Что такое НаноТехнологии? Где используются нанотехнологии? Для чего нужны нанотехнологии.

Президент России Дмитрий Медведев уверен, что в стране есть все условия для успешного развития нанотехнологий.

Нанотехнологии - это новое направление науки и технологии, активно развивающееся в последние десятилетия. Нанотехнологии включают создание и использование материалов, устройств и технических систем, функционирование которых определяется наноструктурой, то есть ее упорядоченными фрагментами размером от 1 до 100 нанометров.

Приставка "нано", пришедшая из греческого языка ("нанос" по‑гречески ‑ гном), означает одну миллиардную долю. Один нанометр (нм) - одна миллиардная доля метра.

Термин "нанотехнология" (nanotechnology) был введен в 1974 году профессором‑материаловедом из Токийского университета Норио Танигучи (Norio Taniguchi), который определил его как "технология производства, позволяющая достигать сверхвысокую точность и ультрамалые размеры...порядка 1 нм...".

В мировой литературе четко отличают нанонауку (nanoscience) от нанотехнологий (nanotechnology). Для нанонауки используется также термин ‑ nanoscale science (наноразмерная наука).

На русском языке и в практике российского законодательства и нормативных документов термин "нанотехнологии" объединяет "нанонауку", "нанотехнологии", и иногда даже "наноиндустрию" (направления бизнеса и производства, где используются нанотехнологии).

Важнейшей составной частью нанотехнологии являются наноматериалы , то есть материалы, необычные функциональные свойства которых определяются упорядоченной структурой их нанофрагментов размером от 1 до 100 нм.

‑ нанопористые структуры;
‑ наночастицы;
‑ нанотрубки и нановолокна
‑ нанодисперсии (коллоиды);
‑ наноструктурированные поверхности и пленки;
‑ нанокристаллы и нанокластеры.

Наносистемная техника ‑ полностью или частично созданные на основе наноматериалов и нанотехнологий функционально законченные системы и устройства, характеристики которых кардинальным образом отличаются от показателей систем и устройств аналогичного назначения, созданных по традиционным технологиям.

Области применения нанотехнологий

Перечислить все области, в которых эта глобальная технология может существенно повлиять на технический прогресс, практически невозможно. Можно назвать только некоторые из них:

‑ элементы наноэлектроники и нанофотоники (полупроводниковые транзисторы и лазеры;
‑ фотодетекторы; солнечные элементы; различные сенсоры);
‑ устройства сверхплотной записи информации;
‑ телекоммуникационные, информационные и вычислительные технологии; суперкомпьютеры;
‑ видеотехника — плоские экраны, мониторы, видеопроекторы;
‑ молекулярные электронные устройства, в том числе переключатели и электронные схемы на молекулярном уровне;
‑ нанолитография и наноимпринтинг;
‑ топливные элементы и устройства хранения энергии;
‑ устройства микро‑ и наномеханики, в том числе молекулярные моторы и наномоторы, нанороботы;
‑ нанохимия и катализ, в том числе управление горением, нанесение покрытий, электрохимия и фармацевтика;
‑ авиационные, космические и оборонные приложения;
‑ устройства контроля состояния окружающей среды;
‑ целевая доставка лекарств и протеинов, биополимеры и заживление биологических тканей, клиническая и медицинская диагностика, создание искусственных мускулов, костей, имплантация живых органов;
‑ биомеханика; геномика; биоинформатика; биоинструментарий;
‑ регистрация и идентификация канцерогенных тканей, патогенов и биологически вредных агентов;
‑ безопасность в сельском хозяйстве и при производстве пищевых продуктов.

Компьютеры и микроэлектроника

Нанокомпьютер — вычислительное устройство на основе электронных (механических, биохимических, квантовых) технологий с размерами логических элементов порядка нескольких нанометров. Сам компьютер, разрабатываемый на основе нанотехнологий, также имеет микроскопические размеры.

ДНК‑компьютер — вычислительная система, использующая вычислительные возможности молекул ДНК. Биомолекулярные вычисления — это собирательное название для различных техник, так или иначе связанных с ДНК или РНК. При ДНК‑вычислениях данные представляются не в форме нулей и единиц, а в виде молекулярной структуры, построенной на основе спирали ДНК. Роль программного обеспечения для чтения, копирования и управления данными выполняют особые ферменты.

