Обчислення логарифмів, приклади, рішення. Логарифмічна одиниця та логарифмічний нуль

Логарифм із основою a- це функція y (x) = log a x, обернена до показової функції з основою a: x (y) = a y.

Десятковий логарифм- це логарифм на основі числа 10 : lg x ≡ log 10 x.

Натуральний логарифм- це логарифм на підставі числа e: ln x ≡ log e x.

2,718281828459045... ;
.

Графік логарифма виходить із графіка показової функції дзеркальним відображенням щодо прямої y = x. Зліва зображені графіки функції y(x) = log a x для чотирьох значеньоснови логарифму 2 : a = 8 : a = 1/2 , a = 1/8 та a = 1 . 0 < a < 1 На графіку видно, що за a >

логарифм монотонно зростає. Зі збільшенням x зростання суттєво уповільнюється. При

логарифм монотонно зменшується.

Властивості логарифму

Область визначення, безліч значень, зростання, спадання 0 < x < + ∞ 0 < x < + ∞
Логарифм є монотонною функцією, тому екстремумів немає. Основні властивості логарифму представлені у таблиці. - ∞ < y < + ∞ - ∞ < y < + ∞
Область визначення Область значень Монотонність
монотонно зростає 0 монотонно зменшується 1 монотонно зменшується 1
Нулі, y = 0 x = x =
+ ∞ - ∞
- ∞ + ∞

Точки перетину з віссю ординат, x =


ні Приватні значенняЛогарифм на підставі 10 називається

десятковим логарифмом і позначається так:Логарифм на підставі e:

називається

натуральним логарифмом

Основні формули логарифмів

Властивості логарифму, що випливають із визначення зворотної функції:

Основна властивість логарифмів та його наслідкиФормула заміни основи

Логарифмування- це математична операція взяття логарифму. При логарифмуванні, твори співмножників перетворюються на суми членів.

Потенціювання

- це математична операція, зворотна логарифмування. При потенціювання задана основа зводиться у ступінь виразу, над яким виконується потенціювання. При цьому суми членів перетворюються на твори співмножників.

Доказ основних формул логарифмів
.
Формули, пов'язані з логарифмами випливають із формул для показових функцій та визначення зворотної функції.
.
Розглянемо властивість показової функції
:
.

Тоді
;
.
Застосуємо властивість показової функції

Доведемо формулу заміни основи.

Вважаючи c = b маємо:

Зворотня функція

Зворотня функція

Зворотною для логарифму на основі a є показова функція з показником ступеня a .

Якщо то
.
Похідна логарифма
.
Похідна логарифма від модуля x:

Для знаходження похідної логарифму його потрібно призвести до основи і позначається так:.
;
.

Інтеграл

Інтеграл від логарифму обчислюється інтегруванням частинами: .
Отже,

Вирази через комплексні числа

Розглянемо функцію комплексного числа z:
.
Виразимо комплексне число zчерез модуль rта аргумент φ :
.
Тоді, використовуючи властивості логарифму, маємо:
.
Або

Проте, аргумент φ визначено не однозначно. Якщо покласти
де n - ціле,
то буде одним і тим же числом за різних n.

Тому логарифм, як функція від комплексного змінного, не є однозначною функцією.

Розкладання в статечний ряд

При має місце розкладання:

Використана література:
І.М. Бронштейн, К.А. Семендяєв, Довідник з математики для інженерів та учнів втузів, «Лань», 2009.

Як відомо, при перемноженні виразів зі ступенями їх показники завжди складаються (a b * a c = a b + c). Цей математичний закон був виведений Архімедом, а згодом, у VIII столітті, математик Вірасен створив таблицю цілих показників. Саме вони стали для подальшого відкриття логарифмів. Приклади використання цієї функції можна зустріти скрізь, де потрібно спростити громіздке множення на просте додавання. Якщо ви витратите 10 хвилин на прочитання цієї статті, ми вам пояснимо, що таке логарифми і як з ними працювати. Простою та доступною мовою.

