Что остается неизменным в космосе 5. Что случиться с человеком в космосе без скафандра? Чего мы добились в покорении Вселенной

В нормальных условиях сила тяжести приводит к тому, что жидкость собирается в нижней части вашего желудка, а газы поднимаются наверх. Поскольку в космосе нет силы тяжести, астронавты извлекли для себя так называемую «мокрую отрыжку» (извините за каламбур). Простая отрыжка с легкостью выгоняет из желудка всю жидкость, которую в земных условиях удерживает гравитация. По этой причине на не пользуются газированными напитками. Даже если бы пользовались, гравитация не давала бы пузырькам подниматься, как на Земле, поэтому газировка или пиво не выдыхались бы так быстро.

Скорость

В космосе случайный кусочек мусора движется так быстро, что едва ли наш мозг может себе представить такую скорость. Помните , которые летают вокруг Земли? Они движутся со скоростью 35 500 км/ч. При такой скорости вы даже не уловите приближение объекта. Просто в ближайших структурах появятся загадочные дырки - если, конечно, вам повезет и продырявлены будете не вы.

В прошлом году астронавты на борту Международной космической станции сделали снимок дыры в огромной солнечной батарее. Отверстие почти наверняка стало результатом столкновения с одним из этих крошечных обломков (может, миллиметром-другим в диаметре). В любом случае NASA ожидает столкновения, подобные этому, и экранирует корпус станции, чтобы тот выдержал столкновение при случае.

Производство алкоголя

Далеко в космосе, недалеко от созвездия Орла, плавает гигантское облако газа со 190 триллионами триллионов литров спирта. Существование подобного облака бросает вызов многому из того, что мы считали невозможным. Этанол представляет собой сравнительно сложную молекулу, чтобы образоваться в таких объемах, да и температура в космосе, необходимая для протекания реакции производства спирта, тоже не соответствует.

Ученые воссоздали условия космоса в лаборатории и соединили два органических химических вещества при температуре -210 градусов по Цельсию. Химические вещества прореагировали незамедлительно - примерно в 50 раз быстрее, чем при комнатной температуре, вопреки всем ожиданиям ученых.

Возможно, за это несет ответственность квантовое туннелирование. Благодаря этому явлению, частицы принимают свойства волн и поглощают энергию из окружающей среды, что позволяет им преодолеть барьеры, которые в противном случае мешали бы им реагировать.

Статическое электричество

Статическое электричество иногда вытворяет совершенно причудливые вещи. Например, на видео выше показаны капли воды, вращающиеся вокруг статически заряженной иглы. Электростатические силы работают на расстоянии, и эта сила притягивает предметы, подобно планетарной гравитации, помещая капли в состояние свободного падения.

Статическое электричество куда более мощное, чем некоторые из нас могут себе представить. Ученые работают над созданием электростатических притягивающих лучей для очистки орбиты от космического мусора. На самом деле, эта сила также может подарить невзламываемые замки для дверей и футуристические вакуумные пылесосы. Но все же растущая опасность в виде летающего вокруг Земли космического мусора важнее, а этот луч может захватить обломок мусора и вышвырнуть его в космос.

Зрение

Двадцать процентов космонавтов, живших на Международной космической станции, сообщили о проблемах со зрением, которые появились сразу по возвращении на Землю. И до сих пор никто не знает почему.

Мы почти решили, что это связано с тем, что низкая гравитация увеличивает приток жидкости в черепную коробку и увеличивает черепное давление. Однако новые данные говорят о том, что это может быть связано с полиморфизмом. Полиморфизм - это отклонение ферментов от нормы, а они могут повлиять на то, как тело обрабатывает питательные вещества.

Поверхностное натяжение

Мы склонны не замечать поверхностное натяжение на Земле, потому что гравитация всегда его нарушает. Тем не менее, если убрать гравитацию, поверхностное натяжение оказывается крайне мощной силой. К примеру, если отжать тряпку для мытья посуды в космосе, вместо того, чтобы стечь, вода цепляется за ткань, принимая форму трубы.

Если вода ни за что не цепляется, поверхностное натяжение собирает воду в шарик. Космонавты крайне осторожно обращаются с водой, чтобы не оказаться с мириадами крошечных бусинок, плавающих вокруг них.