Атомно‑силовой микроскоп ‑ сканирующий зондовый микроскоп высокого разрешения, основанный на взаимодействии иглы кантилевера (зонда) с поверхностью исследуемого образца. В отличие от сканирующего туннельного микроскопа (СТМ), может исследовать как проводящие, так и непроводящие поверхности даже через слой жидкости, что позволяет работать с органическими молекулами (ДНК). Пространственное разрешение атомно‑силового микроскопа зависит от размера кантилевера и кривизны его острия. Разрешение достигает атомарного по горизонтали и существенно превышает его по вертикали.

Антенна‑осциллятор ‑ 9 февраля 2005 года в лаборатории Бостонского университета была получена антенна‑осциллятор размерами порядка 1 мкм. Это устройство насчитывает 5000 миллионов атомов и способно осциллировать с частотой 1,49 гигагерц, что позволяет передавать с ее помощью огромные объемы информации.

Наномедицина и фармацевтическая промышленность

Направление в современной медицине, основанное на использовании уникальных свойств наноматериалов и нанообъектов для отслеживания, конструирования и изменения биологических систем человека на наномолекулярном уровне.

ДНК‑нанотехнологии ‑ используют специфические основы молекул ДНК и нуклеиновых кислот для создания на их основе четко заданных структур.

Промышленный синтез молекул лекарств и фармакологических препаратов четко определенной формы (бис‑пептиды).

В начале 2000‑го года, благодаря быстрому прогрессу в технологии изготовления частиц наноразмеров, был дан толчок к развитию новой области нанотехнологии ‑ наноплазмонике . Оказалось возможным передавать электромагнитное излучение вдоль цепочки металлических наночастиц с помощью возбуждения плазмонных колебаний.

Робототехника

Нанороботы ‑ роботы, созданные из наноматериалов и размером сопоставимые с молекулой, обладающие функциями движения, обработки и передачи информации, исполнения программ. Нанороботы, способные к созданию своих копий, т.е. самовоспроизводству, называются репликаторами.

В настоящее время уже созданы электромеханические наноустройства, ограниченно способные к передвижению, которые можно считать прототипами нанороботов.

Молекулярные роторы ‑ синтетические наноразмерные двигатели, способные генерировать крутящий момент при приложении к ним достаточного количества энергии.

Место России среди стран, разрабатывающих и производящих нанотехнологии

Мировыми лидерами по общему объему капиталовложений в сфере нанотехнологий являются страны ЕС, Япония и США. В последнее время значительно увеличили инвестиции в эту отрасль Россия, Китай, Бразилия и Индия. В России объем финансирования в рамках программы "Развитие инфраструктуры наноиндустрии в Российской Федерации на 2008 ‑ 2010 годы" составит 27,7 млрд.руб.

В последнем (2008 год) отчете лондонской исследовательской фирмы Cientifica, который называется "Отчет о перспективах нанотехнологий", о российских вложениях написано дословно следующее: "Хотя ЕС по уровню вложений все еще занимает первое место, Китай и Россия уже обогнали США".

В нанотехнологиях существуют такие области, где российские ученые стали первыми в мире, получив результаты, положившие начало развитию новых научных течений.

Среди них можно выделить получение ультрадисперсных наноматериалов, проектирование одноэлектронных приборов, а также работы в области атомно‑силовой и сканирующей зондовой микроскопии. Только на специальной выставке, проводившейся в рамках XII Петербургского экономического форума (2008 год), было представлено сразу 80 конкретных разработок.

В России уже производится целый ряд нанопродуктов, востребованных на рынке: наномембраны, нанопорошки, нанотрубки. Однако, по мнению экспертов, по комммерциализации нанотехнологических разработок Россия отстает от США и других развитых стран на десять лет.

Материал подготовлен на основе информации открытых источников

Разговоры о нанотехнологиях сейчас на устах каждого ученого. Но как и почему они появились? Кто их придумал? Давайте обратимся к авторитетным источникам.