Визначення в математиці

Логарифмом називається вираз наступного виду: log a b=c, тобто логарифмом будь-якого невід'ємного числа (тобто будь-якого позитивного) "b" за його основою "a" вважається ступінь "c", в яку необхідно звести основу "a", щоб у результаті отримати значення "b". Розберемо логарифм на прикладах, скажімо, є вираз log 2 8. Як знайти відповідь? Дуже просто, потрібно знайти такий ступінь, щоб з 2 до ступеня отримати 8. Зробивши в умі деякі розрахунки, отримуємо число 3! І вірно, адже 2 в ступені 3 відповідає у відповідь число 8.

Різновиди логарифмів

Для багатьох учнів і студентів ця тема видається складною і незрозумілою, проте насправді логарифми не такі страшні, головне - зрозуміти загальний їхній зміст і запам'ятати їхню власність і деякі правила. Існує три окремі види логарифмічних виразів:

  1. Натуральний логарифм ln a де основою є число Ейлера (e = 2,7).
  2. Десятковий a де підставою служить число 10.
  3. Логарифм будь-якого числа b на підставі a>1.

Кожен з них вирішується стандартним способом, що включає спрощення, скорочення і подальше приведення до одного логарифму за допомогою логарифмічних теорем. Для отримання вірних значень логарифмів слід запам'ятати їх властивості та черговість дій за їх рішення.

Правила та деякі обмеження

У математиці існує кілька правил-обмежень, які приймаються як аксіома, тобто не підлягають обговоренню та є істиною. Наприклад, не можна числа ділити на нуль, а ще неможливо отримати корінь парного ступеня з негативних чисел. Логарифми також мають свої правила, дотримуючись яких можна легко навчитися працювати навіть з довгими і ємними логарифмічними виразами:

  • основа "a" завжди має бути більшою за нуль, і при цьому не бути рівним 1, інакше вираз втратить свій зміст, адже "1" і "0" у будь-якій мірі завжди рівні своїм значенням;
  • якщо а > 0, то і а b > 0, виходить, що і "з" має бути більшим за нуль.

Як вирішувати логарифми?

Наприклад, дано завдання знайти відповідь рівняння 10 х = 100. Це дуже легко, потрібно підібрати такий ступінь, звівши до якого число десять ми отримаємо 100. Це, звичайно ж, 10 2 =100.

А тепер давайте уявимо цей вислів у вигляді логарифмічного. Отримаємо log 10 100 = 2. При вирішенні логарифмів всі дії практично сходяться до того, щоб знайти той ступінь, в який необхідно ввести основу логарифму, щоб отримати задане число.

Для безпомилкового визначення значення невідомого ступеня необхідно навчитися працювати з таблицею ступенів. Виглядає вона так:

Як бачите, деякі показники ступеня можна вгадати інтуїтивно, якщо є технічний склад розуму та знання таблиці множення. Однак для великих значень знадобиться таблиця ступенів. Нею можуть користуватися навіть ті, хто зовсім нічого не тямить у складних математичних темах. У лівому стовпці вказані числа (основа a), верхній ряд чисел - це значення ступеня c, яку зводиться число a. На перетині в осередках визначено значення чисел, що є відповіддю (a c = b). Візьмемо, наприклад, саму першу комірку з числом 10 і зведемо її в квадрат, отримаємо значення 100, яке вказано на перетині двох наших осередків. Все так просто і легко, що зрозуміє навіть справжнісінький гуманітарій!

