Обчислити межу функції lim x 0. Межа функції

Теорія меж – це з розділів математичного аналізу. Питання вирішення меж є досить широким, оскільки існують десятки прийомів рішень меж різних видів. Існують десятки нюансів і хитрощів, що дозволяють вирішити ту чи іншу межу. Тим не менш, ми все-таки спробуємо розібратися в основних типах меж, які найчастіше зустрічаються практично.

Почнемо з поняття межі. Але спершу коротка історична довідка. Жив-був у 19 столітті француз Огюстен Луї Коші, який дав суворі визначення багатьом поняттям матану та заклав його основи. Треба сказати, цей шановний математик снився, сниться і буде снитися в кошмарних снах всім студентам фізико-математичних факультетів, тому що довів величезну кількість теорем математичного аналізу, причому одна теорема більш вбивча за іншу. У цьому зв'язку ми поки не розглядатимемо визначення межі по Коші, а спробуємо зробити дві речі:

1. Зрозуміти, що таке межа.
2. Навчитися вирішувати основні типи меж.

Перепрошую за деяку ненауковість пояснень, важливо щоб матеріал був зрозумілий навіть чайнику, що, власне, і є завданням проекту.

Отже, що таке межа?

А одразу приклад, чого бабусю кудлатити….

Будь-яка межа складається з трьох частин:

1) Всім відомого значка межі.
2) Записи під значком межі, у разі . Запис читається «ікс прагне одиниці». Найчастіше саме , хоча замість «ікса» на практиці зустрічаються й інші змінні. У практичних завданнях дома одиниці може бути абсолютно будь-яке число, і навіть нескінченність ().
3) Функції під знаком межі, у разі .

Сам запис читається так: «межа функції при ікс, що прагне до одиниці».

Розберемо наступне важливе питання – а що означає вираз «ікс прагнедо одиниці»? І що взагалі таке «прагне»?
Поняття межі - це поняття, якщо так можна сказати, динамічний. Побудуємо послідовність: спочатку , потім , , …, , ….
Тобто вираз «ікс прагнедо одиниці» слід розуміти так – «ікс» послідовно набуває значень, які нескінченно близько наближаються до одиниці та практично з нею збігаються.

Як вирішити вищезазначений приклад? Виходячи з вищесказаного, потрібно просто підставити одиницю у функцію, що стоїть під знаком межі:

Отже, перше правило: Коли дана будь-яка межа, спочатку просто намагаємося підставити число у функцію.

Ми розглянули найпростішу межу, але й такі зустрічаються на практиці, причому, не так вже й рідко!

Приклад із нескінченністю:

Розбираємось, що таке? Це той випадок, коли необмежено зростає, тобто: спочатку, потім, потім, потім і так далі до безкінечності.

А що в цей час відбувається з функцією?
, , , …

Отже: якщо , то функція прагне мінус нескінченності:

Грубо кажучи, згідно з нашим першим правилом, ми замість «ікса» підставляємо в функцію нескінченність і отримуємо відповідь.

Ще один приклад із нескінченністю:

Знову починаємо збільшувати до нескінченності і дивимося на поведінку функції:

Висновок: при функція необмежено зростає:

І ще серія прикладів:

Будь ласка, спробуйте самостійно проаналізувати нижченаведене і запам'ятайте найпростіші види меж:

, , , , , , , , ,
Якщо де-небудь є сумніви, можете взяти в руки калькулятор і трохи потренуватися.
У разі, якщо , спробуйте побудувати послідовність , , . Якщо то , , .

! Примітка: Строго кажучи, такий підхід з побудовою послідовностей з кількох чисел некоректний, але для розуміння найпростіших прикладів цілком підійде.

Також зверніть увагу на таку річ. Навіть якщо дана межа з великим числом вгорі, та хоч із мільйоном: , то все одно , оскільки рано чи пізно «ікс» почне приймати такі гігантські значення, що мільйон в порівнянні з ними буде справжнісіньким мікробом.

Що потрібно запам'ятати та зрозуміти з вищесказаного?

1) Коли дана будь-яка межа, спочатку просто намагаємося підставити число у функцію.

2) Ви повинні розуміти і відразу вирішувати найпростіші межі, такі як , , і т.д.

Більше того, межа має дуже хороший геометричний зміст. Для кращого розуміння теми рекомендую ознайомитись із методичним матеріалом Графіки та властивості елементарних функцій. Після прочитання цієї статті ви не тільки остаточно зрозумієте, що таке межа, а й познайомитеся з цікавими випадками, коли межі функції взагалі не існує!

На практиці, на жаль, подарунків небагато. А тому переходимо до розгляду складніших меж. До речі, на цю тему є інтенсивний курсу pdf-форматі, який особливо корисний, якщо у вас дуже мало часу на підготовку. Але матеріали сайту, зрозуміло, не гірші:


Зараз ми розглянемо групу меж, коли , а функція є дріб, в чисельнику і знаменнику якого знаходяться багаточлени

Приклад:

Обчислити межу

Згідно з нашим правилом, спробуємо підставити нескінченність у функцію. Що в нас виходить вгорі? Нескінченність. А що виходить унизу? Теж нескінченність. Таким чином, у нас є так звана невизначеність виду. Можна було б подумати, що , і відповідь готова, але в загальному випадку це зовсім не так, і потрібно застосувати певний прийом рішення, який ми зараз і розглянемо.

Як вирішувати межі цього типу?

Спочатку ми дивимося на чисельник і знаходимо у старшому ступені:

Старший ступінь у чисельнику дорівнює двом.

Тепер дивимося на знаменник і теж знаходимо у старшому ступені:

Старший ступінь знаменника дорівнює двом.

Потім ми вибираємо найстарший ступінь чисельника і знаменника: у цьому прикладі вони збігаються і дорівнюють двійці.

Отже, метод вирішення наступний: для того, щоб розкрити невизначеність необхідно розділити чисельник і знаменник на старшому ступені.



Ось воно як відповідь, а зовсім не нескінченність.

Що важливо в оформленні рішення?

По-перше, вказуємо невизначеність, якщо вона є.

По-друге, бажано перервати рішення для проміжних пояснень. Я зазвичай використовую знак , він не несе ніякого математичного сенсу, а означає, що рішення перервано для проміжного пояснення.

По-третє, межі бажано помічати, що й куди прагне. Коли робота оформляється від руки, зручніше це зробити так:

Для позначок краще використовувати простий олівець.

Звичайно, можна нічого цього не робити, але тоді, можливо, викладач відзначить недоліки у вирішенні або почне ставити додаткові запитання. А воно Вам потрібне?

Приклад 2

Знайти межу
Знову в чисельнику та знаменнику знаходимо у старшому ступені:

Максимальний ступінь у чисельнику: 3
Максимальний ступінь у знаменнику: 4
Вибираємо найбільшезначення, у разі четвірку.
Відповідно до нашого алгоритму, для розкриття невизначеності ділимо чисельник та знаменник на .
Повне оформлення завдання може виглядати так:

Розділимо чисельник та знаменник на

Приклад 3

Знайти межу
Максимальний ступінь «ікса» у чисельнику: 2
Максимальний ступінь «ікса» у знаменнику: 1 (можна записати як)
Для розкриття невизначеності необхідно розділити чисельник та знаменник на . Чистовий варіант рішення може виглядати так:

Розділимо чисельник та знаменник на

Під записом мається на увазі не розподіл на нуль (ділити на нуль не можна), а розподіл на нескінченно мале число.

Таким чином, при розкритті невизначеності виду у нас може вийти кінцеве числонуль або нескінченність.


Межі з невизначеністю виду та метод їх вирішення

Наступна група меж чимось схожа на щойно розглянуті межі: у чисельнику та знаменнику знаходяться багаточлени, але «ікс» прагне вже не до нескінченності, а до кінцевого числа.

