Дужках множаться числа протилежними. Правило розкриття дужок під час проведення

У цьому відео ми розберемо цілий комплект лінійних рівнянь, які вирішуються по тому самому алгоритму — тому й вони і називаються найпростішими.

Спочатку визначимося: що таке лінійне рівняння і яке з них називати найпростішим?

Лінійне рівняння - таке, в якому є лише одна змінна, причому виключно в першому ступені.

Під найпростішим рівнянням мається на увазі конструкція:

Всі інші лінійні рівняння зводяться до найпростіших за допомогою алгоритму:

  1. Розкрити дужки, якщо вони є;
  2. Перенести доданки, що містять змінну, в один бік від знаку рівності, а доданки без змінної - в іншу;
  3. Навести подібні доданки ліворуч і праворуч від знаку рівності;
  4. Розділити отримане рівняння на коефіцієнт при змінній $x$.

Зрозуміло, що цей алгоритм допомагає не завжди. Справа в тому, що іноді після всіх цих махінацій коефіцієнт при змінній $x$ виявляється нульовим. У цьому випадку можливі два варіанти:

  1. Рівняння взагалі немає рішень. Наприклад, коли виходить щось на кшталт $0\cdot x=8$, тобто. ліворуч стоїть нуль, а праворуч — число, відмінне від нуля. У відео нижче ми розглянемо відразу кілька причин, через які можлива така ситуація.
  2. Рішення – усі числа. Єдиний випадок, коли таке можливе – рівняння звелося до конструкції $0\cdot x=0$. Цілком логічно, що який би $x$ ми підставили, однаково вийде «нуль дорівнює нулю», тобто. правильне числове рівність.

А тепер подивимося, як все це працює на прикладі реальних завдань.

Приклади розв'язування рівнянь

Сьогодні ми займаємось лінійними рівняннями, причому лише найпростішими. Взагалі, під лінійним рівнянням мається на увазі всяка рівність, що містить у собі рівно одну змінну, і вона йде лише в першому ступені.

Вирішуються такі конструкції приблизно однаково:

  1. Насамперед необхідно розкрити дужки, якщо вони є (як у нашому останньому прикладі);
  2. Потім звести такі
  3. Нарешті, усамітнити змінну, тобто. все, що пов'язано зі змінною - доданки, в яких вона міститься - перенести в один бік, а все, що залишиться без неї, перенести в інший бік.

Потім, як правило, потрібно навести подібні з кожної сторони отриманої рівності, а після цього залишиться лише розділити на коефіцієнт при «ікс», і ми отримаємо остаточну відповідь.

Теоретично це виглядає красиво і просто, проте на практиці навіть досвідчені учні старших класів можуть припускатися образливих помилок у досить простих лінійних рівняннях. Зазвичай помилки допускаються або під час розкриття дужок, або за підрахунком «плюсів» і «мінусів».

Крім того, буває так, що лінійне рівняння взагалі не має рішень, або так, що рішенням є вся числова пряма, тобто. будь-яке число. Ці тонкощі ми й розберемо на сьогоднішньому уроці. Але почнемо ми, як ви вже зрозуміли, із найпростіших завдань.

Схема вирішення найпростіших лінійних рівнянь

Для початку давайте ще раз напишу всю схему вирішення найпростіших лінійних рівнянь:

  1. Розкриваємо дужки, якщо вони є.
  2. Усамітнюємо змінні, тобто. все, що містить "ікси" переносимо в один бік, а без "іксів" - в інший.
  3. Наводимо подібні доданки.
  4. Поділяємо все на коефіцієнт при «ікс».

Зрозуміло, ця схема працює не завжди, у ній є певні тонкощі та хитрощі, і зараз ми з ними й познайомимося.

Вирішуємо реальні приклади простих лінійних рівнянь

Завдання №1

На першому кроці від нас потрібно розкрити дужки. Але їх у цьому прикладі немає, тому пропускаємо цей етап. На другому кроці нам потрібно усамітнити змінні. Зверніть увагу: йдеться лише про окремі доданки. Давайте запишемо:

Наводимо подібні доданки ліворуч і праворуч, але тут це вже зроблено. Тому переходимо до четвертого кроку: розділити на коефіцієнт:

\[\frac(6x)(6)=-\frac(72)(6)\]

Ось ми й отримали відповідь.