В сущности, еще даже нет определения слове «нанотехнология», но это слово успешно применяют, когда говорят о чем-то миниатюрном. Точнее — сверхминиатюрном: о машинах, состоящих из отдельных атомов, о нанотрубках из графена, сингулярности и выпуску антропоморфных роботов на основе наноматериалов…

Сейчас принято считать, что термин и обозначение направленности нанотехнологий берут свое начало в докладе Ричарда Феймана «На дне много места». Тогда Фейнман удивил слушателей общими рассуждениями о том, что будет, если только начавшаяся миниатюризация электроники дойдёт до своего логического предела, «дна».

Для справки: «Английский термин « Nanotechnology » был предложен японским профессором Норио Танигучи в средине 70-х гг. прошлого века и использован в докладе «Об основных принципах нанотехнологии» (On the Basic Concept of Nanotechnology ) на международной конференции в 1974 г., т. е. задолго до начала масштабных работ в этой области. По своему смыслу он заметно шире буквального русского перевода «нанотехнология», поскольку подразумевает большую совокупность знаний, подходов, приемов, конкретных процедур и их материализованные результаты – нанопродукцию.»

На протяжении второй половины 20 века развивались как технологии миниатюризации (в микроэлектронике), так и средства наблюдения за атомами. Основные вехи микроэлектроники таковы:

  • 1947 - изобретение транзистора;
  • 1958 - появление микросхемы;
  • 1960 - технология фотолитографии, промышленное производство микросхем;
  • 1971 - первый микропроцессор фирмы «Интел» (2250 транзисторов на одной подложке);
  • 1960-2008 - действие «закона Мура» - количество компонент на единице площади подложки удваивалось каждые 2 года.


Дальнейшая миниатюризация упёрлась в пределы, задаваемые квантовой механикой. Что касается микроскопов, то интерес к ним понятен. Хотя рентгеновские изображения и помогли «увидеть» много интересного - например, двойную спираль ДНК - микрообъекты хотелось разглядеть получше.

Проследим за хронологией и здесь:

1932 - Э.Руска изобрёл просвечивающий электронный микроскоп. По принципу действия он похож на обычный оптический, только вместо фотонов - электроны, а вместо линз - магнитная катушка. Микроскоп давал увеличение в 14 раз.
1936 - Э.Мюллер предложил конструкцию автоэлектронного микроскопа с увеличением более миллиона раз. По принципу действия он похож на театр теней: на экране высвечиваются изображения микрообъектов, расположенных на острие иглы, излучающей электроны. Однако, дефекты иглы и химические реакции не давали возможности получить изображение.
1939 - Просвечивающий электронный микроскоп Руски стал увеличивать в 30 тысяч раз.
1951 - Мюллер изобрёл автоионный микроскоп и получил изображение атомов на острие иглы.
1955 - Первое в мире изображение отдельного атома, получено автоионным микроскопом.
1957 - Первое в мире изображение отдельной молекулы, полученное автоэлектронным микроскопом.
1970 - Изображение отдельного атома, полученное просвечивающим электронным микроскопом.
1979 - Бинниг и Рорер (Цюрих, IBM) изобрели сканирующий туннельный микроскоп с разрешающей способностью не хуже вышеупомянутых.

Но главное в другом — «в мире» простейших частиц вступает в действие квантовая механика, а значит наблюдение невозможно отделить от взаимодействия. Проще говоря очень быстро оказалось, что микроскопом можно цеплять и двигать молекулы, или менять их электрическое сопротивление простым надавливанием.

В конце 1989 года научный мир облетела сенсация: человек научился манипулировать отдельными атомами. Сотрудник IBM Дональд Эйглер, работавший в Калифорнии, написал на поверхности металла название своей фирмы 35 атомами ксенона. Эта картинка, впоследствии растиражированная мировыми СМИ и уже осевшая на страницах школьных учебников, ознаменовала рождение нанотехнологии.

О повторении успеха сразу же (в 1991) отчитались японские ученые, создавшие надпись «PEACE ”91 HCRL” (Мир в 1991 году Центральная исследовательская лаборатория HITACHI). Правда делали они эту надпись целый год и вовсе не методом размещения атомов на поверхности, а наоборот – выковыривали ненужные атомы из золотой подложки.