Упражнения

Вы наверняка знаете, что в космосе мышцы космонавтов атрофируются, но для противодействия этому эффекту астронавтам нужно упражняться куда больше, чем вы думаете. Космос - не для слабых, поэтому придется тренироваться на уровне бодибилдера, если не хотите, чтобы ваши кости стали костями 80-летнего старика. Упражнения в космосе - это «приоритет для здоровья номер один». Не защита от солнечной радиации, не уклонение от смертоносных астероидов, а именно ежедневные упражнения.

Без этого режима астронавты не просто будут возвращаться на Землю слабаками. Они могут потерять столько костной и мышечной массы, что не смогут даже ходить, когда гравитация начнет на них давить. И если мышцы можно нарастить без особых проблем, костную массу восстановить невозможно.

Микробы

Каково же было наше удивление, когда мы отправили образцы сальмонеллы в космос и она вернулась в семь раз более смертоносной, чем была. Для здоровья наших астронавтов эти новости могли быть крайне тревожными, но вооружившись новыми данными, ученые выяснили, как можно победить сальмонеллу в космосе и на Земле.

Сальмонелла может измерять «жидкостный сдвиг» (турбулентность жидкости вокруг нее) и использует эту информацию, чтобы определить свое местоположение в организме человека. Оказываясь в кишечнике, она определяет высокое движение жидкости, и пытается двигаться в сторону стенки кишечника. Попадая на стенку, она обнаруживает низкое движение и увеличивает скорость проникновения в стенку и в кровоток. В условиях невесомости бактерия постоянно ощущает низкое движение, поэтому переключается в активное вирулентное состояние.

Изучая гены сальмонеллы, активированные в условиях низкой гравитации, ученые определили, что высокие концентрации ионов могут ингибировать бактерий. Дальнейшие исследования должны привести к появлению вакцин и эффективному лечению отравления сальмонеллой.

Радиация

Солнце - это гигантский ядерный взрыв, но магнитное поле Земли защищает нас от самых вредных лучей. Текущие миссии в космосе, в том числе и визиты на Международную космическую станцию, проходят в магнитном поле Земли, и щиты вполне справляются с потоками солнечных лучей.

Но чем дальше в космос, тем сильнее радиация. Если мы когда-нибудь захотим добраться до Марса или вывести космическую станцию на орбиту Луны, нам придется иметь дело с высокоэнергетическим фоном частиц, которые летят от далеких умирающих звезд и сверхновых. Когда такие частицы попадают в щиты, они действуют вроде шрапнели, а это еще опаснее, чем радиация сама по себе. Поэтому ученые работают над защитой от такого излучения, и пока она не появится, поездки на Марс заказаны.

Кристаллизация

Японские ученые наблюдали за тем, как кристаллы образуются в условиях микрогравитации, обстреливая кристаллы гелия акустическими волнами в условиях искусственной невесомости. Как правило, после разрушения кристаллам гелия требуется довольно много времени для преобразования, но эти кристаллы стали сверхтекучей жидкостью - жидкостью, которая течет с нулевым трением. В результате гелий быстро сформировал огромный кристалл - 10 миллиметров в поперечнике.

Похоже на то, что космос подсказывает нам способ выращивания больших и качественных кристаллов. Мы используем кристалл кремния почти во всей нашей электронике, поэтому подобное знание в конечном счете может привести к улучшению электронных устройств.

Вино на Луне… Виски на космической станции… Читая в детстве не самые детские книжки про космических пиратов, рейнджеров и прочих сорвиголов, я и не думал, что пить в космосе не положено. И действительно, у космических путешествий длинные и сложные отношения с выпивкой. Отправиться за тысячи километров от Земли в серую бездну неизвестности не так-то просто. Страшно. Тяжело. Почему бы астронавтам не расслабиться в конце рабочего дня, пропустив стаканчик-другой?

Увы, для любителей космоса и смочить губы крепким, потребление алкогольных напитков запрещено государственными органами, которые посылают космонавтов, например, на Международную космическую станцию. Но в скором времени отправиться на последний рубеж сможет и обычный человек - например, для колонизации Марса. Очевидно, бухлишко должно быть разрешено для такой длительной и мучительной поездки в один конец, которая растянется на годы? Или хотя бы оборудование для самостоятельного изготовления алкоголя на планете?

Выпивка и космическое пространство имеют долгие и сложные отношения. Давайте посмотрим, что может произойти с обычным пьющим, но астронавтом, и что может произойти, если мы начнем посылать в космос обычных пьющих людей.