Завдання №2

У цьому завдання ми можемо спостерігати дужки, тому давайте розкриємо їх:

І ліворуч і праворуч ми бачимо приблизно ту саму конструкцію, але давайте діяти за алгоритмом, тобто. усамітнюємо змінні:

Наведемо такі:

При якому корінні це виконується. Відповідь: за будь-яких. Отже, можна записати, що $x$ - будь-яке число.

Завдання №3

Третє лінійне рівняння вже цікавіше:

\[\left(6-x \right)+\left(12+x \right)-\left(3-2x \right)=15\]

Тут є кілька дужок, проте вони ні на що не множаться, просто перед ними стоять різні знаки. Давайте розкриємо їх:

Виконуємо другий уже відомий нам крок:

\[-x+x+2x=15-6-12+3\]

Порахуємо:

Виконуємо останній крок - ділимо все на коефіцієнт при "ікс":

\[\frac(2x)(x)=\frac(0)(2)\]

Що необхідно пам'ятати при вирішенні лінійних рівнянь

Якщо відволіктися від надто простих завдань, то я хотів би сказати таке:

  • Як я говорив вище, далеко не кожне лінійне рівняння має рішення - іноді коріння просто немає;
  • Навіть якщо коріння є, серед них може затесатися нуль — нічого страшного в цьому немає.

Нуль - таке ж число, як і інші, не варто його дискримінувати або вважати, що якщо у вас вийшов нуль, то ви щось зробили неправильно.

Ще одна особливість пов'язана із розкриттям дужок. Зверніть увагу: коли перед ними стоїть мінус, то ми його прибираємо, однак у дужках знаки міняємо на протилежні. А далі ми можемо розкривати її за стандартними алгоритмами: ми отримаємо те, що бачили у викладках вище.

Розуміння цього простого факту дозволить вам не допускати дурних і образливих помилок у старших класах, коли виконання подібних дій вважається самим собою зрозумілим.

Розв'язання складних лінійних рівнянь

Перейдемо до складніших рівнянь. Тепер конструкції стануть складнішими і при виконанні різних перетворень виникне квадратична функція. Однак не варто цього боятися, тому що якщо за задумом автора ми вирішуємо лінійне рівняння, то в процесі перетворення всі одночлени, які містять квадратичну функцію, обов'язково скоротяться.

Приклад №1

Очевидно, що насамперед потрібно розкрити дужки. Давайте це зробимо дуже обережно:

Тепер займемося самотою:

\[-x+6((x)^(2))-6((x)^(2))+x=-12\]

Наводимо такі:

Очевидно, що дане рівняння рішень немає, тому у відповіді так і запишемо:

\[\varnothing\]

або коріння немає.

Приклад №2

Виконуємо самі дії. Перший крок:

Перенесемо все, що зі змінною, вліво, а без неї вправо:

Наводимо такі:

Очевидно, що дане лінійне рівняння не має рішення, тому так і запишемо:

\[\varnothing\],

або коріння немає.

Нюанси рішення

Обидва рівняння повністю розв'язані. На прикладі цих двох виразів ми ще раз переконалися, що навіть у найпростіших лінійних рівняннях все може бути не так просто: коріння може бути або одне, або жодне, або нескінченно багато. У нашому випадку ми розглянули два рівняння, в обох коренів просто немає.

Але я хотів би звернути вашу увагу на інший факт: як працювати з дужками і як їх розкривати, якщо перед ними стоїть знак мінус. Розглянемо цей вираз:

Перш ніж розкривати, потрібно перемножити все на ікс. Зверніть увагу: множиться кожне окреме доданок. Усередині стоїть два доданки - відповідно, два доданки і множиться.

І тільки після того, коли ці, начебто, елементарні, але дуже важливі та небезпечні перетворення виконані, можна розкривати дужку з погляду того, що після неї стоїть знак «мінус». Так, так: тільки зараз, коли перетворення виконані, ми згадуємо, що перед дужками стоїть знак мінус, а це означає, що все, що вниз, просто змінює знаки. При цьому самі дужки зникають і, що найголовніше, передній мінус теж зникає.