Реально повторить достижение Эйглера удалось лишь в 1996 году – в цюрихской лаборатории IBM. По состоянию на 1995 год в мире было лишь пять лабораторий занимающихся манипуляцией с атомами. Три в США, одна в Японии и одна в Европе. При этом европейская и японские лаборатории принадлежали IBM, то есть тоже по факту были американскими.

Что оставалось европейским политикам и бюрократам делать в такой ситуации? Только кричать о пагубности прогресса для окружающей среды и опасности новых технологий в американских руках.

На сайте британского журнала New Scientist основные сведения о нанотехнологиях представлены в очень удобном виде - в форме ответов на часто задаваемые вопросы, пишет dp.ru.

Что такое нанотехнология?

Под термином «нанотехнология» следует понимать комплекс научных и инженерных дисциплин, исследующих процессы, происходящие в атомном и молекулярном масштабе. Нанотехнология предполагает манипуляции с материалами и устройствами настолько маленькими, что ничего меньшего быть не может. Говоря о наночастицах, обычно подразумевают размеры от 0,1 нм до 100 нм. Заметим, что размеры большинства атомов лежат в интервале от 0, 1 до 0, 2 нм, ширина молекулы ДНК примерно 2 нм, характерный размер клетки крови приблизительно 7500 нм, человеческий волос - 80 000 нм.

Почему маленькие объекты приобретают столь специфические свойства на уровне наномасштабов? К примеру, небольшие группы (их называют кластерами) атомов золота и серебра демонстрируют уникальные каталитические свойства, в то время как большие по размеру образцы обычно инертны. А наночастицы серебра демонстрируют отчетливо выраженные антибактериальные свойства и потому обычно используются в новых типах перевязочных материалов.

При уменьшении размера частиц возрастает отношение поверхности к объему. По этой причине наночастицы существенно легче вступают в химические реакции. В дополнение к этому на уровне менее 100 нм появляются эффекты квантовой физики. Квантовые эффекты могут влиять на оптические, электрические или магнитные свойства материалов непредсказуемым образом.

Маленькие кристаллические образцы некоторых веществ становятся прочнее, поскольку они просто достигают состояния, при котором не могут раскалываться так, как это происходит у больших кристаллов, когда на них воздействуют с усилием. Металлы становятся похожими в некотором отношении на пластмассу.

Каковы перспективы применения нанотехнологий?

Еще в 1986 году футуролог Эрик Дресслер нарисовал образ утопического будущего, в котором самореплицирующиеся (то есть воспроизводящие сами себя) нанороботы выполняют всю необходимую обществу работу. Эти крошечные устройства способны ремонтировать человеческий организм изнутри, делая людей виртуально бессмертными. Нанороботы могут также свободно перемещаться в окружающей среде, что делает их незаменимыми в борьбе с загрязнением этой среды.

Ожидается, что нанотехнологии обеспечат существенный прорыв в компьютерных технологиях, в медицине, а также и в военном деле. Например, медицинская наука разработала способы доставки лекарств непосредственно к раковым тканям в крошечных «нанобомбах». В будущем наноустройства могут «патрулировать» артерии, противодействуя инфекциям и обеспечивая диагностику заболеваний.

Американские ученые успешно использовали покрытые золотом «нанопули» для поиска и разрушения неоперабельных раковых опухолей. Ученые прикрепили нанопули к антителам, которые способны контактировать с раковыми клетками. Если подвергнуть «нанопули» действию излучения, близкого по частоте к инфракрасному, то их температура будет повышаться, что способствует уничтожению канцерогенных тканей.

Исследователи из финансируемого армией США Института армейских нанотехнологий в Кембридже (США) используют нанотехнологии для создания принципиально нового типа обмундирования. Их цель - создать ткань, которая может менять окраску, отклонять в сторону пули и энергию взрывной волны и даже склеивать кости.

Где применяются нанотехнологии в настоящее время?

Нанотехнологии уже используются при производстве жестких дисков персональных компьютеров, каталитических конвертеров - элементов двигателей внутреннего сгорания, теннисных мячей с длительным сроком службы, а также высокопрочных и одновременно легких теннисных ракеток, инструментов для резки металлов, антистатических покрытий для чувствительной электронной аппаратуры, специальных покрытий для окон, обеспечивающих их самоочистку.