Приклад 4

Вирішити межу
Спочатку спробуємо підставити -1 в дріб:

В даному випадку отримана так звана невизначеність.

Загальне правило: якщо в чисельнику і знаменнику знаходяться багаточлени, і є невизначеності виду, то для її розкриття потрібно розкласти чисельник та знаменник на множники.

Для цього найчастіше потрібно вирішити квадратне рівняння та (або) використовувати формули скороченого множення. Якщо ці речі забулися, тоді відвідайте сторінку Математичні формули та таблиціта ознайомтеся з методичним матеріалом Гарячі формули шкільного курсу математики. До речі, його найкраще роздрукувати, потрібно дуже часто, та й інформація з паперу засвоюється краще.

Отже, вирішуємо нашу межу

Розкладемо чисельник і знаменник на множники

Для того, щоб розкласти чисельник на множники, потрібно розв'язати квадратне рівняння:

Спочатку знаходимо дискримінант:

І квадратний корінь із нього: .

Якщо дискримінант великий, наприклад 361, використовуємо калькулятор, функція вилучення квадратного кореня є на найпростішому калькуляторі.

! Якщо корінь не витягується націло (виходить дробове число з комою), цілком імовірно, що дискримінант обчислений неправильно чи завдання друку.

Далі знаходимо коріння:

Таким чином:

Всі. Чисельник на множники розкладено.

Знаменник. Знаменник вже є найпростішим множником, і спростити його неможливо.

Очевидно, що можна скоротити на :

Тепер і підставляємо -1 у вираз, який залишився під знаком межі:

Звичайно, в контрольній роботі, на заліку, іспиті так детально рішення ніколи не розписують. У чистовому варіанті оформлення має виглядати приблизно так:

Розкладемо чисельник на множники.





Приклад 5

Обчислити межу

Спочатку «чистовий» варіант рішення

Розкладемо чисельник і знаменник на множники.

Чисельник:
Знаменник:



,

Що важливого у цьому прикладі?
По-перше, Ви повинні добре розуміти, як розкритий чисельник, спочатку ми винесли за дужку 2, а потім використали формулу різниці квадратів. Вже цю формулу треба знати і бачити.

Рекомендація: Якщо в межі (майже будь-якого типу) можна винести число за дужку, то завжди це робимо.
Більше того, такі числа доцільно виносити за значок межі. Навіщо? Та просто щоб вони не заважали під ногами. Головне, потім ці числа не втратити під час рішення.

Зауважте, що на заключному етапі рішення я виніс за значок межі двійку, а потім – мінус.

! Важливо
У результаті рішення фрагмент типу зустрічається дуже часто. Скорочувати такий дрібне можна . Спочатку потрібно поміняти знак у чисельника чи знаменника (винести -1 за дужки).
тобто з'являється знак «мінус», який при обчисленні межі враховується і втрачати його зовсім не потрібно.

Взагалі, я помітив, що найчастіше у знаходженні меж даного типу доводиться вирішувати два квадратні рівняння, тобто і в чисельнику і знаменнику знаходяться квадратні тричлени.


Метод множення чисельника та знаменника на сполучене вираз

Продовжуємо розглядати невизначеність виду

Наступний тип меж схожий на попередній тип. Єдине, крім багаточленів, у нас додадуться коріння.

Приклад 6

Знайти межу

Починаємо вирішувати.

Спочатку пробуємо підставити 3 у вираз під знаком межі
Ще раз повторюю – це перше, що потрібно виконувати для будь-якої межі. Ця дія зазвичай проводиться подумки або на чернетці.

Отримано невизначеність виду, яку потрібно усувати.

Як Ви, напевно, помітили, у нас у чисельнику є різниця коренів. А коріння в математиці прийнято, по можливості, позбавлятися. Навіщо? А без них життя простіше.

Межа функції на нескінченності:
| f (x) - a |< ε при |x| >N

Визначення межі по Коші
Нехай функція f (x)визначена в околиці нескінченно віддаленої точки, при |x| > Число a називається межею функції f (x)при x, що прагне до нескінченності (), якщо для будь-якого, скільки завгодно малого позитивного числа ε > 0 існує таке число N ε > K, що залежить від ε , що всім x, |x| > N ε , значення функції належать ε - околиці точки a :
|f (x) - a |< ε .
Межа функції на нескінченності позначається так:
.
Або при .

Також часто використовується таке позначення:
.

Запишемо це визначення, використовуючи логічні символи існування та загальності:
.
Тут мається на увазі, що значення належать області визначення функції.

Односторонні межі

Ліва межа функції на нескінченності:
| f (x) - a |< ε при x < -N

Часто трапляються випадки, коли функція визначена тільки для позитивних або негативних значень змінної x (точніше, в околиці точки або ). Також межі на нескінченності для позитивних та негативних значень x можуть мати різні значення. Тоді використовують односторонні межі.

Ліва межа в нескінченно віддаленій точціабо межа при x що прагне мінус нескінченності () визначається так:
.
Права межа в нескінченно віддаленій точціабо межа при x прагне до плюс нескінченності () :
.
Односторонні межі на нескінченності часто позначають так:
; .

Нескінченна межа функції на нескінченності

Нескінченна межа функції на нескінченності:
|f(x)| > M за |x| > N

Визначення нескінченної межі по Коші
Нехай функція f (x)визначена в околиці нескінченно віддаленої точки, при |x| > K де K - позитивне число. Межа функції f (x)при x, що прагне до нескінченності (), дорівнює нескінченностіякщо для будь-якого, скільки завгодно великого числа M > 0 , існує таке число N M > K, залежить від M , що всім x, |x| > N M , значення функції належать околиці нескінченно віддаленої точки:
|f (x) | > M.
Нескінченну межу при x, що прагне до нескінченності, позначають так:
.
Або при .

За допомогою логічних символів існування та загальності, визначення нескінченної межі функції можна записати так:
.

Аналогічно вводяться визначення нескінченних меж певних знаків, рівних і :
.
.

Визначення односторонніх меж на нескінченності.
Ліві межі.
.
.
.
Праві межі.
.
.
.

Визначення межі функції за Гейном

Нехай функція f (x)визначена на деякій околиці нескінченно віддаленої точки x 0 , де або .
Число a (кінцеве або нескінченно віддалене) називається межею функції f (x)у точці x 0 :
,
якщо для будь-якої послідовності ( x n ), що сходить до x 0 : ,
елементи якої належать околиці , послідовність (f(x n))сходиться до a:
.

Якщо в якості околиці взяти околицю нескінченно віддаленої точки без знака: , то отримаємо визначення межі функції при стрімкому нескінченності, що . 0 Якщо взяти лівосторонню або правосторонню околицю нескінченно віддаленої точки x

: або , то отримаємо визначення межі при x, що прагне мінус нескінченності і плюс нескінченності, відповідно.

Визначення межі по Гейні та Коші еквівалентні.

Приклади

Приклад 1
.

Використовуючи визначення Коші показати, що
.
Введемо позначення:
.
Знайдемо область визначення функції.
; .
Оскільки чисельник і знаменник дробу є многочленами, то функція визначена всім x крім точок, у яких знаменник перетворюється на нуль. Знайдемо ці точки. Вирішуємо квадратне рівняння. ;
Коріння рівняння:

Оскільки, то й.
.
Тому функція визначена за .
.
Це ми будемо використовувати надалі. -1 :
.

Випишемо визначення кінцевої межі функції на нескінченності по Коші:
Перетворюємо різницю:
;
;
;
.