Так само ми чинимо і з другим рівнянням:

Я не випадково звертаю увагу на ці дрібні, начебто, незначні факти. Тому що рішення рівнянь - це завжди послідовність елементарних перетворень, де невміння чітко і грамотно виконувати прості дії призводить до того, що учні старших класів приходять до мене і знову вчаться вирішувати такі прості рівняння.

Зрозуміло, настане день, і ви відточите ці навички до автоматизму. Вам вже не доведеться щоразу виконувати стільки перетворень, ви все писатимете в один рядок. Але поки ви тільки вчитеся, потрібно писати кожну дію окремо.

Вирішення ще більш складних лінійних рівнянь

Те, що ми зараз вирішуватимемо, вже складно назвати найпростішими завдання, проте сенс залишається тим самим.

Завдання №1

\[\left(7x+1 \right)\left(3x-1 \right)-21((x)^(2))=3\]

Давайте перемножимо всі елементи у першій частині:

Давайте виконаємо усамітнення:

Наводимо такі:

Виконуємо останній крок:

\[\frac(-4x)(4)=\frac(4)(-4)\]

Ось наша остаточна відповідь. І, незважаючи на те, що у нас у процесі вирішення виникали коефіцієнти з квадратичною функцією, проте вони взаємно знищилися, що робить рівняння саме лінійним, а не квадратним.

Завдання №2

\[\left(1-4x \right)\left(1-3x \right)=6x\left(2x-1 \right)\]

Давайте акуратно виконаємо перший крок: множимо кожен елемент із першої дужки на кожен елемент із другої. Усього має вийти чотири нових доданків після перетворень:

А тепер акуратно виконаємо множення в кожному доданку:

Перенесемо доданки з «іксом» вліво, а без вправо:

\[-3x-4x+12((x)^(2))-12((x)^(2))+6x=-1\]

Наводимо такі складові:

Ми знову отримали остаточну відповідь.

Нюанси рішення

Найважливіше зауваження щодо цих двох рівнянь полягає в наступному: як тільки ми починаємо множити дужки, в яких знаходиться більш ніж воно доданок, то виконується це за таким правилом: ми беремо перший доданок з першої і перемножуємо з кожним елементом з другого; потім беремо другий елемент з першої та аналогічно перемножуємо з кожним елементом з другої. У результаті в нас вийде чотири доданки.

Про алгебраїчну суму

На останньому прикладі я хотів би нагадати учням, що таке сума алгебри. У класичній математиці під $1-7$ ми маємо на увазі просту конструкцію: з одиниці віднімаємо сім. В алгебрі ж ми маємо на увазі під цим наступне: до «одиниця» ми додаємо інше число, а саме «мінус сім». Цим сума алгебри відрізняється від звичайної арифметичної.

Як тільки при виконанні всіх перетворень, кожного додавання та множення ви почнете бачити конструкції, аналогічні вищеописаним, ніяких проблем в алгебрі при роботі з багаточленами та рівняннями у вас просто не буде.

Насамкінець давайте розглянемо ще пару прикладів, які будуть ще складнішими, ніж ті, які ми щойно розглянули, і для їх вирішення нам доведеться дещо розширити наш стандартний алгоритм.

Розв'язання рівнянь із дробом

Для вирішення подібних завдань до нашого алгоритму доведеться додати ще один крок. Але для початку я нагадаю наш алгоритм:

  1. Розкрити дужки.
  2. Усамітнити змінні.
  3. Навести такі.
  4. Розділити на коефіцієнт.

На жаль, цей прекрасний алгоритм при всій його ефективності виявляється не цілком доречним, коли маємо дроби. А в тому, що ми побачимо нижче, у нас і ліворуч, і праворуч в обох рівняннях є дріб.

Як працювати у цьому випадку? Та все дуже просто! Для цього в алгоритм потрібно додати ще один крок, який можна зробити як перед першою дією, так і після нього, а саме позбутися дробів. Таким чином, алгоритм буде наступним:

  1. Позбутися дробів.
  2. Розкрити дужки.
  3. Усамітнити змінні.
  4. Навести такі.
  5. Розділити на коефіцієнт.