Рівняння та нерівності

Виходить, що за певних умов показник ступеня – це і є логарифм. Отже, будь-які математичні чисельні вирази можна записати як логарифмічного рівності. Наприклад, 3 4 =81 можна записати у вигляді логарифму числа 81 на підставі 3, що дорівнює чотирьом (log 3 81 = 4). Для негативних ступенів правила такі самі: 2 -5 = 1/32 запишемо як логарифма, отримаємо log 2 (1/32) = -5. Однією з найцікавіших розділів математики є тема "логарифми". Приклади та розв'язання рівнянь ми розглянемо трохи нижче, відразу після вивчення їх властивостей. А зараз давайте розберемо, як виглядають нерівності та як їх відрізнити від рівнянь.

Дано вираз наступного виду: log 2 (x-1) > 3 - воно є логарифмічною нерівністю, тому що невідоме значення "х" знаходиться під знаком логарифму. А також у виразі порівнюються дві величини: логарифм шуканого числа на підставі два більше, ніж число три.

Найголовніша відмінність між логарифмічними рівняннями і нерівностями полягає в тому, що рівняння з логарифмами (приклад - логарифм 2 x = √9) мають на увазі у відповіді одне або кілька певних числових значень, тоді як при розв'язанні нерівності визначаються як область допустимих значень розрив цієї функції. Як наслідок, у відповіді виходить не проста безліч окремих чисел як у відповіді рівняння, а безперервний ряд або набір чисел.

Основні теореми про логарифми

При вирішенні примітивних завдань знаходження значень логарифма, його властивості можна і не знати. Однак коли мова заходить про логарифмічні рівняння або нерівності, в першу чергу необхідно чітко розуміти і застосовувати на практиці всі основні властивості логарифмів. З прикладами рівнянь ми познайомимося пізніше, давайте спочатку розберемо кожну властивість докладніше.

  1. Основне тотожність має такий вигляд: а logaB =B. Воно застосовується лише за умови, коли а більше 0, не дорівнює одиниці і B більше за нуль.
  2. Логарифм твору можна подати в наступній формулі: log d (s 1 * s 2) = log d s 1 + log d s 2. При цьому обов'язковою умовою є: d, s 1 і s 2 > 0; а≠1. Можна навести доказ цієї формули логарифмів, з прикладами і рішенням. Нехай log a s 1 = f 1 і log a s 2 = f 2 тоді а f1 = s 1 , a f2 = s 2. Отримуємо, що s 1 *s 2 = a f1 *a f2 = a f1+f2 (властивості ступенів ), а далі за визначенням: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, що і потрібно довести.
  3. Логарифм приватного має такий вигляд: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. Теорема у вигляді формули набуває наступного вигляду: log a q b n = n/q log a b.

Називається ця формула "властивістю ступеня логарифму". Вона нагадує властивості звичайних ступенів, і не дивно, адже вся математика тримається на закономірних постулатах. Погляньмо на доказ.

Нехай log a b = t, виходить a t = b. Якщо звести обидві частини до ступеня m: a tn = b n ;

але оскільки a tn = (a q) nt / q = b n, отже log a q b n = (n * t) / t, тоді log a q b n = n / q log a b. Теорему доведено.

Приклади завдань та нерівностей

Найпоширеніші типи завдань на тему логарифмів – приклади рівнянь та нерівностей. Вони зустрічаються практично у всіх задачниках, а також входять до обов'язкової частини іспитів з математики. Для вступу до університету чи складання вступних випробувань з математики необхідно знати, як правильно вирішувати подібні завдання.

На жаль, єдиного плану чи схеми з вирішення та визначення невідомого значення логарифму не існує, проте до кожної математичної нерівності чи логарифмічного рівняння можна застосувати певні правила. Насамперед слід з'ясувати, чи можна спростити вираз чи привести до загального вигляду. Спрощувати довгі логарифмічні вирази можна, якщо правильно використовувати їх властивості. Давайте скоріше з ними познайомимося.

При вирішенні ж логарифмічних рівнянь слід визначити, який перед нами вид логарифму: приклад виразу може містити натуральний логарифм або десятковий.