Как создаются наноустройства?

В настоящее время используется два основных способа изготовления наноустройств.

Снизу вверх. Сборка наноустройств по принципу «молекула к молекуле» что напоминает сборку дома или . Простые наночастицы, такие как используемые в косметике диоксид титана или оксид железа, могут быть получены с помощью химического синтеза.

Можно создавать наноустройства, перетаскивая отдельные атомы с помощью так называемого атомного силового микроскопа (либо сканирующего туннельного микроскопа), достаточно чувствительного для выполнения подобных процедур. Впервые эта методика была продемонстрирована специалистами IBM - с помощью сканирующего туннельного микроскопа они выложили аббревиатуру IBM, расположив соответствующим образом 35 атомов ксенона на поверхности никелевого образца.

Сверху вниз. Эта методика предполагает, что мы используем макроскопический образец и, к примеру, с помощью травления создаем на его поверхности обычные компоненты микроэлектронных устройств с параметрами, характерными для наномасштабов.

Представляет ли нанотехнология угрозу здоровью человека или окружающей среде?

Информации о негативном воздействии наночасттиц не так уж и много. В 2003 г. в одном из исследований было показано, что углеродные нанотрубки могут повреждать легкие у мышей и крыс. Исследование 2004 г. показало, что фуллерены могут накапливаться и вызывать повреждения мозга у рыб. Но в обоих исследованиях были использованы большие порции вещества при необычных условиях. По словам одного из экспертов, химика Кристена Кулиновски (США), «было бы целесообразно ограничить воздействие этих наночастиц, невзирая на то что в настоящее время информация об их угрозе человеческому здоровью отсутствует».

Некоторые комментаторы высказываются также относительно того, что широкое использование нанотехнологий может привести к рискам социального и этического плана. Так, к примеру, если использование нанотехнологий инициирует новую промышленную революцию, то это приведет к потере рабочих мест. Более того, нанотехнологии могут изменить представление о человеке, поскольку их использование поможет продлевать жизнь и существенно повышать устойчивость организма.

«Никто не может отрицать, что широкое распространение мобильных телефонов и интернета привело к огромным изменениям в обществе», - говорит Кристен Кулиновски. - Кто возьмет на себя смелость сказать, что нанотехнологии не окажут более сильного воздействия на общество в ближайшие годы?»

Что такое нанотехнологии?

Опубликовано kur в 29 июнь, 2007 - 22:51.

Как не странно звучит этот вопрос в наше время, но отвечать придётся. Хотя бы для себя самого. Общаясь с учёными и специалистами, занятыми в этой отрасли, я пришёл к выводу, что вопрос до сих пор остаётся открытым.

В Википедии кто-то дал такое определение:

Нанотехнология - область прикладной науки и техники, занимающаяся изучением свойств объектов и разработкой устройств размеров порядка нанометра (по системе единиц СИ, 10-9 метра).

В популярной печати используется ещё более простое и доходчивое для обывателя определение:

Нанотехнологии - это технологии манипулирования веществом на атомном и молекулярном уровне.

(Люблю краткие определения:))

Или вот определение профессора Г. Г. Еленина (МГУ, Институт прикладной математики им. М.В. Келдыша РАН):

Нанотехнологией называется междисциплинарная область науки, в которой изучаются закономерности физико-химических процессов в пространственных областях нанометровых размеров с целью управления отдельными атомами, молекулами, молекулярными системами при создании новых молекул, наноструктур, наноустройств и материалов со специальными физическими, химическими и биологическими свойствами.

Да, в общем, всё довольно понятно.. Но вот наш (специально отмечу, отечественный) дотошный скептик скажет: "А что, всякий раз, когда мы растворяем кусочек сахара в стакане чая, мы разве не манипулируем веществом на молекулярном уровне?"

И будет прав. Необходимо добавить к опередению понятия, связанные с "контролем и точностью манипулирования".