Що означає «позбутися дробів»? І чому це можна виконувати як після, так і перед першим стандартним кроком? Насправді у разі всі дроби є числовими за знаменником, тобто. скрізь у знаменнику стоїть просто число. Отже, якщо ми обидві частини рівняння домножимо на це число, ми позбудемося дробів.

Приклад №1

\[\frac(\left(2x+1 \right)\left(2x-3 \right))(4)=((x)^(2))-1\]

Давайте позбудемося дробів у цьому рівнянні:

\[\frac(\left(2x+1 \right)\left(2x-3 \right)\cdot 4)(4)=\left(((x)^(2))-1 \right)\cdot 4\]

Зверніть увагу: на «чотири» множиться один раз, тобто. якщо у вас дві дужки, це не означає, що кожну з них потрібно множити на чотири. Запишемо:

\[\left(2x+1 \right)\left(2x-3 \right)=\left(((x)^(2))-1 \right)\cdot 4\]

Тепер розкриємо:

Виконуємо усамітнення змінної:

Виконуємо приведення подібних доданків:

\ -4x = -1 \ left | :\left(-4 \right) \right.\]

\[\frac(-4x)(-4)=\frac(-1)(-4)\]

Ми одержали остаточне рішення, переходимо до другого рівняння.

Приклад №2

\[\frac(\left(1-x \right)\left(1+5x \right))(5)+((x)^(2))=1\]

Тут виконуємо ті самі дії:

\[\frac(\left(1-x \right)\left(1+5x \right)\cdot 5)(5)+((x)^(2))\cdot 5=5\]

\[\frac(4x)(4)=\frac(4)(4)\]

Завдання вирішено.

Ось, власне, і все, що я сьогодні хотів розповісти.

Ключові моменти

Ключові висновки такі:

  • Знати алгоритм розв'язання лінійних рівнянь.
  • Вміння розкривати дужки.
  • Не варто переживати, якщо десь у вас з'являються квадратичні функції, швидше за все, у процесі подальших перетворень вони скоротяться.
  • Коріння в лінійних рівняннях, навіть найпростіших, буває трьох типів: один єдиний корінь, вся числова пряма є коренем, коріння немає взагалі.

Сподіваюся, цей урок допоможе вам освоїти нескладну, але дуже важливу для подальшого розуміння математики тему. Якщо щось незрозуміло, заходьте на сайт, вирішуйте приклади, представлені там. Залишайтеся з нами, на вас чекає ще багато цікавого!

А+(b+с) можна записати без дужок: a+(b+c)=a+b+c. Цю операцію називають розкриттям дужок.

приклад 1.Розкриємо дужки у виразі а + (- b + c).

Рішення. a + (-b + c) = a + ((-b) + c) = a + (-b) + c = a-b + c.

Якщо перед дужками стоїть знак +, то можна опустити дужки і цей знак + зберігши знаки доданків, що стоять у дужках. Якщо перший доданок у дужках записано без знака, його треба записати зі знаком « + ».

приклад 2.Знайдемо значення виразу -2,87 + (2,87-7,639).

Рішення.Розкриваючи дужки, отримаємо - 2,87 + (2,87 - 7,639) = - - 2,87 + 2,87 - 7,639 = 0 - 7,639 = - 7,639.

Щоб знайти значення виразу – (- 9 + 5), треба скласти числа-9 і 5 і знайти число, протилежне до отриманої суми: -(- 9 + 5)= -(- 4) = 4.

Те саме значення можна отримати по-іншому: спочатку записати числа, протилежні даним доданком (тобто змінити їх знаки), а потім скласти: 9 + (-5) = 4. Таким чином, -(- 9 + 5) = 9 – 5 = 4.

Щоб записати суму, протилежну сумі кількох доданків, треба змінити знаки даних доданків.

Значить - (а + b) = - а - b.

приклад 3.Знайдемо значення виразу 16 – (10 –18 + 12).

Рішення. 16-(10 -18 + 12) = 16 + (-(10 -18 + 12)) = = 16 + (-10 +18-12) = 16-10 +18-12 = 12.

Щоб розкрити дужки, перед якими стоїть знак "-", треба замінити цей знак на "+", помінявши знаки всіх доданків у дужках на протилежні, а потім розкрити дужки.

приклад 4.Знайдемо значення виразу 9,36-(9,36 – 5,48).