Ось приклади ln100, ln1026. Їх рішення зводиться до того, що потрібно визначити той ступінь, в якому основа 10 дорівнюватиме 100 і 1026 відповідно. Для рішень натуральних логарифмів потрібно застосувати логарифмічні тотожності або їх властивості. Давайте на прикладах розглянемо розв'язання логарифмічних завдань різного типу.

Як використовувати формули логарифмів: з прикладами та рішеннями

Отже, розглянемо приклади використання основних теорем про логарифми.

  1. Властивість логарифму твору можна застосовувати в завданнях, де необхідно розкласти велике значення числа b більш прості співмножники. Наприклад, log 2 4 + log 2 128 = log 2 (4 * 128) = log 2 512. Відповідь дорівнює 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - як бачите, застосовуючи четверту властивість ступеня логарифму, вдалося вирішити на перший погляд складне і нерозв'язне вираз. Необхідно лише розкласти основу на множники і потім винести значення ступеня зі знака логарифму.

Завдання з ЄДІ

Логарифми часто зустрічаються на вступних іспитах, особливо багато логарифмічних завдань у ЄДІ (державний іспит для всіх випускників шкіл). Зазвичай ці завдання присутні у частині А (найлегша тестова частина іспиту), а й у частини З (найскладніші і об'ємні завдання). Іспит передбачає точне та ідеальне знання теми "Натуральні логарифми".

Приклади та розв'язання завдань взяті з офіційних варіантів ЄДІ. Давайте подивимося, як вирішуються такі завдання.

Дано log 2 (2x-1) = 4. Рішення:
перепишемо вираз, трохи спростивши його log 2 (2x-1) = 2 2 , за визначенням логарифму отримаємо, що 2x-1 = 2 4 , отже 2x = 17; x = 8,5.

  • Всі логарифми найкраще приводити до однієї підстави, щоб рішення не було громіздким та заплутаним.
  • Всі вирази, що стоять під знаком логарифму, вказуються як позитивні, тому при винесенні множником показника ступеня виразу, який стоїть під знаком логарифму і як його підстава, вираз, що залишається під логарифмом, має бути позитивним.

Логарифми, як і будь-які числа, можна складати, віднімати та всіляко перетворювати. Але оскільки логарифми — це не зовсім звичайні числа, тут є свої правила, які називаються основними властивостями.

Ці правила обов'язково треба знати - без них не вирішується жодне серйозне логарифмічне завдання. До того ж їх зовсім небагато — все можна вивчити за один день. Отже, почнемо.

Додавання та віднімання логарифмів

Розглянемо два логарифми з однаковими підставами: log a xта log a y. Тоді їх можна складати і віднімати, причому:

  1. log a x+ log a y= log a (x · y);
  2. log a x− log a y= log a (x : y).

Отже, сума логарифмів дорівнює логарифму твору, а різниця - приватного логарифму. Зверніть увагу: ключовий момент тут однакові підстави. Якщо основи різні, ці правила не працюють!

Ці формули допоможуть обчислити логарифмічний вираз навіть тоді, коли окремі його частини не рахуються (див. урок «Що таке логарифм»). Погляньте на приклади і переконайтеся:

Log 6 4 + log 6 9.

Оскільки підстави у логарифмів однакові, використовуємо формулу суми:
log 6 4 + log 6 9 = log 6 (4 · 9) = log 6 36 = 2.

Завдання. Знайдіть значення виразу: log 2 48 − log 2 3.

Підстави однакові, використовуємо формулу різниці:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Завдання. Знайдіть значення виразу: log 3 135 − log 3 5.

Знову підстави однакові, тому маємо:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Як бачите, вихідні вирази складені з поганих логарифмів, які окремо не вважаються. Але після перетворень виходять цілком нормальні числа. На цьому факті збудовано багато контрольних робіт. Так що контрольні — подібні висловлювання на повному серйозі (іноді практично без змін) пропонуються на ЄДІ.