Розділимо чисельник і знаменник на та помножимо на
.
.
Нехай.
Тоді

Оскільки завжди можна збільшити, візьмемо .
Тоді для будь-кого,
при .

Це означає, що .

Випишемо визначення кінцевої межі функції на нескінченності по Коші:
Приклад 2
1) ;
2) .

Використовуючи визначення межі по Коші показати, що:

1) Рішення при x прагне до мінус нескінченності
Оскільки, то функція визначена всім x .
.

Випишемо визначення межі функції при , що дорівнює мінус нескінченності:
;
.

Розділимо чисельник і знаменник на та помножимо на
.
Нехай.
.
Тоді
.

Вводимо позитивні числа та:

Звідси випливає, що для будь-якого позитивного числа M є число , так що при ,

Це означає, що .
.
2) Рішення у x прагне до плюс нескінченності

.
Перетворимо вихідну функцію. Помножимо чисельник і знаменник дробу і застосуємо формулу різниці квадратів:
.

Маємо:
Тому функція визначена за .
.
Випишемо визначення правої межі функції при:
.

Введемо позначення: .
.
Перетворюємо різницю:
;
.

Розділимо чисельник і знаменник на та помножимо на
.
Нехай.
.
Нехай.
Помножимо чисельник і знаменник на :

Нехай
.

при і.
Оскільки це виконується для будь-якого позитивного числа, то

Використана література:С.М. Микільський. Курс математичного аналізу. Том 1. Москва, 1983. (x)функцією

y = f називається закон (правило), згідно з яким, кожному елементу x множини X ставиться у відповідність один і тільки один елемент y множини Y .Елемент x ∈ Xназивають аргументом функції.
або незалежної змінноїЕлемент x Елемент yназивають ∈ Y.

значенням функції залежною змінною.
Безліч X називається незалежної змінноїобластю визначення функції Безліч елементів y.

, які мають прообрази у множині X , називається областю або безліччю значень функціїДійсна функція називається
.
обмеженою зверху (знизу) якщо існує таке число M , що для всіх виконується нерівність:Числова функція називається
.

обмеженоюназивають якщо існує таке число M , що для всіх :Верхньою гранню
точним верхнім кордоном
.

Насправді функції називають найменше з чисел, що обмежує область її значень зверху. Тобто це таке число s, для якого для всіх і для будь-якого, знайдеться такий аргумент, значення функції якого перевищує s′:. Верхня грань функції може позначатися так:називають Відповіднонижньою гранню
точним нижнім кордоном
.

Насправді функції називають найбільше з чисел, що обмежує область її значень знизу. Тобто це таке число i , для якого для всіх і для будь - якого , знайдеться такий аргумент , значення функції якого менше ніж i : .

Нижня грань функції може позначатися так:

Визначення межі функції

Нехай функція визначена в околиці кінцевої точки за винятком, можливо, самої точки .
.
у точці, якщо для будь-кого існує таке, що залежить від того, що для всіх x, для яких виконується нерівність
.
Або при .

Межа функції позначається так:
.

За допомогою логічних символів існування та загальності визначення межі функції можна записати так:
Односторонні межі.
.
Ліва межа в точці (лівостороння межа):
.
Права межа в точці (правостороння межа):
; .

Межі ліворуч і праворуч часто позначають так:

Кінцеві межі функції у нескінченно віддалених точках
.
.
.
Аналогічно визначаються межі в нескінченно віддалених точках.
; ; .

Їх часто позначають так:

Використання поняття околиці точки
.
Якщо ввести поняття проколотого околиці точки , можна дати єдине визначення кінцевої межі функції в кінцевих і нескінченно віддалених точках:
; ;
.
Тут для кінцевих точок
; ; .

Будь-які околиці нескінченно віддалених точок є проколотими:

Нескінченні межі функції
Визначення Межа функції f (x)Нехай функція визначена в деякому проколоті околиці точки (кінцевої або нескінченно віддаленої). 0 при x → xякщо для будь-якого, скільки завгодно великого числа M > 0 дорівнює нескінченності > 0 існує таке число δ M
.
, що залежить від M , що для всіх x , що належать проколоті M - околиці точки : , виконується нерівність:
.
Або при .

Нескінченну межу позначають так:
.

За допомогою логічних символів існування та загальності визначення нескінченної межі функції можна записати так:
.
.

Також можна запровадити визначення нескінченних меж певних знаків, рівних і :

Універсальне визначення межі функції
.

Визначення межі функції за Гейном

Використовуючи поняття околиці точки, можна дати універсальне визначення кінцевої та нескінченної межі функції, що застосовується як для кінцевих (двосторонніх та односторонніх), так і для нескінченно віддалених точок:
Число a називається межею функціїНехай функція визначена на деякій множині X: .
,
в точці: 0 :
,
якщо для будь-якої послідовності, що сходить до x
.

елементи якої належать множині X : ,
.

Запишемо це визначення за допомогою логічних символів існування та загальності: 0 Якщо як безліч X взяти лівосторонню околицю точки x

, Отримаємо визначення лівої межі. Якщо правосторонню – то отримаємо визначення правої межі. Якщо як безліч X взяти околицю нескінченно віддаленої точки, то отримаємо визначення межі функції на нескінченності.
Теорема
Визначення межі функції по Коші та Гейні еквівалентні.

Доведення

Далі ми вважаємо, що ці функції визначені у відповідній околиці точки , яка є кінцевим числом або одним із символів: .

Також може бути точкою односторонньої межі, тобто мати вигляд або .

Околиця є двосторонньою для двосторонньої межі та односторонньою для односторонньої. (x)Основні властивості Якщо значення функції fзмінити (або зробити невизначеними) у кінцевому числі точок x 0 .

1, x 2, x 3, ... x n 0 , то ця зміна ніяк не вплине на існування та величину межі функції у довільній точці x (x)Якщо існує кінцева межа, то існує така проколота околиця точки x
.

, на якій функція f 0 обмежена:
.
Нехай функція має у точці x 0 кінцева межа, відмінна від нуля:
Тоді, для будь-якого числа c з інтервалу існує така проколота околиця точки x
, що для ,

, якщо;

якщо . 0
,
Якщо, на деякому проколоті околиці точки, - постійна, то .

Якщо існують кінцеві межі та й на деякому проколотом околиці точки x
,
Якщо, на деякому проколоті околиці точки, - постійна, то .
те.
,
Якщо , і на околиці точки
Зокрема, якщо на деякій околиці точки

то якщо, то і; 0 :
,
якщо, то і.
Якщо на деякому проколотом околиці точки x
.

і існують кінцеві (або нескінченні певного знака) рівні межі:
, то

Докази основних властивостей наведено на сторінці

"Основні властивості меж функції".
Арифметичні властивості межі функції
Нехай функції і визначені в деякій проколоті околиці точки.
;
;
;
, що для ,

І нехай існують кінцеві межі:

та .
І нехай C – постійна, тобто задане число. Тоді

Якщо то .

, Отримаємо визначення лівої межі. Якщо правосторонню – то отримаємо визначення правої межі. Якщо як безліч X взяти околицю нескінченно віддаленої точки, то отримаємо визначення межі функції на нескінченності.
Докази арифметичних властивостей наведено на сторінці 0 "Арифметичні властивості меж функції". > 0 Критерій Коші існування межі функції 0 Для того, щоб функція , визначена на деякому проколотом околиці кінцевої або нескінченно віддаленої точки x
.

, мала в цій точці кінцеву межу, необхідно і достатньо, щоб для будь-якого ε

існувала така проколота околиця точки x
, Що для будь-яких точок і з цієї околиці, виконувалася нерівність:
Межа складної функції
Теорема про межу складної функції
.

Теорема про межу складної функції застосовується у тому випадку, коли функція не визначена в точці або має значення, відмінне від граничного .
.