Рішення. 9,36 - (9,36 - 5,48) = 9,36 + (- 9,36 + 5,48) = = 9,36 - 9,36 + 5,48 = 0 -f 5,48 = 5 ,48.

Розкриття дужок та застосування переміщувальної та поєднувальної властивостей додаваннядозволяють спрощувати обчислення.

Приклад 5.Знайдемо значення виразу (-4-20)+(6+13)-(7-8)-5.

Рішення.Спочатку розкриємо дужки, а потім знайдемо окремо суму всіх позитивних та окремо суму всіх негативних чисел і, нарешті, складемо отримані результати:

(- 4 - 20)+(6+ 13)-(7 - 8) - 5 = -4-20 + 6 + 13-7 + 8-5 = = (6 + 13 + 8)+(- 4 - 20 - 7 - 5)= 27-36=-9.

Приклад 6.Знайдемо значення виразу

Рішення.Спочатку представимо кожне доданок у вигляді суми їх цілої та дробової частин, потім розкриємо дужки, потім складемо окремо цілі та окремо дробовічастини та, нарешті, складемо отримані результати:


Як розкривають дужки, перед якими стоїть знак «+»? Як можна знайти значення виразу, протилежне сумі кількох чисел? Як розкрити дужки, перед якими стоїть знак «-»?

1218. Розкрийте дужки:

а) 3,4 + (2,6 + 8,3); в) m+(n-k);

б) 4,57 + (2,6 - 4,57); г) з + (-a + b).

1219. Знайдіть значення виразу:

1220. Розкрийте дужки:

а) 85 + (7,8 + 98); г) -(80-16) + 84; ж) a-(b-k-n);
б) (4,7 -17) +7,5; д) -а + (m-2,6); з) -(а-b + с);
в) 64-(90 + 100); е) с+(- а-b); і) (m-n)-(p-k).

1221. Розкрийте дужки та знайдіть значення виразу:


1222. Спростіть вираз:


1223. Напишіть сумудвох виразів і спростіть її:

а) - 4 - m та m + 6,4; г) а+b та р - b
б) 1,1+а та -26-а; д) - m + n та -k - n;
в) а + 13 та -13 + b; е) m - n і n - m.

1224. Напишіть різницю двох виразів і спростіть її:

1226. Розв'яжіть за допомогою рівняння задачу:

а) На одній полиці 42 книги, а на іншій 34. З другої полиці зняли кілька книг, а з першої – стільки, скільки залишилося на другій. Після цього на першій полиці залишилось 12 книг. Скільки книг зняли з другої полиці?

б) У першому класі 42 учні, у другому на 3 учні менше, ніж у третьому. Скільки учнів у третьому класі, якщо всього у цих трьох класах 125 учнів?

1227. Знайдіть значення виразу:

1228. Обчисліть усно:

1229. Знайдіть найбільше значення виразу:

1230. Вкажіть 4 послідовних цілих числа, якщо:

а) менша з них дорівнює -12; в) менша з них дорівнює n;
б) більша з них дорівнює -18; г) більша з них дорівнює k.

Зміст уроку конспект урокуопорний каркас презентація уроку акселеративні методи інтерактивні технології Практика завдання та вправи самоперевірка практикуми, тренінги, кейси, квести домашні завдання риторичні питання від учнів Ілюстрації аудіо-, відеокліпи та мультимедіафотографії, картинки графіки, таблиці, схеми гумор, анекдоти, приколи, комікси притчі, приказки, кросворди, цитати Доповнення рефератистатті фішки для допитливих шпаргалки підручники основні та додаткові словник термінів інші Вдосконалення підручників та уроківвиправлення помилок у підручникуоновлення фрагмента у підручнику елементи новаторства на уроці заміна застарілих знань новими Тільки для вчителів ідеальні урокикалендарний план на рік методичні рекомендації програми обговорення Інтегровані уроки

Дужки використовуються для вказівки на порядок виконання дій у числових та буквених виразах, а також у виразах зі змінними. Від виразу зі дужками зручно перейти до тотожно рівного виразу без дужок. Цей прийом називається розкриття дужок.

Розкрити дужки означає позбавити вираз цих дужок.