Винесення показника ступеня з логарифму

Тепер трохи ускладнимо завдання. Що, якщо у підставі чи аргументі логарифма стоїть ступінь? Тоді показник цього ступеня можна винести за знак логарифму за такими правилами:

Неважко помітити, що останнє правило слідує їх перших двох. Але краще його все ж таки пам'ятати — у деяких випадках це значно скоротить обсяг обчислень.

Зрозуміло, всі ці правила мають сенс за дотримання ОДЗ логарифму: a > 0, a ≠ 1, x> 0. І ще: вчитеся застосовувати всі формули як зліва направо, а й навпаки, тобто. можна вносити числа, що стоять перед знаком логарифму, до самого логарифму. Саме це найчастіше й потрібне.

Завдання. Знайдіть значення виразу: log 7 49 6 .

Позбавимося ступеня в аргументі за першою формулою:
log 7 49 6 = 6 · log 7 49 = 6 · 2 = 12

Завдання. Знайдіть значення виразу:

[Підпис до малюнка]

Зауважимо, що у знаменнику стоїть логарифм, основа та аргумент якого є точними ступенями: 16 = 2 4 ; 49 = 7 2 . Маємо:

[Підпис до малюнка]

Думаю, до останнього прикладу потрібні пояснення. Куди зникли логарифми? До останнього моменту ми працюємо лише зі знаменником. Представили підставу і аргумент логарифму, що там стоїть, у вигляді ступенів і винесли показники — отримали «триповерховий» дріб.

Тепер подивимося на основний дріб. У чисельнику та знаменнику стоїть те саме число: log 2 7. Оскільки log 2 7 ≠ 0, можемо скоротити дріб — у знаменнику залишиться 2/4. За правилами арифметики, четвірку можна перенести в чисельник, що було зроблено. В результаті вийшла відповідь: 2.

Перехід до нової основи

Говорячи про правила складання та віднімання логарифмів, я спеціально підкреслював, що вони працюють лише за однакових підстав. А що, коли підстави різні? Що, якщо вони не є точними ступенями того самого числа?

На допомогу приходять формули переходу до нової основи. Сформулюємо їх як теореми:

Нехай дано логарифм log a x. Тоді для будь-якого числа cтакого, що c> 0 та c≠ 1, вірна рівність:

[Підпис до малюнка]

Зокрема, якщо покласти c = x, Отримаємо:

[Підпис до малюнка]

З другої формули випливає, що можна міняти місцями підставу та аргумент логарифму, але при цьому весь вираз «перевертається», тобто основний аргумент. логарифм виявляється у знаменнику.

Ці формули рідко зустрічається у звичайних числових виразах. Оцінити, наскільки вони зручні, можна лише при розв'язанні логарифмічних рівнянь та нерівностей.

Втім, існують завдання, які взагалі не вирішуються інакше як переходом до нової основи. Розглянемо пару таких:

Завдання. Знайдіть значення виразу: log 5 16 · log 2 25.

Зауважимо, що в аргументах обох логарифмів стоять точні ступені. Винесемо показники: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

А тепер «перевернемо» другий логарифм:

[Підпис до малюнка]

Оскільки від перестановки множників твір не змінюється, ми спокійно перемножили четвірку та двійку, а потім розібралися з логарифмами.

Завдання. Знайдіть значення виразу: log 9 100 · lg 3.

Підстава та аргумент першого логарифму — точні ступені. Запишемо це і позбудемося показників:

[Підпис до малюнка]

Тепер позбавимося десяткового логарифму, перейшовши до нової основи:

[Підпис до малюнка]

Основне логарифмічне тотожність

Часто в процесі рішення потрібно представити число як логарифм на задану основу. У цьому випадку нам допоможуть формули:

У першому випадку число nстає показником ступеня, що стоїть у аргументі. Число nможе бути абсолютно будь-яким, адже це просто значення логарифму.