Федеральное Агентство по науке и инновациям в "Концепции развития в РФ работ в области нанотехнологий до 2010 года", дает такое определение:

"Нанотехнология - совокупность методов и приёмов, обеспечивающих возможность контролируемым образом создавать и модифицировать объекты, включающие компоненты с размерами менее 100нм, хотя бы в одном измерении, и в результатет этого получившие принципиально новые качества, позволяющие осуществить их интеграцию в полноценно функционирующие системы большого масштаба; в более широком смысле этот термин охватывает также методы диагностики, характерологии и исследований таких объектов".

Ого! Мощно сказано!

Или вот Статс-секретарь Минобрнауки РФ Дмитрий Ливанов определяет нанотехнологии как:

"набор научных, технологических и производственных направлений, которые объединены в единую культуру, основанную на проведении операций с материей на уровне отдельных молекул и атомов".

Простой скептик удовлетворён, но вот скептик-специалист скажет: "А не этими ли самыми нанотехнологиями всё время занимается традиционная химия или молекулярная биология и многие другие направления науки, создавая новые вещества, в которых их свойства и структура определяются определенным образом связанными наноразмерными объектами?"

Что же делать? Мы же понимаем, что такое "нанотехнологии".. чувствуем, можно сказать.. Попробуем добавить к определению ещё пару терминов.

Бритва Оккама
Нанотехнологии: любые технологии создания объектов, потребительские свойства которых определяются необходимостью контроля и манипулирования отдельными наноразмерными объектами.

Кратко и скупо? Дадим пояснения использованным в определении терминам:

"Любые": данные термин призван примирить специалистов разных научно-технологических направлений. С другой стороны, этот термин обязывает контролирующие бюджет развития нанотехнологий организации заботиться о финансировании широкого круга направлений. Включая, конечно и молекулярные биотехнологии. (Без необходимости искусственно притягивать к названию этих направлений приставку "нано-"). Считаю довольно важным термином для ситуации с нанотехнологиями в нашей стране на текущем этапе:).

"Потребительские свойства" (можно, конечно, использовать традиционный термин "Потребительская стоимость" - кому как нравится): создание объектов с использованием таких передовых методов, как контроль и манипулирование веществом на наноуровне, должно придавать какие-либо новые потребительские свойства, либо влиять на цену объектов, в противном случае оно становится бессмысленным.

Понятно также, что, например, нанотрубки, у которых один из линейных размеров лежит в области традиционной размерности, также попадают под это определение. При этом, сами создаваемые объекты могут иметь любые размеры - от "нано" до традиционных.

"Отдельные": наличие этого термина уводит определение от традиционной химии и однозначно требует наличия самого передового научного, метрологического и технологического инструментария, способного обеспечить контроль за отдельными, а при необходимости даже за конкретными нанообъектами. Именно при индивидуальном контроле мы получаем объекты, обладающие потребительской новизной. Можно возразить, что, например, многие из существующих технологий промышленного производства ультрадисперстных материалов не требуют наличия такого контроля, но это только с первого взгляда; на самом же деле сертифицированное производство ультрадисперстных материалов в обязательном порядке требует наличия контроля за размерностью отдельных частиц.

"Контроль" , без "Манипулирования" распостраняет определение на так наз. нанотехнологии "предыдущего поколения".
"Контроль" совместно с "Манипулирова­нием" распространяет определение на перспективные нанотехнологии.

Таким образом, если мы способны найти конкретный наноразмерный объект, проконтролировать и при необходимости изменить его структуру и связи, то это - "нанотехнологии". Если же мы получаем наноразмерные объекты без возможности такого контроля (за конкретными нанообъектами), то это не нанотехнологии или, в лучшем случае, нанотехнологии "предыдущего поколения".

"Наноразмерный объект": атом, молекула, надмолекулярное образование.

В целом, определение пытается связать науку и технологии с экономикой. Т.е. отвечает достижению главных целей программы развития наноиндустрии: созданию технологий, опирающихся на передовые методы исследования и производства, а также коммерциализации полученных достижений.

В общем, пока сам бы я на этом остановился. А вы?

Http://www.nanonewsnet.ru/what-are-the-nanotechnologies

В нашей стране правительство приняло программу по развитию наноиндустрии. Слово «нанотехнологии» в одночасье стало модным, СМИ живо обсуждают перспективы страны в свете развития этой многообещающей научной отрасли. А что такое нанотехнологии и чем они могут быть полезны?