На окрему увагу заслуговує ще один момент, який стосується особливостей запису рішень при розкритті дужок. Ми можемо записати початковий вираз зі дужками та отриманий після розкриття дужок результат як рівність. Наприклад, після розкриття дужок замість виразу
3−(5−7) ми отримуємо вираз 3−5+7. Обидва ці вирази ми можемо записати як рівності 3−(5−7)=3−5+7.

І ще один важливий момент. У математиці для скорочення записів прийнято не писати знак плюс, якщо він стоїть у виразі чи дужках першим. Наприклад, якщо ми складаємо два позитивні числа, наприклад, сім і три, то пишемо не +7+3, а просто 7+3, незважаючи на те, що сімка теж позитивне число. Аналогічно, якщо ви бачите, наприклад, вираз (5+x) – знайте, що і перед дужкою стоїть плюс, який не пишуть, і перед п'ятіркою стоїть плюс +(+5+x).

Правило розкриття дужок під час складання

При розкритті дужок, якщо перед дужками стоїть плюс, цей плюс опускається разом із дужками.

приклад. Розкрити дужки у виразі 2+ (7+3) Перед дужками плюс, значить знаки перед числами у дужках не міняємо.

2 + (7 + 3) = 2 + 7 + 3

Правило розкриття дужок під час віднімання

Якщо перед дужками стоїть мінус, цей мінус опускається разом із дужками, але доданки, які були у дужках, змінюють свій знак на протилежний. Відсутність знака перед першим доданком у дужках має на увазі знак +.

приклад. Розкрити дужки у виразі 2 − (7 + 3)

Перед дужками стоїть мінус, отже, потрібно поміняти знаки перед числами з дужок. У дужках перед цифрою 7 знака немає, це означає, що сімка позитивна, вважається, що перед нею знак +.

2 − (7 + 3) = 2 − (+ 7 + 3)

При розкритті дужок прибираємо з прикладу мінус, який був перед дужками, і самі дужки 2 − (+ 7 + 3) , а знаки, що були у дужках, міняємо протилежні.

2 − (+ 7 + 3) = 2 − 7 − 3

Розкриття дужок під час множення

Якщо перед дужками стоїть знак множення, то кожне число, що стоїть усередині дужок, множиться на множник, що стоїть перед дужками. При цьому множення мінусу на мінус дає плюс, а множення мінусу на плюс, як і множення плюсу на мінус дає мінус.

Таким чином, дужки у творах розкриваються відповідно до розподільної властивості множення.

приклад. 2 · (9 - 7) = 2 · 9 - 2 · 7

При множенні дужки на дужку кожен член першої дужки перемножується з кожним членом другої дужки.

(2 + 3) · (4 + 5) = 2 · 4 + 2 · 5 + 3 · 4 + 3 · 5

Насправді немає необхідності запам'ятовувати всі правила, досить пам'ятати тільки одне, ось це: c(a−b)=ca−cb. Чому? Тому що якщо в нього замість c підставити одиницю, вийде правило (a-b) = a-b. Якщо ж підставити мінус одиницю, отримаємо правило −(a−b)=−a+b. Ну а якщо замість c підставити іншу дужку – можна отримати останнє правило.

Розкриваємо дужки при розподілі

Якщо після дужок стоїть знак поділу, то кожне число, що стоїть усередині дужок, ділиться на дільник, що стоїть після дужок, і навпаки.

приклад. (9 + 6): 3 = 9: 3 + 6: 3

Як розкрити вкладені дужки

Якщо у виразі присутні вкладені дужки, їх розкривають по порядку, починаючи із зовнішніх чи внутрішніх.

При цьому важливо при розкритті однієї з дужок не чіпати решту дужок, просто переписуючи їх як є.