Друга формула – це фактично перефразоване визначення. Вона так і називається: основна логарифмічна тотожність.

Справді, що буде, якщо число bзвести в такий ступінь, що число bу цій мірі дає число a? Правильно: вийде це саме число a. Уважно прочитайте цей абзац ще раз — багато хто на ньому «зависає».

Подібно до формул переходу до нової основи, основна логарифмічна тотожність іноді буває єдино можливим рішенням.

Завдання. Знайдіть значення виразу:

[Підпис до малюнка]

Зауважимо, що log 25 64 = log 5 8 — просто винесли квадрат із підстави та аргументу логарифму. Враховуючи правила множення ступенів з однаковою основою, отримуємо:

[Підпис до малюнка]

Якщо хтось не в курсі, це було справжнє завдання з ЄДІ:)

Логарифмічна одиниця та логарифмічний нуль

Насамкінець наведу дві тотожності, які складно назвати властивостями — швидше, це наслідки з визначення логарифму. Вони постійно зустрічаються у завданнях і, що дивно, створюють проблеми навіть для «просунутих» учнів.

  1. log a a= 1 – це логарифмічна одиниця. Запам'ятайте раз і назавжди: логарифм з будь-якої основи aвід цього підстави дорівнює одиниці.
  2. log a 1 = 0 – це логарифмічний нуль. Заснування aможе бути будь-яким, але якщо в аргументі стоїть одиниця — логарифм дорівнює нулю! Тому що a 0 = 1 - це прямий наслідок визначення.

Ось і всі властивості. Обов'язково потренуйтеся застосовувати їх на практиці! Завантажте шпаргалку на початку уроку, роздрукуйте її і вирішуйте завдання.

\(a^(b)=c\) \(\Leftrightarrow\) \(\log_(a)(c)=b\)

Пояснимо простіше. Наприклад, \(\log_(2)(8)\) дорівнює ступеня, в яку треба звести \(2\), щоб отримати \(8\). Звідси відомо, що (log_(2)(8)=3).

Приклади:

\(\log_(5)(25)=2\)

т.к. \(5^(2)=25\)

\(\log_(3)(81)=4\)

т.к. \ (3 ^ (4) = 81 \)

\(\log_(2)\)\(\frac(1)(32)\) \(=-5\)

т.к. \(2^(-5)=\)\(\frac(1)(32)\)

Аргумент та основа логарифму

Будь-який логарифм має таку «анатомію»:

Аргумент логарифму зазвичай пишеться з його рівні, а основа - підрядковим шрифтом ближче до знаку логарифму. А читається цей запис так: «логарифм двадцяти п'яти на підставі п'ять».

Як визначити логарифм?

Щоб обчислити логарифм – потрібно відповісти на запитання: в який ступінь слід звести основу, щоб отримати аргумент?

Наприклад, обчисліть логарифм: а) \(\log_(4)(16)\) б) \(\log_(3)\)\(\frac(1)(3)\) в) \(\log_(\sqrt (5))(1)\) г) \(\log_(\sqrt(7))(\sqrt(7))\) д) \(\log_(3)(\sqrt(3))\)

а) В який ступінь треба звести (4), щоб отримати (16)? Вочевидь у другу. Тому:

\(\log_(4)(16)=2\)

\(\log_(3)\)\(\frac(1)(3)\) \(=-1\)

в) У який ступінь треба звести (sqrt(5)), щоб отримати (1)? А який рівень робить будь-яке число одиницею? Нуль, звичайно!

\(\log_(\sqrt(5))(1)=0\)

г) В який ступінь треба звести \(\sqrt(7)\), щоб отримати \(\sqrt(7)\)? У першу - будь-яке число в першому ступені дорівнює самому собі.

\(\log_(\sqrt(7))(\sqrt(7))=1\)

д) В який ступінь треба звести (3), щоб отримати (sqrt (3))? З ми знаємо, що - це дробовий ступінь, і значить квадратний корінь - це ступінь \(\frac(1)(2)\).