Широко распространено мнение, что на большой высоте кружит голову и до состояния тошноты доходишь быстрее. Таким образом, было бы логично предположить, что алкоголь на орбите будет оказывать весьма сильные эффекты на организм человека. Но это не совсем правда.

Этот миф был развенчан еще в 1980-х годах. В 1985 году Федеральное авиационное управление США провело исследование, в котором изучалось поведение людей, выпивших алкоголь на смоделированных высотах, в процессе выполнения сложных задач и замеров алкометра.

В рамках исследования 17 мужчин попросили выпить немного водки на уровне земли и в камере, моделирующей высоту 3,7 километра. Затем попросили выполнить ряд задач, включая расчеты в уме, отслеживание света на осциллографе при помощи джойстика и другие. Исследователи заключили, что «никакого интерактивного эффекта алкоголя и высоты ни алкометр, ни оценка производительности не показали».

Выходит, это миф, что во время полета становишься пьяным быстрее? Дэйв Хэнсон, заслуженный профессор социологии в Университете штата Нью-Йорк в Потсдаме, исследовавший алкоголь и попивающий его в течение 40 лет, думает, что да. «Не могу представить, что в космосе напиваешься как-то по-другому», говорит он.

Впрочем, он также думает, что болезнь высоты может имитировать похмелье, а также имитировать интоксикацию. «Если люди неадекватно чувствуют себя под давлением, они могут чувствовать себя так и в состоянии алкогольного опьянения». И наоборот, люди, которые утверждают, что напиваются в самолете быстрее, чем обычно, могут просто проявлять особое поведение. Такие люди демонстрируют поведение пьяных сильнее, когда думают, что пьяны, а не потому, что на самом деле потребляли алкоголь.

«Если люди летят на самолете и думают, что по какой-то причине алкоголь окажет на них необычный эффект, они будут думать, что он оказывает на них необычный эффект», говорит Хэнсон.

Получается, если никакого дополнительного эффекта нет, можно пригубить немного крепкого на борту МКС? Нет, нельзя.

«Алкоголь на борту Международной космической станции запрещен для употребления», говорит Дэниел Хуот, представитель Космического центра им. Джонсона. «Использование алкоголя и других летучих компонентов контролируется на МКС из-за воздействия, которое их компоненты могут оказать на систему восстановления воды на станции».

По этой причине астронавты на космической станции не получают даже продуктов, которые содержат алкоголь вроде жидкости для полоскания рта, духов, лосьонов для бритья. Разлитое пиво на борту тоже может стать нешуточным риском повредить оборудование.

Остается также вопрос ответственности. Мы не позволяем водителям или пилотам реактивных истребителей напиваться и садиться за руль, так что неудивительно, что те же правила применяются к астронавтам внутри космической станции за 150 миллиардов долларов, плавающей вокруг Земли с гигантской скоростью.

Тем не менее в 2007 году независимая группа, созданная NASA, изучила здоровье астронавтов и пришла к выводу, что в истории агентства было по меньшей мере два астронавта, которые принимали большое количество алкоголя непосредственно перед полетом, но которым все-таки разрешили летать. Последующий обзор главы безопасности NASA не выявил никаких доказательств для обоснования претензий. Астронавтам строго запрещено пить за 12 часов перед полетом, поскольку от них требуют полного присутствия мысли и тела.

Причина этих правил ясна. В том же исследовании FAA от 1985 года на тему эффектов алкоголя на высоте ученые пришли к выводу, что важен каждый миллиграмм. Вне зависимости от высоты, на которой пили испытуемые, показатели алкотестера были одинаковыми. Их производительность тоже пострадала одинаково, но те, кто принимал плацебо на высоте, показывал результаты хуже, чем тот, кто принимал плацебо на уровне суши. Это позволяет предположить, что высота, независимо от потребления алкоголя, может оказывать незначительное влияние на умственную работоспособность. В исследовании заключается, что это служит поводом для дальнейшего ограничения употребление алкоголя на высоте.

Есть и другая причина избегать пенистые напитки вроде пива - без помощи гравитации жидкости и газы накапливаются в желудке астронавта, приводя к не самым приятным эффектам.

Тем не менее, несмотря на строгие правила, это не значит, что люди в космосе никогда не будут вступать в контакт с ферментированными жидкостями. На борту МКС проводилось много экспериментов с участием алкоголя, но не с чрезмерным его употреблением, поэтому никто на самом деле точно не знает, как будет реагировать человеческое тело.