Для застосування цієї теореми, має існувати проколота околиця точки , де безліч значень функції не містить точку :
.
Якщо функція безперервна у точці , то знак межі можна застосовувати до аргументу безперервної функції:

Далі наводиться теорема, що відповідає цьому випадку.
Теорема про межу безперервної функції від функції Нехай існує межа функції g(t) 0 при t → t 0 :
.
, і він дорівнює x 0 Тут точка t
може бути кінцевою чи нескінченно віддаленою: . (x)І нехай функція f 0 .
безперервна в точці x Тоді існує межа складної функції f(g(t)) , і він дорівнює f:
.

(x 0)
Докази теорем наведено на сторінці

«Межа і безперервність складної функції».

Нескінченно малі та нескінченно великі функції

Нескінченні межі функції
Нескінченно малі функції
.

Функція називається нескінченно малою при , якщоСума, різниця та твір

кінцевого числа нескінченно малих функцій при є нескінченно малою функцією при .Добуток функції, обмеженої

на деякому проколоті околиці точки, на нескінченно малу при є нескінченно малою функцією при.
,
Для того, щоб функція мала кінцеву межу, необхідно і достатньо, щоб


де - нескінченно мала функція при .

«Властивості нескінченно малих функцій».

Нескінченні межі функції
Нескінченно великі функції
.

Функція називається нескінченно великою при , якщо

Сума або різниця обмеженої функції, на деякому проколоті околиці точки , і нескінченно великий функції при є нескінченно великою функцією при .
.

Якщо функція є нескінченно великою при , а функція - обмежена, на деякому проколоті околиці точки , то
,
Якщо функція , на деякому проколоті околиці точки , задовольняє нерівності:
а функція є нескінченно малою при:
.

, і (на деякому проколоті околиці точки ), то
Докази властивостей викладені у розділі

"Властивості нескінченно великих функцій".

Зв'язок між нескінченно великими та нескінченно малими функціями

З двох попередніх властивостей випливає зв'язок між нескінченно великими та нескінченно малими функціями.

Якщо функція є нескінченно великою при , то функція є нескінченно малою при .

Якщо функція є нескінченно малою при , і , то функція є нескінченно великою при .
, .

Якщо нескінченно мала функція має певний знак при , тобто позитивна (або негативна) на деякому проколоті околиці точки , то цей факт можна виразити так:
.
Так само якщо нескінченно велика функція має певний знак при , то пишуть:
.

Тоді символічний зв'язок між нескінченно малими та нескінченно великими функціями можна доповнити такими співвідношеннями:
, ,
, .

Додаткові формули, що зв'язують символи нескінченності, можна знайти на сторінці
«Нескінченно віддалені точки та їх властивості».

Межі монотонних функцій

Нескінченні межі функції
Функція , визначена на деякій множині дійсних чисел X називається строго зростаючоюякщо для всіх таких що виконується нерівність:
.
Відповідно, для суворо спадаючоюфункції виконується нерівність:
.
Для невпадаючою:
.
Для незростаючою:
.

Звідси випливає, що функція, що строго зростає, також є неубутньою. Строго спадна функція також є незростаючою.

Функція називається монотонної, якщо вона незнижена або незростаюча.

, Отримаємо визначення лівої межі. Якщо правосторонню – то отримаємо визначення правої межі. Якщо як безліч X взяти околицю нескінченно віддаленої точки, то отримаємо визначення межі функції на нескінченності.
Нехай функція не зменшується на інтервалі, де.
Якщо вона обмежена зверху числом M:, існує кінцева межа.
Якщо не обмежена зверху, то .

Якщо обмежена знизу числом m:, існує кінцева межа.
Якщо не обмежена знизу, то .

Якщо точки a і b є нескінченно віддаленими, то виразах під знаками меж мається на увазі, що .
;
.

Цю теорему можна сформулювати компактніше.

Нехай функція не зменшується на інтервалі, де.
;
.

Тоді існують односторонні межі в точках a і b:
Аналогічна теорема для функції, що не зростає.

при і.
Нехай функція не зростає на інтервалі, де.
Оскільки це виконується для будь-якого позитивного числа, то

Тоді існують односторонні межі:

Доказ теореми викладено на сторінці

"Межі монотонних функцій".

Л.Д. Кудрявці. Курс математичного аналізу. Том 1. Москва, 2003.
Для тих, хто хоче навчитися знаходити межі в цій статті, ми розповімо про це. Не заглиблюватимемося в теорію, зазвичай її дають на лекціях викладачі. Так що "нудна теорія" має бути у Вас законспектована у зошитах. Якщо цього немає, то можна почитати підручники взяті в бібліотеці навчального закладу або на інших інтернет-ресурсах. б)$ \lim_(x \to \infty) \frac(1)(x) $
Рішення

а) $$ \lim \limits_(x \to 0) \frac(1)(x) = \infty $$

б)$$ \lim_(x \to \infty) \frac(1)(x) = 0 $$

Нам часто надсилають ці межі із проханням допомогти вирішити. Ми вирішили їх виділити окремим прикладом і пояснити, що ці межі необхідно просто запам'ятати, як правило.

Якщо не вдається вирішити своє завдання, то надсилайте його до нас. Ми надамо детальне рішення. Ви зможете ознайомитися з ходом обчислення та отримати інформацію. Це допоможе вчасно отримати залік у викладача!

Відповідь
$$ \text(a)) \lim \limits_(x \to 0) \frac(1)(x) = \infty \text( б))\lim \limits_(x \to \infty) \frac(1 )(x) = 0 $$

Що робити з невизначеністю виду: $ \bigg [\frac(0)(0) \bigg ] $

Приклад 3
Вирішити $ \lim \limits_(x \to -1) \frac(x^2-1)(x+1) $
Рішення

Як завжди починаємо з підстановки значення $ x $ у вираз, що стоїть під знаком межі.

$$ \lim \limits_(x \to -1) \frac(x^2-1)(x+1) = \frac((-1)^2-1)(-1+1)=\frac( 0)(0) $$

Що тепер далі? Що ж має вийти у результаті? Оскільки це невизначеність, це ще відповідь і продовжуємо обчислення. Так як у чисельники у нас багаточлен, то розкладемо його на множники, допомогою знайомої всім формули ще зі шкільної лави $$ a^2-b^2=(a-b)(a+b) $$. Згадали? Чудово! Тепер вперед і з піснею застосовувати її :)

Отримуємо, що чисельник $ x^2-1=(x-1)(x+1) $

Продовжуємо вирішувати враховуючи вищенаведене перетворення:

$$ \lim \limits_(x \to -1)\frac(x^2-1)(x+1) = \lim \limits_(x \to -1)\frac((x-1)(x+ 1))(x+1) = $$

$$ = \lim \limits_(x \to -1)(x-1)=-1-1=-2 $$

Відповідь
$$ \lim \limits_(x \to -1) \frac(x^2-1)(x+1) = -2 $$

Спрямуємо межу останніх двох прикладах до нескінченності і розглянемо невизначеність: $ \bigg [\frac(\infty)(\infty) \bigg ] $

Приклад 5
Обчислити $ \lim \limits_(x \to \infty) \frac(x^2-1)(x+1) $
Рішення

$ \lim \limits_(x \to \infty) \frac(x^2-1)(x+1) = \frac(\infty)(\infty) $

Що ж робити? Як бути? Не варто панікувати, бо неможливе – можливо. Потрібно винести за дужки і в чисельнику і в знаменнику ікс, а потім скоротити його. Після цього межу спробувати обчислити. Пробуємо...