\(\log_(3)(\sqrt(3))=\)\(\frac(1)(2)\)

приклад : Обчислити логарифм \(\log_(4\sqrt(2))(8)\)

Рішення :

\(\log_(4\sqrt(2))(8)=x\)

Нам треба знайти значення логарифму, позначимо його за ікс. Тепер скористаємося визначенням логарифму:
\(\log_(a)(c)=b\) \(\Leftrightarrow\) \(a^(b)=c\)

\((4\sqrt(2))^(x)=8\)

Що пов'язує \(4\sqrt(2)\) і \(8\)? Двійка, тому що і те, і інше число можна уявити двійки:
\(4=2^(2)\) \(\sqrt(2)=2^(\frac(1)(2))\) \(8=2^(3)\)

\(((2^(2)\cdot2^(\frac(1)(2))))^(x)=2^(3)\)

Зліва скористаємось властивостями ступеня: \(a^(m)\cdot a^(n)=a^(m+n)\) та \((a^(m))^(n)=a^(m\cdot n)\)

\(2^(\frac(5)(2)x)=2^(3)\)

Підстави рівні, переходимо до рівності показників

\(\frac(5x)(2)\) \(=3\)


Помножимо обидві частини рівняння на \(\frac(2)(5)\)


Корінь, що вийшов, і є значення логарифму

Відповідь : \(\log_(4\sqrt(2))(8)=1,2\)

Навіщо вигадали логарифм?

Щоб це зрозуміти, розв'яжемо рівняння: \(3^(x)=9\). Просто підберіть \(x\), щоб рівність спрацювала. Звичайно, (x = 2).

А тепер розв'яжіть рівняння: \(3^(x)=8\).Чому дорівнює ікс? Ось у тому й справа.

Найдогадливіші скажуть: «ікс трохи менше двох». А як точно записати це число? Для відповіді це питання і придумали логарифм. Завдяки йому відповідь тут можна записати як \(x=\log_(3)(8)\).

Хочу наголосити, що \(\log_(3)(8)\), як і будь-який логарифм - це просто число. Так, виглядає незвично, зате коротко. Тому що, якби ми захотіли записати його у вигляді десяткового дробу, воно виглядало б ось так: \(1,892789260714.....\)

приклад : Розв'яжіть рівняння \(4^(5x-4)=10\)

Рішення :

\(4^(5x-4)=10\)

\(4^(5x-4)\) і \(10\) жодної підстави не привести. Значить, тут не обійтися без логарифму.

Скористаємося визначенням логарифму:
\(a^(b)=c\) \(\Leftrightarrow\) \(\log_(a)(c)=b\)

\(\log_(4)(10)=5x-4\)

Дзеркально перевернемо рівняння, щоб ікс був ліворуч

\(5x-4=\log_(4)(10)\)

Перед нами . Перенесемо (4) праворуч.

І не лякайтеся логарифму, ставтеся до нього як до звичайного числа.

\(5x=\log_(4)(10)+4\)

Поділимо рівняння на 5

\(x=\)\(\frac(\log_(4)(10)+4)(5)\)


Ось наш корінь. Так, виглядає незвично, але відповіді не обирають.

Відповідь : \(\frac(\log_(4)(10)+4)(5)\)

Десятковий та натуральний логарифми

Як зазначено у визначенні логарифму, його основою може бути будь-яке позитивне число, крім одиниці ((a>0, a\neq1)). І серед усіх можливих підстав є два такі часто, що для логарифмів з ними придумали особливий короткий запис:

Натуральний логарифм: логарифм, у якого основа - число Ейлера (e) (рівне приблизно (2,7182818 ...)), і записується такий логарифм як (ln (a)).

