ratio отношение, деление, дробь) число, представляемое обыкновенной дробью, где m целое число, а n натуральное число. При этом число m называется числителем, а число n знаменателем дроби. Таку … Википедия

    У этого термина существуют и другие значения, см. Дробь. Наипростейшей дробью ой степени называется рациональная функция вида где принимает натуральные значения, а точки, являющиеся полюсами функции, не обязательно геометрически различны.… … Википедия

    Число, выражаемое рациональной дробью. Формальная теория Р. ч. строится с помощью пар целых чисел. Р а ц и о н а л ь н о й д р о б ь ю наз. упорядоченная пара (а, b)целых чисел а и b, у к рой b№0. Две рациональные дроби и наз. э к в и в а л е н … Математическая энциклопедия

    Четверти Рациональное число (лат. ratio отношение, деление, дробь) число, представляемое обыкновенной дробью, где m целое число, а n натуральное число. При этом число m называется числителем, а число n знаменателем дроби. Таку … Википедия

Запиши в тетрадь тему урока

"Рациональные дроби".

Что это такое?
Это алгебраические выражения, которые содержат деление на выражение с переменными.

Например:
- дробное выражение.

Целое, потому, что оно равно , т. е. целому выражению с рациональными коэффициентами.

Целые и дробные выражения называются рациональными выражениями.

Вот с ними нам и предстоит работать в дальнейшем!

Целое выражение имеет смысл при любых значениях переменных, а вот дробное... делить-то на 0 нельзя!

Например:
определено при всех значениях переменной а и при всех значениях b, кроме b=3.

При каких значениях переменной выражение
?

Запомни:
Для любых значений а, b и с, где и , верно равенство

Если мы домножим дробь на число (т. е. умножим числитель и знаменатель дроби на одно и тоже число), то получаем равную дробь, но уже с другим знаменателем.

Если делим числитель и знаменатель на одно и тоже число, то сокращаем дробь.
Например:
1) Приведем дробь к дроби со знаменателем 35у3 .
Сначала поделим новый знаменатель 35у3 на старый 7у и получим дополнительный множитель 5у2 .
А потом умножим числитель и знаменатель на этот дополнительный множитель:
.

2) Cократим дробь .
Решение:

Запомни:
Чтобы сократить дробь надо числитель и знаменатель разложить на множители и затем поделить их на равный множитель, т.е. сократить.

Для разложения выражения на множители существует несколько методов.
Нам с тобой пока знакомы два из них:
1 метод
Вынесение за скобку общего множителя.
2 метод
Применение формул сокращенного умножения.

Первый и самый простой способ разложения на множители -
вынесение общего множителя за скобку.

Ac + bc = (a + b)c

Пример 1: 5ab2c3 - 10a2b3c + 15a3bc2 = 5abc(bc2 - 2ab2 + 3a2c)

Правило:

Если все члены многочлена имеют общий множитель (или несколько общих множителей), то этот множитель (эти множители) можно вынести за скобку,
при этом каждое слагаемое делим на выражение, которое выносим за скобку: 5ab2c3: 5abc = bc2 , - 10a2b3c: 5abc = - 2ab2 и, наконец, 15a3bc2: 5abc = 3a2c (следите за знаками!!!)

И надо помнить - за скобку выносится степень с меньшим показателем.

Самостоятельно:
Вынесите общий множитель за скобку

Проверь:

Иногда все члены алгебраического выражения не имею общего множителя, но в отдельных группах слагаемых он есть, например,

ах + ay + bx + by.

Этот многочлен можно разложить на множители, соединяя его члены в отдельные группы

(ax + bx) + (ay + by) = x(a + b) + y(a + b) = (x + y)(a + b).

Пример:

Применяя метод группировки слагаемых разложите выражение на множители
3x + xy2 - x2y - 3y

Решение:
3x + xy2 - x2y - 3y = 3(x - y) + xy(y -x) = 3(x - y) - xy(x -y) = (3 - xy)(x - y).

Потренируемся еще:
1) a3 - ab - a2b + a2 ,
2) ab2 - b2y - ax + xy + b2 - x .

Решение:
1) a3 - ab - a2b + a2 = a3 - a2b - ab + a2 = a2(a - b) + a(a - b)= (a2+ a)(a - b) = a(a +1)(a - b),
2) ab2 - b2y - ax + xy + b2 - x = b2(a - y + 1) - x(a - y + 1) = (b2 - x)(a - y + 1).

А теперь о 2-м методе.
Если слагаемые алгебраического выражения не имеют повторяющихся множителей, то можно попытаться применить формулы сокращенного умножения...

Примеры
а) Разность квадратов:
0,49х4 - 121y2 = (0,7x2)2 - (11y)2 = (0,7x2 - 11y)(0,7x2 + 11y),

Б) Разность кубов:
1 - 27с3 = 13 - (3с)3 = (1 - 3с)(1 + 3с + 9с2),

В) Квадрат разности:
4a2 - 12ab + 9b2 = (2a)2 - 22a 3b + (3b)2 = (2a - 3b)2 или (2a - 3b)(2a - 3b),

Г) Куб разности:
27x6 - 27x4y + 9x2y2 - y3 = (3x2)3 - 3(3x2)2y + 3(3x2)y2 - y3 = (3x2 - y)3 или (3x2 - y)(3x2 - y)(3x2 - y) т.е. три равных множителя!

Алгоритм:
- сначала "подгоняем внешний вид выражения" под возможную для применения формулу...
- если получилось - действуем далее как она (формула) того требует...
- если не получилось, то начинаем "примерять" другую формулу...
- и так пока не получится разложить выражение на произведение множителей!