$$ \lim \limits_(x \to \infty) \frac(x^2-1)(x+1) =\lim \limits_(x \to \infty) \frac(x^2(1-\frac) (1)(x^2)))(x(1+\frac(1)(x))) = $$

$$ = \lim \limits_(x \to \infty) \frac(x(1-\frac(1)(x^2)))((1+\frac(1)(x))) = $$

Використовуючи визначення з прикладу 2 і підставляючи місце х нескінченність отримуємо:

$$ = \frac(\infty(1-\frac(1)(\infty)))((1+\frac(1)(\infty))) = \frac(\infty \cdot 1)(1+ 0) = \frac(\infty)(1) = \infty $$

Відповідь
$$ \lim \limits_(x \to \infty) \frac(x^2-1)(x+1) = \infty $$

Алгоритм обчислення лімітів

Отже, давайте коротко підіб'ємо підсумок розібраним прикладам і складемо алгоритм розв'язання меж:

  1. Підставити точку х вираз, наступне після знака межі. Якщо виходить певна кількість, або нескінченність, то межа вирішена повністю. В іншому випадку маємо невизначеність: "нуль ділити на нуль" або "нескінченність ділити на нескінченність" і переходимо до наступних пунктів інструкції.
  2. Щоб усунути невизначеність "нуль ділити на нуль", потрібно розкласти чисельник і знаменник на множники. Скоротити такі. Підставити точку х у вираз, що стоїть під знаком межі.
  3. Якщо невизначеність "нескінченність ділити на нескінченність", тоді виносимо і в чисельнику, і в знаменнику x найбільшою мірою. Скорочуємо ікси. Підставляємо значення ікса з-під межі в вираз, що залишився.

У цій статті Ви ознайомилися з основами вирішення меж, які часто використовуються в курсі Математичного аналізу. Звичайно ж це не всі типи завдань, що пропонуються екзаменаторами, а найпростіші межі. У наступних статтях поговоримо про інші типи завдань, але спершу необхідно засвоїти цей урок, щоб рухатися далі. Обговоримо, що робити, якщо є коріння, міри, вивчимо нескінченно малі еквівалентні функції, чудові межі, правило Лопіталя.

Якщо Вам не вдається самостійно вирішити межі, то не панікуйте. Ми завжди раді допомогти!

Першим чудовим межею називають таку рівність:

\begin(equation)\lim_(\alpha\to(0))\frac(\sin\alpha)(\alpha)=1 \end(equation)

Так як при $ \ alpha \ to (0) $ маємо $ \ sin \ alpha \ to (0) $, то кажуть, що перша чудова межа розкриває невизначеність виду $ \ frac (0) (0) $. Взагалі кажучи, у формулі (1) замість змінної $\alpha$ під знаком синуса і в знаменнику може бути розташоване будь-яке вираження, - аби виконувалися дві умови:

  1. Висловлювання під знаком синуса й у знаменнику одночасно прагнуть нуля, тобто. є невизначеність виду $\frac(0)(0)$.
  2. Вирази під знаком синуса і знаменнику збігаються.

Часто використовуються також наслідки з першої чудової межі:

\begin(equation) \lim_(\alpha\to(0))\frac(\tg\alpha)(\alpha)=1 \end(equation) \begin(equation) \lim_(\alpha\to(0) )\frac(\arcsin\alpha)(\alpha)=1 \end(equation) \begin(equation) \lim_(\alpha\to(0))\frac(\arctg\alpha)(\alpha)=1 \end(equation)

На цій сторінці вирішено одинадцять прикладів. Приклад №1 присвячений доказу формул (2)-(4). Приклади №2, №3, №4 та №5 містять рішення з докладними коментарями. Приклади №6-10 містять рішення практично без коментарів, бо докладні пояснення було надано у попередніх прикладах. При вирішенні використовуються деякі тригонометричні формули, які можна знайти.

Зауважу, що наявність тригонометричних функцій разом з невизначеністю $\frac(0)(0)$ ще не означає обов'язкового застосування першої чудової межі. Іноді буває досить простих тригонометричних перетворень, наприклад, див.

Приклад №1

Довести, що $\lim_(\alpha\to(0))\frac(\tg\alpha)(\alpha)=1$, $\lim_(\alpha\to(0))\frac(\arcsin\alpha )(\alpha)=1$, $\lim_(\alpha\to(0))\frac(\arctg\alpha)(\alpha)=1$.

а) Так як $ \ tg \ alpha = \ frac (\ sin \ alpha) (\ cos \ alpha) $, то:

$$ \lim_(\alpha\to(0))\frac(\tg(\alpha))(\alpha)=\left|\frac(0)(0)\right| =\lim_(\alpha\to(0))\frac(\sin(\alpha))(\alpha\cos(\alpha)) $$

Оскільки $\lim_(\alpha\to(0))\cos(0)=1$ і $\lim_(\alpha\to(0))\frac(\sin\alpha)(\alpha)=1$ , то:

$$ \lim_(\alpha\to(0))\frac(\sin(\alpha))(\alpha\cos(\alpha)) =\frac(\displaystyle\lim_(\alpha\to(0)) \frac(\sin(\alpha))(\alpha))(\displaystyle\lim_(\alpha\to(0))\cos(\alpha)) =\frac(1)(1) =1. $$

б) Зробимо заміну $ \ alpha = \ sin (y) $. Оскільки $\sin(0)=0$, то з умови $\alpha\to(0)$ маємо $y\to(0)$. Крім того, існує околиця нуля, в якій $\arcsin\alpha=\arcsin(\sin(y))=y$, тому:

$$ \lim_(\alpha\to(0))\frac(\arcsin\alpha)(\alpha)=\left|\frac(0)(0)\right| =\lim_(y\to(0))\frac(y)(\sin(y)) =\lim_(y\to(0))\frac(1)(\frac(\sin(y))( y)) =\frac(1)(\displaystyle\lim_(y\to(0))\frac(\sin(y))(y)) =\frac(1)(1) =1. $$

Рівність $\lim_(\alpha\to(0))\frac(\arcsin\alpha)(\alpha)=1$ доведено.

в) Зробимо заміну $ alpha = tg (y) $. Оскільки $\tg(0)=0$, то умови $\alpha\to(0)$ і $y\to(0)$ еквівалентні. Крім того, існує околиця нуля, в якій $\arctg\alpha=\arctg\tg(y))=y$, тому, спираючись на результати пункту а), матимемо:

$$ \lim_(\alpha\to(0))\frac(\arctg\alpha)(\alpha)=\left|\frac(0)(0)\right| =\lim_(y\to(0))\frac(y)(\tg(y)) =\lim_(y\to(0))\frac(1)(\frac(\tg(y))( y)) =\frac(1)(\displaystyle\lim_(y\to(0))\frac(\tg(y))(y)) =\frac(1)(1) =1. $$

Рівність $\lim_(\alpha\to(0))\frac(\arctg\alpha)(\alpha)=1$ доведено.

Рівності а), б), в) часто використовуються поряд із першою чудовою межею.

Приклад №2

Обчислити межу $\lim_(x\to(2))\frac(\sin\left(\frac(x^2-4)(x+7)\right))(\frac(x^2-4)( x+7))$.

Оскільки $\lim_(x\to(2))\frac(x^2-4)(x+7)=\frac(2^2-4)(2+7)=0$ і $\lim_( x\to(2))\sin\left(\frac(x^2-4)(x+7)\right)=\sin(0)=0$, тобто. і чисельник і знаменник дробу одночасно прагнуть нулю, то тут маємо справу з невизначеністю виду $\frac(0)(0)$, тобто. виконано. Крім того, видно, що вирази під знаком синуса і в знаменнику збігаються (тобто виконано і):

Отже, обидві умови, перелічені на початку сторінки, виконані. На цьому випливає, що застосовна формула , тобто. $\lim_(x\to(2)) \frac(\sin\left(\frac(x^2-4)(x+7)\right))(\frac(x^2-4)(x+ 7)) = 1 $.