Тобто, \(\ln(a)\) це те саме, що і \(\log_(e)(a)\)

Десятковий логарифм: логарифм, у якого основа дорівнює 10, записується \(\lg(a)\).

Тобто, \(\lg(a)\) це те саме, що і \(\log_(10)(a)\), Де \(a\) - деяке число.

Основне логарифмічне тотожність

У логарифмів є багато властивостей. Одне з них носить назву «Основна логарифмічна тотожність» і виглядає так:

\(a^(\log_(a)(c))=c\)

Ця властивість випливає безпосередньо з визначення. Подивимося, як саме ця формула з'явилася.

Згадаймо короткий запис визначення логарифму:

якщо \(a^(b)=c\), то \(\log_(a)(c)=b\)

Тобто, \(b\) - це теж саме, що \(\log_(a)(c)\). Тоді ми можемо у формулі \(a^(b)=c\) написати \(\log_(a)(c)\) замість \(b\). Вийшло \(a^(\log_(a)(c))=c\) – основна логарифмічна тотожність.

Інші властивості логарифмів ви можете знайти. З їх допомогою можна спрощувати та обчислювати значення виразів з логарифмами, які «в лоб» порахувати складно.

приклад : Знайдіть значення виразу \(36^(\log_(6)(5))\)

Рішення :

Відповідь : \(25\)

Як записати число у вигляді логарифму?

Як було сказано вище – будь-який логарифм це число. Вірно і зворотне: будь-яке число може бути записане як логарифм. Наприклад, ми знаємо, що \(\log_(2)(4)\) дорівнює двом. Тоді можна замість двійки писати \(\log_(2)(4)\).

Але \(\log_(3)(9)\) теж дорівнює \(2\), значить, також можна записати \(2=\log_(3)(9)\). Аналогічно і з (log_(5)(25)\), і з (log_(9)(81)\), і т.д. Тобто виходить

\(2=\log_(2)(4)=\log_(3)(9)=\log_(4)(16)=\log_(5)(25)=\log_(6)(36)=\ log_(7)(49)...\)

Таким чином, якщо нам потрібно, ми можемо будь-де (хоч у рівнянні, хоч у виразі, хоч у нерівності) записувати двійку як логарифм з будь-якою основою – просто як аргумент пишемо основу в квадраті.

Так само і з трійкою – її можна записати як \(\log_(2)(8)\), або як \(\log_(3)(27)\), або як \(\log_(4)(64) \) ... Тут ми як аргумент пишемо основу в кубі:

\(3=\log_(2)(8)=\log_(3)(27)=\log_(4)(64)=\log_(5)(125)=\log_(6)(216)=\ log_(7)(343)...\)

І з четвіркою:

\(4=\log_(2)(16)=\log_(3)(81)=\log_(4)(256)=\log_(5)(625)=\log_(6)(1296)=\ log_(7)(2401)...\)

І з мінус одиницею:

\(-1=\) \(\log_(2)\)\(\frac(1)(2)\) \(=\) \(\log_(3)\)\(\frac(1)( 3)\) \(=\) \(\log_(4)\)\(\frac(1)(4)\) \(=\) \(\log_(5)\)\(\frac(1) )(5)\) \(=\) \(\log_(6)\)\(\frac(1)(6)\) \(=\) \(\log_(7)\)\(\frac (1)(7)\) \(...\)

І з однієї третьої:

\(\frac(1)(3)\) \(=\log_(2)(\sqrt(2))=\log_(3)(\sqrt(3))=\log_(4)(\sqrt( 4))=\log_(5)(\sqrt(5))=\log_(6)(\sqrt(6))=\log_(7)(\sqrt(7))...\)

Будь-яке число \(a\) може бути представлене як логарифм з основою \(b\): \(a=\log_(b)(b^(a))\)

приклад : Знайдіть значення виразу \(\frac(\log_(2)(14))(1+\log_(2)(7))\)

Рішення :

Відповідь : \(1\)