Мы хорошо знаем что сантиметр – сотая доля метра, миллиметр – тысячная, а нанометр - миллиардная часть метра. Нано - обозначает миллиардную долю чего-либо.

Нанотехнологии это способы создания наноразмерных структур, которые придают материалам и устройствам полезные, а иногда просто необыкновенные свойства, технологии изготовления сверхмикроскопических конструкций из мельчайших частиц материи.Нанотехнологии это возможность создавать новые материалы с заданными свойствами из мельчайших элементов – атомов, и со временем они кардинально изменят нашу жизнь к лучшему.

Нанотехнологии в медицине

От нанотехнологических разработок в медицине ждут революционных достижений в борьбе с раком, с особо опасными инфекциями, в ранней диагностике, в протезировании. По всем этим направлениям ведутся интенсивные исследования. Некоторые их результаты уже пришли в медицинскую практику. Вот лишь два ярких примера:

Убивая микробов и разрушая опухоль, лекарства обычно наносят удар и по здоровым органам и клеткам организма. Именно из-за этого некоторые тяжелейшие болезни до сих пор не удается надежно вылечить – лекарства приходится использовать в слишком малых дозах. Выход - доставлять нужное вещество прямо в пораженную клетку, не задевая остальные.

Для этого создаются нанокапуслы, чаще всего биологические частицы (например, липосомы), внутрь которых помещается нанодоза препарата. Ученые пытаются «настроить» капсулы на определенные виды клеток, которые они должны уничтожить, проникая через мембраны. Совсем недавно появились первые промышленные препараты такого типа для борьбы с некоторыми видами рака, другими заболеваниями.

Наночастицы помогают решить и другие проблемы с доставкой лекарств в организме. Так, человеческий мозг серьезно защищен природой от проникновения ненужных веществ по кровеносным сосудам. Однако эта защита неидеальна. Ее легко преодолевают молекулы алкоголя, кофеина, никотина и антидепрессантов, но она блокирует лекарства от тяжелых болезней самого мозга. Чтобы их ввести, приходится делать сложные операции. Сейчас испытывается новый способ доставки лекарств в мозг с помощью наночастиц. Белок, который свободно проходит «мозговой барьер», играет роль «троянского коня»: к молекулам этого белка «пристегивается» квантовая точка (нанокристалл полупроводника) и вместе с ним проникает к клеткам мозга. Пока квантовые точки лишь сигнализируют о преодолении барьера – в будущем планируется использовать их и другие наночастицы для диагностики и лечения.

Давно завершился всемирный проект расшифровки генома человека – полное определение структуры молекул ДНК, которые находятся во всех клетках нашего организма и непрерывно управляют их развитием, делением, обновлением. Однако для индивидуального назначения лекарств, для диагностики и прогноза наследственных болезней нужно расшифровать не геном вообще, а геном данного пациента. Но процесс расшифровки пока очень длителен и дорог.

Нанотехнологии предлагают интересные пути к решению этой задачи. Например, использование нанопор – когда молекула проходит через такую пору, помещенную в раствор, датчик регистрирует ее по изменению электрического сопротивления. Впрочем, очень многое можно сделать и не дожидаясь полного решения такой сложной проблемы. Уже существуют биочипы, распознающие у пациента за один анализ более двухсот «генетических синдромов», отвечающих за различные болезни.

Диагностика состояния индивидуальных живых клеток прямо в организме – еще одно поле приложения нанотехнологий. Сейчас испытываются зонды, состоящие из оптоволкна толщиной в десятки нанометров, к которому присоединен химически чувствительный наноэлемент. Зонд вводится в клетку, и по оптоволкну передает информацию о реакции чувствительного элемента. Таким путем можно исследовать в реальном времени состояние различных зон внутри клетки, получать очень важную информацию о нарушениях ее тонкой биохимии. А это – ключ к диагностике серьезных болезней на этапе, когда внешних проявлений еще нет – и когда вылечить болезнь гораздо проще.