Відповідь: $\lim_(x\to(2))\frac(\sin\left(\frac(x^2-4)(x+7)\right))(\frac(x^2-4)(x +7)) = 1 $.

Приклад №3

Знайти $\lim_(x\to(0))\frac(\sin(9x))(x)$.

Оскільки $\lim_(x\to(0))\sin(9x)=0$ і $\lim_(x\to(0))x=0$, ми маємо справу з невизначеністю виду $\frac(0 ) (0) $, тобто. виконано. Проте вирази під знаком синуса і знаменнику не збігаються. Тут потрібно підігнати вираз у знаменнику під необхідну форму. Нам необхідно, щоб у знаменнику розташувався вираз $9x$ - тоді стане істинним. По суті, нам не вистачає множника $9$ у знаменнику, який не так вже й складно ввести, - просто домножити вираз у знаменнику на $9$. Природно, що для компенсації домноження на $9$ доведеться відразу на $9$ і розділити:

$$ \lim_(x\to(0))\frac(\sin(9x))(x)=\left|\frac(0)(0)\right| =\lim_(x\to(0))\frac(\sin(9x))(9x\cdot\frac(1)(9)) =9\lim_(x\to(0))\frac(\sin (9x))(9x) $$

Тепер вирази у знаменнику та під знаком синуса збіглися. Обидві умови для межі $\lim_(x\to(0))\frac(\sin(9x))(9x)$ виконані. Отже, $\lim_(x\to(0))\frac(\sin(9x))(9x)=1$. А це означає, що:

$$ 9\lim_(x\to(0))\frac(\sin(9x))(9x)=9cdot(1)=9. $$

Відповідь: $\lim_(x\to(0))\frac(\sin(9x))(x)=9$.

Приклад №4

Знайти $\lim_(x\to(0))\frac(\sin(5x))(\tg(8x))$.

Оскільки $\lim_(x\to(0))\sin(5x)=0$ і $\lim_(x\to(0))\tg(8x)=0$, то тут ми маємо справу з невизначеністю виду $\frac(0)(0)$. Однак форма першої чудової межі порушена. Чисельник, що містить $\sin(5x)$, вимагає наявності у знаменнику $5x$. У цій ситуації найпростіше розділити чисельник на $5x$, - і відразу на $5x$ домножити. Крім того, проробимо аналогічну операцію і зі знаменником, домноживши і розділивши $\tg(8x)$ на $8x$:

$$\lim_(x\to(0))\frac(\sin(5x))(\tg(8x))=\left|\frac(0)(0)\right| =\lim_(x\to(0))\frac(\frac(\sin(5x))(5x)\cdot(5x))(\frac(\tg(8x))(8x)\cdot(8x) )$$

Скорочуючи на $x$ і виносячи константу $\frac(5)(8)$ за знак межі, отримаємо:

$$ \lim_(x\to(0))\frac(\frac(\sin(5x))(5x)\cdot(5x))(\frac(\tg(8x))(8x)\cdot(8x )) =\frac(5)(8)\cdot\lim_(x\to(0))\frac(\frac(\sin(5x))(5x))(\frac(\tg(8x))( 8x)) $$

Зверніть увагу, що $\lim_(x\to(0))\frac(\sin(5x))(5x)$ повністю задовольняє вимогам для першої чудової межі. Для відшукання $\lim_(x\to(0))\frac(\tg(8x))(8x)$ застосовна формула :

$$ \frac(5)(8)\cdot\lim_(x\to(0))\frac(\frac(\sin(5x))(5x))(\frac(\tg(8x))(8x )) =\frac(5)(8)\cdot\frac(\displaystyle\lim_(x\to(0))\frac(\sin(5x))(5x))(\displaystyle\lim_(x\to (0))\frac(\tg(8x))(8x)) =\frac(5)(8)\cdot\frac(1)(1) =\frac(5)(8). $$

Відповідь: $\lim_(x\to(0))\frac(\sin(5x))(\tg(8x))=\frac(5)(8)$.

Приклад №5

Знайти $\lim_(x\to(0))\frac(\cos(5x)-\cos^3(5x))(x^2)$.

Оскільки $\lim_(x\to(0))(\cos(5x)-\cos^3(5x))=1-1=0$ (нагадаю, що $\cos(0)=1$) і $\lim_(x\to(0))x^2=0$, ми маємо справу з невизначеністю виду $\frac(0)(0)$. Однак, щоб застосувати першу чудову межу, слід позбутися косинуса в чисельнику, перейшовши до синусів (щоб потім застосувати формулу) або тангенсів (щоб потім застосувати формулу). Зробити це можна таким перетворенням:

$$\cos(5x)-\cos^3(5x)=\cos(5x)\cdot\left(1-\cos^2(5x)\right)$$ $$\cos(5x)-\cos ^3(5x)=\cos(5x)\cdot\left(1-\cos^2(5x)\right)=\cos(5x)\cdot\sin^2(5x).$$

Повернемося до межі:

$$ \lim_(x\to(0))\frac(\cos(5x)-\cos^3(5x))(x^2)=\left|\frac(0)(0)\right| =\lim_(x\to(0))\frac(\cos(5x)\cdot\sin^2(5x))(x^2) =\lim_(x\to(0))\left(\cos (5x)\cdot\frac(\sin^2(5x))(x^2)\right) $$

Дроб $\frac(\sin^2(5x))(x^2)$ вже близька до тієї форми, що потрібно для першої чудової межі. Трохи попрацюємо з дробом $\frac(\sin^2(5x))(x^2)$, підганяючи її під першу чудову межу (врахуйте, що вирази в чисельнику і під синусом повинні збігтися):

$$\frac(\sin^2(5x))(x^2)=\frac(\sin^2(5x))(25x^2\cdot\frac(1)(25))=25\cdot\ frac(\sin^2(5x))(25x^2)=25\cdot\left(\frac(\sin(5x))(5x)\right)^2$$

Повернемося до межі:

$$ \lim_(x\to(0))\left(\cos(5x)\cdot\frac(\sin^2(5x))(x^2)\right) =\lim_(x\to(0) ))\left(25\cos(5x)\cdot\left(\frac(\sin(5x))(5x)\right)^2\right)=\=25\cdot\lim_(x\to( 0))\cos(5x)\cdot\lim_(x\to(0))\left(\frac(\sin(5x))(5x)\right)^2 =25\cdot(1)\cdot( 1 ^ 2) = 25. $$

Відповідь: $\lim_(x\to(0))\frac(\cos(5x)-\cos^3(5x))(x^2)=25$.

Приклад №6

Знайти межу $\lim_(x\to(0))\frac(1-\cos(6x))(1-\cos(2x))$.

Оскільки $\lim_(x\to(0))(1-\cos(6x))=0$ і $\lim_(x\to(0))(1-\cos(2x))=0$, ми маємо справу з невизначеністю $\frac(0)(0)$. Розкриємо її за допомогою першої чудової межі. Для цього перейдемо від косинусів до синусів. Оскільки $1-\cos(2\alpha)=2\sin^2(\alpha)$, то:

$$1-\cos(6x)=2\sin^2(3x);\;1-\cos(2x)=2\sin^2(x).$$

Переходячи в заданій межі до синусів, матимемо:

$$ \lim_(x\to(0))\frac(1-\cos(6x))(1-\cos(2x))=\left|\frac(0)(0)\right| =\lim_(x\to(0))\frac(2\sin^2(3x))(2\sin^2(x)) =\lim_(x\to(0))\frac(\sin^ 2(3x))(\sin^2(x))=\\ =\lim_(x\to(0))\frac(\frac(\sin^2(3x))((3x)^2)\ cdot(3x)^2)(\frac(\sin^2(x))(x^2)\cdot(x^2)) =\lim_(x\to(0))\frac(\left(\) frac(\sin(3x))(3x)\right)^2\cdot(9x^2))(\left(\frac(\sin(x))(x)\right)^2\cdot(x^ 2)) =9\cdot\frac(\displaystyle\lim_(x\to(0))\left(\frac(\sin(3x))(3x)\right)^2)(\displaystyle\lim_(x \to(0))\left(\frac(\sin(x))(x)\right)^2) =9cdot\frac(1^2)(1^2) =9. $$

Відповідь: $\lim_(x\to(0))\frac(1-\cos(6x))(1-\cos(2x))=9$.