«Мы изучаем все возможные процессы изменения тел космонавтов в космосе, в том числе и на уровне микробов», говорит Стефани Ширхольц, пресс-секретарь NASA. «И у нас есть очень надежная программа питания, которая гарантирует, что тела космонавтов получают все, чтобы оставаться здоровыми».

В рамках программы «Скайлэб» астронавтам с собой давали херес, но он плохо показал себя в полетах в условиях микрогравитации.

И самое, наверное, удивительное то, что первой жидкостью, которую пили на поверхности Луны, было вино. Базз Олдрин сказал в интервью, что выпил немного вина, причащаясь, прежде чем вышел из лунного модуля в 1969 году. Церемония проходила во время паузы в режиме связи, поэтому ее не передавали на Землю.

И хотя NASA давно наложило строгие ограничения на прием алкоголя в космосе, русские космонавты в прошлом могли позволить себе расслабиться. Космонавты на борту орбитальной станции «Мир» могли позволить себе немного коньяка и водки. Интересно, как они согласились лететь на МКС с ее сухим законом.

В 2015 году японская компания «Сантори» отправила на космическую станцию немного своего лучшего виски. Сделано это было в рамках эксперимента по наблюдению «проявления вкуса в алкогольных напитках в процессе использования в микрогравитации». Другими словами, раз в условиях микрогравитации выпивка набирается сил по-другому, то и вкус у нее будет лучше и проявится быстрее.

А несколько лет назад, с сентября 2011 года по сентябрь 2014 года, NASA проводило эксперимент по изучению влияния микрогравитации на виски и обугленную древесину дуба, которая помогает напитку в процессе. Через 1000 дней в космосе танины в виски остались неизменными - но космическая щепа выдала более высокие концентрации своего аромата.

Так что хотя астронавтам и запретили пить алкоголь, даже в космосе они продолжают работать над улучшением вкуса алкогольных напитков, которые мы пьем здесь, на Земле. Что касается марсианских миссий, которые растянутся на годы, без алкоголя там точно будет не обойтись.

Эксперты вроде Хэнсона, впрочем, не видят никакого вреда в дальнейшем ограничении алкоголя. Помимо практических соображений безопасности, могут быть и другие проблемы. Хэнсон считает, что множество социально-культурных различий землян, живущих в ограниченном пространстве много лет подряд, существенно усложнят пьянство.

«Это политика. Это культура. Но это не наука», говорит он. Что будет, если вы окажетесь среди мусульман, мормонов или трезвенников? Гармонизация культурных точек зрения в условиях ограниченного пространства будет приоритетной уже с самого начала.

Поэтому космонавтам, которые захотят приободриться духом, придется наслаждаться видом с окна, а не видом на дне стакана. Но мы оставим для них немного шампанского, когда они будут возвращаться.

Ученые до сих пор не знают о реальных размерах черной дыры. Некоторые полагают, что ее площадь сравнима с небольшим городком, другие – что дыра гигантская, размером никак не меньше Юпитера.

С нашей планеты вполне можно разглядеть другие галактики, причем не одну и не две, а несколько тысяч. Самые «нашумевшие» из них – галактика Андромеды и Магеллановы Облака. Сколько всего галактик в космосе, не поддается подсчету. Можно говорить только о том, что их миллионы. Неизвестно также и то, сколько в нашей Вселенной звезд.

  • Можно ли выжить в космосе без скафандра?

Солнце тоже когда-нибудь «умрет», но случится это еще очень нескоро – ему отпущено минимум 4,5 миллиарда лет. Чтобы понять, насколько огромно светило, представьте, что оно одно составляет 99% от веса всей нашей Солнечной системы!

Мерцание звезды – не что иное, как преломление ее света, когда он проходит сквозь атмосферу Земли. Чем больше холодных и теплых воздушных слоев минуют лучи, тем больше они преломляются и тем ярче кажется мерцание.

Даже если космические корабли достигнут всех планет Солнечной системы, совершить посадку на некоторые из них будет очень проблематично. Если Меркурий, Венера, Плутон и Марс представляют собою твердые тела, Юпитер, Уран, Нептун и Сатурн – это огромные скопления газов и жидкости. Правда, у них есть свои луны, на которые вполне могут высадиться астронавты.

С Луны всегда видно чистое небо, потому что у нее нет атмосферы. А значит, оттуда гораздо лучше, чем с Земли, можно наблюдать звезды.

Агрессивный красный цвет Марса появился по вполне мирным причинам: на планете высокий уровень содержания железа. Ржавея, оно приобретает красноватый оттенок.