Интересным примером является создание новых технологий секвенирования (определения нуклеотидной последовательности) молекул ДНК. Из числа таких методик следует назвать, в первую очередь, секвенирование при помощи нанопор – технологию, использующую поры для подсчета частиц от субмикронного до миллиметрового размера, суспендированных в растворе электролита. При проходе молекулы через пору изменяется электрическое сопротивление в контуре датчика. И по изменению тока регистрируется каждая новая молекула. Основная цель, которую пытаются достигнуть ученые, разрабатывающие этот метод – научиться распознавать отдельные нуклеотиды в составе РНК и ДНК.

Красота и нанотехнологии

Индустрия красоты – одна из областей, в которой новейшие технологии находят применение быстрее всего. Нанотехнологии, сравнительно недавно переставшие применяться исключительно в технических устройствах, сегодня все чаще могут быть обнаружены в продуктах косметики. Установлено, что 80 процентов всех косметических веществ, нанесенных на кожу, так на ней и остаются, вне зависимости от стоимости. Это означает, что эффект от их применения сказывается, в основном, лишь на состоянии самой верхней части кожи. Поэтому успех косметической отрасли все больше зависит от развития систем доставки активных ингредиентов в глубокие слои кожи. На помощь в решении этой проблемы, давно стоящей перед косметологами, пришли нанотехнологии. Старение кожи связано с тем, что с возрастом обновление клеток замедляется. Чтобы стимулировать рост молодых клеток, от количества которых зависит упругость кожи, ее цвет и отсутствие морщинок, необходимо воздействовать на самый глубокий, ростковый слой дермы. Он отделен от поверхности кожи барьером из роговых чешуек, скрепленных между собой липидной прослойкой. Сделать это можно лишь через межклеточные промежутки, диаметр которых ничтожно мал – не более 100 нм. Но микроскопические «ворота» – не единственное препятствие. Есть и другая сложность: вещества, заполняющие эти промежутки, «не пропускают» водорастворимые соединения. Но эти вещества, называемые липидами, можно «обмануть», если использовать нанотехнологии. Одним из решений проблемы доставки биологически активных веществ, стало создание искусственных «контейнеров», липосом, которые, во-первых, обладают малыми размерами, проникая в межклеточные промежутки, а, во-вторых, распознаются липидами как «дружественные». Липосома представляет собой коллоидную систему, в которой водное ядро окружено со всех сторон замкнутым сферическим образованием. Замаскированное таким образом водорастворимое соединение беспрепятственно проходит через липидный барьер. Косметика на основе липосом борется с первыми признаками старения кожи – повышенной сухостью, морщинами. Питательные вещества благодаря системе липосомальных комплексов способны проникать достаточно глубоко. Но, к сожалению, не настолько, чтобы существенно влиять на регенеративные процессы в коже. Мицеллы – микроскопические частицы, образующиеся в растворах и состоящие из ядра и оболочки. В зависимости от того, в каком состоянии находится раствор, из чего состоит ядро и оболочка, мицеллы могут принимать различные внешние формы. Липосомы являются одной из разновидностей мицелл.

Следующим этапом развития антивозрастной косметики стало создание наносом. Эти транспортные комплексы отличаются еще меньшими размерами по сравнению с липосомами и представляют собой шарообразные структуры с «начинкой» из витаминов, микроэлементов или других полезных веществ. Благодаря малым размерам, наносомы способны проникать в глубокие слои кожи. Но при всех своих достоинствах, наносомы не способны транспортировать биоактивные комплексы, необходимые для полноценного питания клеток. Все, на что они способны - транспортировать какое-нибудь одно вещество, например, витамин. Последние разработки в области биотехнологий позволили создавать косметические средства, способные не только проникать в зону росткового слоя дермы, но и вызывать в нем именно те процессы, которые были запрограммированы в лаборатории. Косметика прицельного действия на основе нанокомплексов не только переносит питательные вещества в глубокие слои кожи – в ее арсенале, в зависимости от поставленной задачи, имеются увлажнение, очищение, удаление токсинов, разглаживание рубцов, шрамов и многое другое. Причем нанокомплексы создаются так, что высвобождение биоактивных веществ происходит именно на том участке кожи, где в них есть потребность. Главное преимущество такой косметики - целенаправленная профилактика старения. Ведь корректировать процессы, происходящие в коже, гораздо эффективнее, чем бороться с результатами этих процессов.