Приклад №7

Обчислити межу $\lim_(x\to(0))\frac(\cos(\alpha(x))-\cos(\beta(x)))(x^2)$ за умови $\alpha\neq\ beta $.

Детальні пояснення були дані раніше, тут просто відзначимо, що знову є невизначеність $\frac(0)(0)$. Перейдемо від косинусів до синусів, використовуючи формулу

$$\cos\alpha-\cos\beta=-2\sin\frac(\alpha+\beta)(2)\cdot\sin\frac(\alpha-\beta)(2).$$

Використовуючи вказану формулу, отримаємо:

$$ \lim_(x\to(0))\frac(\cos(\alpha(x))-\cos(\beta(x)))(x^2)=\left|\frac(0)( 0) \right| =\lim_(x\to(0))\frac(-2\sin\frac(\alpha(x)+\beta(x))(2)\cdot\sin\frac(\alpha(x)-\ beta(x))(2))(x^2)=\\=-2\cdot\lim_(x\to(0))\frac(\sin\left(x\cdot\frac(\alpha+\beta) )(2)\right)\cdot\sin\left(x\cdot\frac(\alpha-beta)(2)\right))(x^2) =-2\cdot\lim_(x\to( 0))\left(\frac(\sin\left(x\cdot\frac(\alpha+\beta)(2)\right))(x)\cdot\frac(\sin\left(x\cdot\frac) (\alpha-\beta)(2)\right))(x)\right)=\\ =-2\cdot\lim_(x\to(0))\left(\frac(\sin\left(x) \cdot\frac(\alpha+\beta)(2)\right))(x\cdot\frac(\alpha+\beta)(2))\cdot\frac(\alpha+\beta)(2)\cdot\frac (\sin\left(x\cdot\frac(\alpha-\beta)(2)\right))(x\cdot\frac(\alpha-\beta)(2))\cdot\frac(\alpha- \beta)(2)\right)=\\=-\frac((\alpha+\beta)\cdot(\alpha-\beta))(2)\lim_(x\to(0))\frac(\ sin\left(x\cdot\frac(\alpha+\beta)(2)\right))(x\cdot\frac(\alpha+\beta)(2))\cdot\lim_(x\to(0)) \frac(\sin\left(x\cdot\frac(\alpha-\beta)(2)\right))(x\cdot\frac(\alpha-\beta)(2)) =-\frac(\ alpha^2-\beta^2)(2)\cdot(1)\cdot(1) =\frac(\beta^2-\alpha^2)(2). $$

Відповідь: $\lim_(x\to(0))\frac(\cos(\alpha(x))-\cos(\beta(x)))(x^2)=\frac(\beta^2-\ alpha^2) (2) $.

Приклад №8

Знайти межу $\lim_(x\to(0))\frac(\tg(x)-\sin(x))(x^3)$.

Оскільки $\lim_(x\to(0))(\tg(x)-\sin(x))=0$ (нагадаю, що $\sin(0)=\tg(0)=0$) і $\lim_(x\to(0))x^3=0$, то тут ми маємо справу з невизначеністю виду $\frac(0)(0)$. Розкриємо її так:

$$ \lim_(x\to(0))\frac(\tg(x)-\sin(x))(x^3)=\left|\frac(0)(0)\right| =\lim_(x\to(0))\frac(\frac(\sin(x))(\cos(x))-\sin(x))(x^3) =\lim_(x\to( 0))\frac(\sin(x)\cdot\left(\frac(1)(\cos(x))-1\right))(x^3) =\lim_(x\to(0)) \frac(\sin(x)\cdot\left(1-\cos(x)\right))(x^3\cdot\cos(x))=\\ =\lim_(x\to(0)) \frac(\sin(x)\cdot(2)\sin^2\frac(x)(2))(x^3\cdot\cos(x)) =\frac(1)(2)\cdot\ lim_(x\to(0))\left(\frac(\sin(x))(x)\cdot\left(\frac(\sin\frac(x)(2))(\frac(x)( 2))\right)^2\cdot\frac(1)(\cos(x))\right) =\frac(1)(2)\cdot(1)\cdot(1^2)\cdot(1 ) = frac(1)(2). $$

Відповідь: $\lim_(x\to(0))\frac(\tg(x)-\sin(x))(x^3)=\frac(1)(2)$.

Приклад №9

Знайти межу $\lim_(x\to(3))\frac(1-\cos(x-3))((x-3)\tg\frac(x-3)(2))$.

Оскільки $\lim_(x\to(3))(1-\cos(x-3))=0$ і $\lim_(x\to(3))(x-3)\tg\frac(x -3) (2) = 0 $, то є невизначеність виду $ \ frac (0) (0) $. Перед тим, як переходити до її розкриття, зручно зробити заміну змінною таким чином, щоб нова змінна прямувала до нуля (зверніть увагу, що у формулах змінна $\alpha\to 0$). Найпростіше ввести змінну $t=x-3$. Однак задля зручності подальших перетворень (цю вигоду можна помітити під час наведеного нижче рішення) варто зробити таку заміну: $t=\frac(x-3)(2)$. Зазначу, що обидві заміни застосовні в даному випадку, просто друга заміна дозволить менше працювати з дробами. Оскільки $x\to(3)$, то $t\to(0)$.

$$ \lim_(x\to(3))\frac(1-\cos(x-3))((x-3)\tg\frac(x-3)(2))=\left|\frac (0)(0)\right| =\left|\begin(aligned)&t=\frac(x-3)(2);\&t\to(0)\end(aligned)\right| =\lim_(t\to(0))\frac(1-\cos(2t))(2t\cdot\tg(t)) =\lim_(t\to(0))\frac(2\sin^ 2t)(2t\cdot\tg(t)) =\lim_(t\to(0))\frac(\sin^2t)(t\cdot\tg(t))=\\ =\lim_(t\ to(0))\frac(\sin^2t)(t\cdot\frac(\sin(t))(\cos(t))) =\lim_(t\to(0))\frac(\sin (t)\cos(t))(t) =\lim_(t\to(0))\left(\frac(\sin(t))(t)\cdot\cos(t)\right) =\ lim_(t\to(0))\frac(\sin(t))(t)\cdot\lim_(t\to(0))\cos(t) =1\cdot(1) =1. $$

Відповідь: $\lim_(x\to(3))\frac(1-\cos(x-3))((x-3)\tg\frac(x-3)(2))=1$.

Приклад №10

Знайти межу $\lim_(x\to\frac(\pi)(2))\frac(1-\sin(x))(\left(\frac(\pi)(2)-x\right)^2 ) $.