Несмотря на все старания уфологов, существование инопланетян до сих пор не доказано. Но если даже в нашей Солнечной системе находятся органические вещества (например, на Марсе), почему бы в других галактиках не обнаружиться и каким-нибудь формам жизни?..

Может ли упавший на Землю метеорит убить человека? Теоретически – да, и практически – тоже. Известен случай, когда метеорит упал на один из автобанов Германии. Тогда случайный автомобилист получил ранения, но остался жив. Будем надеяться на то, что эти тела падают на землю не так часто, как фонарные столбы и дома…

Вы наверняка замечали, что некоторые звезды не «зависают» в одной точке, а медленно передвигаются по ночному небу. Это не звезды, а искусственные спутники Земли.

Кто из нас в детстве не мечтал стать космонавтом? На самом деле это невероятно сложно: нужно как минимум получить специализированное высшее образование и активно заниматься одной из смежных наук. Навык управления самолетом тоже будет очень кстати. Когда достигнете всего этого, подавайте в Центр подготовки заявление о приеме в кандидаты. Если вашу кандидатуру одобрят, вас ждут многочисленные тренировки. Многие потенциальные космонавты всю жизнь проводят в них, так и не увидев «живого» космоса.

Кроме морской болезни существует еще и космическая. Симптомы одни и те же: головокружение, головная боль и тошнота. Но «бьет» космическая болезнь не по вестибулярному аппарату, а по внутреннему уху.

Будет ли Вселенная расширяться вечно или в итоге рухнет обратно в крошечное пятнышко? Опубликованное в июне исследование считает, что в соответствии с основной теорией физики бесконечная экспансия невозможна. Однако появились новые доказательства того, что постоянно расширяющуюся Вселенную пока нельзя исключить.

Темная энергия и космическое расширение

Наша Вселенная пронизана масштабной и невидимой силой, которая кажется вступает в противовес с силой тяжести. Физики прозвали ее темной энергией. Полагают, что именно она толкает пространство наружу. Но июньская статья подразумевает, что темная энергия со временем меняется. То есть, Вселенная не будет расширяться вечность и способна рухнуть до размера точки Большого Взрыва.

Физики сразу нашли проблемы в теории. Они считают, что исходная теория не может быть истинной, так как не объясняет существование бозона Хиггса, выявленного в большом адроном коллайдере. Однако гипотеза может быть жизнеспособной.

Как объяснить существование всего?

Теория струн (теория всего) считается математические изящной, но экспериментально недоказанной основой объединения общей теории относительности Эйнштейна с квантовой механикой. Теория струн предполагает, что все частицы во Вселенной не являются точками, а представлены вибрирующими одномерными струнами. Различия в вибрациях позволяют видеть одну частицу как фотон, а другую – электрон.

Однако, чтобы оставаться жизнеспособной, теория струн должна включать темную энергию. Представьте последнюю в качестве шара в ландшафте гор и долин. Если шарик стоит на вершине горы, то может оставаться неподвижным или скатиться при малейшем возмущении, так как лишен стабильности. Если остается неизменным, то наделен низкой энергией и расположен в стабильной Вселенной.

Консервативные теоретики долго считали, что темная энергия остается постоянной и неизменной во Вселенной. То есть, мячик застыл между горами в долине и не катится с вершины. Однако июньская гипотеза предполагает, что теория струн не учитывает пейзаж с горами и долинами над уровнем моря. Скорее это небольшой уклон, где шар темной энергии скатывается вниз. Пока он катится, темная энергия становится все меньше и меньше. Все может закончиться тем, что темная энергия начнет тянуть Вселенную обратно к точке Большого Взрыва.

Но есть проблема. Ученые показали, что подобные неустойчивые горные вершины должны существовать, ведь есть бозон Хиггса. Также экспериментально удалось подтвердить, что эти частицы могут находиться в неустойчивых Вселенных.

Сложности со стабильностью вселенных

Исходная гипотеза сталкивается с проблемами в неустойчивых вселенных. Пересмотренная версия указывает на возможность существования горных вершин, но отказывается от устойчивых долин. То есть, шарик должен начать скатываться, а темная энергия меняться. Но если гипотеза неверна, то темная энергия останется постоянной, мы останемся в долине между горами, а Вселенная продолжит расширяться.

Исследователи надеются, что в течение 10-15 лет спутники, измеряющие расширения Вселенной, помогут разобраться в постоянной или меняющейся природе Вселенной.

Прочитало: 0

Космос таит в себе множество загадок, и мы лишь начали изучать его. И одной из проблем, которые предстоит решить в будущем, является гравитация.

А что с ней не так, спросите вы? А её нет! Вернее, не так. Гравитация есть всегда, мы испытываем её от Земли, Луны, Солнца, других звёзд и даже центра нашей галактики. Но сила притяжения, которая подходит нам, есть только на Земле. И когда мы полетим на другие планеты или будем бороздить космос, как быть с гравитацией? Нужно создавать её искусственно.

Почему нам нужна определённая сила гравитации?

На Земле все организмы приспособились к силе притяжения, равной 9.8 м/с^2. Если она будет больше, то растения не смогут расти вверх, а мы постоянно будем испытывать давление, из-за чего наши кости будут ломаться, а органы разрушаться. А если она будет меньше, то у нас начнутся проблемы с доставкой питательных веществ в крови, ростом мышц и т.д.

Когда мы будем осваивать колонии на Марсе и Луне, то столкнёмся с проблемой пониженной гравитации. Наши мышцы частично атрофируются, приспособившись к местной силе притяжения. Но по возвращении на Землю у нас начнутся проблемы с хождением, перетаскиванием предметов и даже с дыханием. Именно настолько всё зависит от гравитации.

И у нас уже есть пример того, как это происходит - Международная Космическая Станция.

Космонавты на МКС и почему там нет гравитации

Те, кто посещает МКС, должны тренироваться на беговых дорожках и тренажёрах каждый день. Всё потому, что за время пребывания их мышцы теряют "хватку". В условиях невесомости не надо поднимать своё тело, можно расслабиться. Именно так думает организм. На МКС нет гравитации не потому, что она находится в космосе.

Расстояние от неё до Земли всего 400 километров, и сила притяжения на таком расстоянии лишь чуть-чуть меньше, чем на поверхности планеты. Но МКС не стоит на месте - она вращается по земной орбите. Она буквально постоянно падает на Землю, но её скорость настолько высока, что не даёт ей упасть.

Именно поэтому космонавты и находятся в состоянии невесомости. И всё же. Почему на МКС нельзя создать гравитацию? Это бы облегчило жизнь космонавтов в разы. Ведь они вынуждены тратить по несколько часов в день на физические упражнения только для поддержания формы.


Как создать искусственную гравитацию?

В научной фантастике давно создан концепт подобного космического корабля. Это огромное кольцо, которое должно постоянно вращаться вокруг своей оси. В результате этого центробежная сила "выталкивает" космонавта в сторону от центра вращения, и он будет воспринимать это как гравитацию. Но проблемы возникают, когда мы сталкиваемся с этим на практике.

Во-первых, нужно учесть силу Кориолиса - силу, возникающую при движении по кругу. Без этого нашего космонавта будет постоянно укачивать, а это не очень весело. В таком случае нужно ускорить вращение кольца на корабле до 2 оборотов в секунду, а это очень много, космонавту будет очень нехорошо. Чтобы решить эту проблему, нужно увеличить радиус кольца до 224 метров.

Корабль размером в полкилометра! Мы уже недалеко от Звёздных Войн. Вместо создания земной гравитации сначала мы создадим корабль с пониженной гравитацией, в котором останутся тренажёры. И лишь потом мы будем строить корабли с огроменными кольцами для сохранения гравитации. Кстати, на МКС как раз собираются строить модули для создания гравитации.

Сегодня учёные из Роскосмоса и NASA готовятся к отправке центрифуг на МКС, необходимых для создания искусственной гравитации там. Космонавтам больше не придётся тратить много времени на физические упражнения!

Проблема с гравитацией при больших ускорениях

Если мы хотим полететь к звёздам, то для путешествия к ближайшей Альфа Центавра А со скоростью в 99% от скорости света займёт 4.2 года. Но чтобы разогнаться до этой скорости, потребуется огромное ускорение. А значит, и огромные перегрузки, примерно в 1000-4000 тысячи раз больше земного притяжения. Такое не выдержать никому, и космический корабль с вращающимся кольцом должен быть просто гигантским, в сотни километров. Построить такое можно, но нужно ли?

К сожалению, мы до сих пор не до конца понимаем, как работает гравитация. И пока не придумали, как избежать эффекта таких перегрузок. Будем исследовать, проверять, изучать.