Знову маємо справу з невизначеністю $\frac(0)(0)$. Перед тим, як переходити до її розкриття, зручно зробити заміну змінною таким чином, щоб нова змінна прямувала до нуля (зверніть увагу, що у формулах змінна $\alpha\to(0)$). Найпростіше ввести змінну $t=\frac(\pi)(2)-x$. Оскільки $x\to\frac(\pi)(2)$, то $t\to(0)$:

$$ \lim_(x\to\frac(\pi)(2))\frac(1-\sin(x))(\left(\frac(\pi)(2)-x\right)^2) =\left|\frac(0)(0)\right| =\left|\begin(aligned)&t=\frac(\pi)(2)-x;\&t\to(0)\end(aligned)\right| =\lim_(t\to(0))\frac(1-\sin\left(\frac(\pi)(2)-t\right))(t^2) =\lim_(t\to(0) ))\frac(1-\cos(t))(t^2)=\\ =\lim_(t\to(0))\frac(2\sin^2\frac(t)(2))( t^2) =2\lim_(t\to(0))\frac(\sin^2\frac(t)(2))(t^2) =2\lim_(t\to(0))\ frac(\sin^2\frac(t)(2))(\frac(t^2)(4)\cdot(4)) =\frac(1)(2)\cdot\lim_(t\to( 0))\left(\frac(\sin\frac(t)(2))(\frac(t)(2))\right)^2 =\frac(1)(2)\cdot(1^2 ) = frac(1)(2). $$

Відповідь: $\lim_(x\to\frac(\pi)(2))\frac(1-\sin(x))(\left(\frac(\pi)(2)-x\right)^2) = frac (1) (2) $.

Приклад №11

Знайти межі $\lim_(x\to\frac(\pi)(2))\frac(1-\sin(x))(\cos^2x)$, $\lim_(x\to\frac(2\) pi)(3))\frac(\tg(x)+\sqrt(3))(2\cos(x)+1)$.

У цьому випадку нам не доведеться використовувати першу чудову межу. Зверніть увагу: як у першому, так і в другому межах присутні лише тригонометричні функції та числа. Найчастіше в таких прикладах вдається спростити вираз, розташоване під знаком межі. При цьому після згаданого спрощення та скорочення деяких співмножників невизначеність зникає. Я навів цей приклад лише з однією метою: показати, що наявність тригонометричних функцій під знаком межі зовсім не обов'язково означає застосування першої чудової межі.

Оскільки $\lim_(x\to\frac(\pi)(2))(1-\sin(x))=0$ (нагадаю, що $\sin\frac(\pi)(2)=1$ ) і $\lim_(x\to\frac(\pi)(2))\cos^2x=0$ (нагадаю, що $\cos\frac(\pi)(2)=0$), то ми маємо справу з невизначеністю виду $ frac (0) (0) $. Однак це зовсім не означає, що нам потрібно використовувати першу чудову межу. Для розкриття невизначеності досить врахувати, що $\cos^2x=1-\sin^2x$:

$$ \lim_(x\to\frac(\pi)(2))\frac(1-\sin(x))(\cos^2x) =\left|\frac(0)(0)\right| =\lim_(x\to\frac(\pi)(2))\frac(1-\sin(x))(1-\sin^2x) =\lim_(x\to\frac(\pi)( 2))\frac(1-\sin(x))((1-\sin(x))(1+\sin(x))) =\lim_(x\to\frac(\pi)(2) )\frac(1)(1+\sin(x)) = frac(1)(1+1) = frac(1)(2). $$

Аналогічний спосіб рішення є й у ґраті Демидовича (№475). Що ж до другої межі, те як і попередніх прикладах цього розділу, ми маємо невизначеність виду $\frac(0)(0)$. Чому вона виникає? Вона виникає тому, що $ \ tg \ frac (2 \ pi) (3) = - \ sqrt (3) $ і $ 2 \ cos \ frac (2 \ pi) (3) = -1 $. Використовуємо ці значення з метою перетворення виразів у чисельнику та у знаменнику. Мета наших дій: записати суму в чисельнику та знаменнику у вигляді твору. До речі, часто в межах аналогічного виду зручна заміна змінної, зроблена з таким розрахунком, щоб нова змінна прямувала до нуля (див., наприклад, приклади №9 або №10 на цій сторінці). Однак у даному прикладі в заміні сенсу немає, хоча за бажання заміну змінної $t=x-\frac(2\pi)(3)$ нескладно здійснити.

$$ \lim_(x\to\frac(2\pi)(3))\frac(\tg(x)+\sqrt(3))(2\cos(x)+1) =\lim_(x\ to\frac(2\pi)(3))\frac(\tg(x)+\sqrt(3))(2\cdot\left(\cos(x)+\frac(1)(2)\right )) =\lim_(x\to\frac(2\pi)(3))\frac(\tg(x)-\tg\frac(2\pi)(3))(2\cdot\left(\) cos(x)-\cos\frac(2\pi)(3)\right))=\\ =\lim_(x\to\frac(2\pi)(3))\frac(\frac(\sin) \left(x-\frac(2\pi)(3)\right))(\cos(x)\cos\frac(2\pi)(3)))(-4\sin\frac(x+\frac) (2\pi)(3))(2)\sin\frac(x-\frac(2\pi)(3))(2)) =\lim_(x\to\frac(2\pi)(3 ))\frac(\sin\left(x-\frac(2\pi)(3)\right))(-4\sin\frac(x+\frac(2\pi)(3))(2)\ sin\frac(x-\frac(2\pi)(3))(2)\cos(x)\cos\frac(2\pi)(3)) =\\ =\lim_(x\to\frac (2\pi)(3))\frac(2\sin\frac(x-\frac(2\pi)(3))(2)\cos\frac(x-frac(2\pi)(3) ))(2))(-4\sin\frac(x+\frac(2\pi)(3))(2)\sin\frac(x-\frac(2\pi)(3))(2) \cos(x)\cos\frac(2\pi)(3)) =\lim_(x\to\frac(2\pi)(3))\frac(\cos\frac(x-\frac(2) \pi)(3))(2))(-2\sin\frac(x+\frac(2\pi)(3))(2)\cos(x)\cos\frac(2\pi)(3 ))=\\ =\frac(1)(-2\cdot\frac(\sqrt(3))(2)\cdot\left(-\frac(1)(2)\right)\cdot\left( -\frac(1)(2)\right)) =-\frac(4)(\sqrt(3)). $$

Як бачите, нам не довелося застосовувати першу чудову межу. Звичайно, за бажання це можна зробити (див. примітку нижче), але потреби в цьому немає.

Яким буде рішення з використанням першої чудової межі? показати\сховати

При використанні першої чудової межі отримаємо:

$$ \lim_(x\to\frac(2\pi)(3))\frac(\sin\left(x-\frac(2\pi)(3)\right))(-4\sin\frac (x+\frac(2\pi)(3))(2)\sin\frac(x-frac(2\pi)(3))(2)\cos(x)\cos\frac(2\pi )(3))=\\ =\lim_(x\to\frac(2\pi)(3))\left(\frac(\sin\left(x-frac(2\pi)(3)\) right))(x-\frac(2\pi)(3))\cdot\frac(1)(\frac(\sin\frac(x-frac(2\pi)(3))(2)) (\frac(x-\frac(2\pi)(3))(2)))\cdot\frac(1)(-2\sin\frac(x+\frac(2\pi)(3))( 2)\cos(x)\cos\frac(2\pi)(3))\right) =1cdot(1)cdotfrac(1)(-2cdotfrac(sqrt(3)) )(2)\cdot\left(-\frac(1)(2)\right)\cdot\left(-\frac(1)(2)\right)) =-\frac(4)(\sqrt( 3)). $$

Відповідь: $\lim_(x\to\frac(\pi)(2))\frac(1-\sin(x))(\cos^2x)=\frac(1)(2)$, $\lim_( x\to\frac(2\pi)(3))\frac(\tg(x)+\sqrt(3))(2\cos(x)+1)=-\frac(4)(\sqrt( 3)) $.