приклад. 12 - (a + (6 - b) - 3) = 12 - a - (6 - b) + 3 = 12 - a - 6 + b + 3 = 9 - a + b

«Розкриття дужок» - Підручник з математики 6 клас (Віленкін)

Короткий опис:


У цьому розділі Ви вчитиметеся розкривати дужки в прикладах. Для чого це потрібно? Все для того ж, що й раніше – щоб Вам було легше і простіше вважати, щоб припускатися менше помилок, а в ідеалі (мрія Вашого вчителя математики) для того, щоби взагалі все вирішувати без помилок.
Ви вже знаєте, що дужки в математичному записі ставляться, якщо поспіль йдуть два математичні знаки, якщо ми хочемо показати об'єднання чисел, їхнє перегрупування. Розкрити дужки означає позбутися зайвих знаків. Наприклад: (-15)+3=-15+3=-12, 18+(-16)=18-16=2. А пам'ятаєте розподільну властивість множення щодо додавання? Адже в тому прикладі ми також позбавлялися дужок для спрощення обчислень. Названу властивість множення також можна застосовувати для чотирьох, трьох, п'яти і більше доданків. Наприклад: 15*(3+8+9+6)=15*3+15*8+15*9+15*6=390. Ви помітили, що при розкритті дужок числа, що знаходяться в них, не змінюють знака, якщо позитивне число, що стоїть перед дужками? Адже п'ятнадцять – позитивна кількість. А якщо вирішити такий приклад: -15*(3+8+9+6)=-15*3+(-15)*8+(-15)*9+(-15)*6=-45+(- 120) + (-135) + (-90) = -45-120-135-90 = -390. У нас перед дужками стояло негативне число мінус п'ятнадцять, коли ми розкрили дужки, всі числа почали змінювати свій знак на інший - протилежний - з плюсу на мінус.
Виходячи з вищезгаданих прикладів, можна озвучити два основні правила розкриття дужок:
1. Якщо у Вас перед дужками стоїть позитивне число, то після розкриття дужок усі знаки чисел, що стояли в дужках, не змінюються, а залишаються такими самими, як і були.
2. Якщо перед дужками стоїть негативне число, то після розкриття дужок знак мінуса більше не пишеться, а знаки всіх абсолютно чисел, що стояли в дужках, різко змінюються на протилежні.
Наприклад: (13+8)+(9-8)=13+8+9-8=22; (13 +8) - (9-8) = 13 +8-9 +8 = 20. Трохи ускладнимо наші приклади: (13+8)+2(9-8)=13+8+2*9-2*8=21+18-16=23. Ви помітили, що розкриваючи другі дужки, ми множили на 2, але знаки залишалися тими самими, як і були. А ось такий приклад: (3+8)-2*(9-8)=3+8-2*9+2*8=11-18+16=9, у цьому прикладі число два негативне, воно перед дужками стоїть зі знаком мінус, тому розкриваючи їх, ми змінювали знаки чисел на протилежні (дев'ять було з плюсом, стало з мінусом, вісім було з мінусом, стало з плюсом).

У п'ятому столітті до нашої ери давньогрецький філософ Зенон Елейський сформулював свої знамениті апорії, найвідомішою з яких є апорія "Ахілес і черепаха". Ось як вона звучить:

Припустимо, Ахіллес біжить у десять разів швидше, ніж черепаха, і знаходиться позаду неї на відстані тисячу кроків. За той час, за який Ахіллес пробіжить цю відстань, черепаха в той самий бік проповзе сто кроків. Коли Ахіллес пробіжить сто кроків, черепаха проповзе ще десять кроків, і таке інше. Процес продовжуватиметься до нескінченності, Ахіллес так ніколи і не наздожене черепаху.

Ця міркування стала логічним шоком для всіх наступних поколінь. Аристотель, Діоген, Кант, Гегель, Гільберт... Усі вони однак розглядали апорії Зенона. Шок виявився настільки сильним, що " ... дискусії продовжуються і в даний час, дійти спільної думки про сутність парадоксів науковому співтовариству поки що не вдалося... до дослідження питання залучалися математичний аналіз, теорія множин, нові фізичні та філософські підходи; жоден із них не став загальновизнаним вирішенням питання.[Вікіпедія, "Апорії Зенона"]. Всі розуміють, що їх дурять, але ніхто не розуміє, в чому полягає обман.

З погляду математики, Зенон у своїй апорії наочно продемонстрував перехід від величини до . Цей перехід передбачає застосування замість постійних. Наскільки розумію, математичний апарат застосування змінних одиниць виміру або ще розроблено, або його застосовували до апорії Зенона. Застосування нашої звичайної логіки приводить нас у пастку. Ми, за інерцією мислення, застосовуємо постійні одиниці виміру часу до оберненої величини. З фізичної точки зору це виглядає як уповільнення часу до його повної зупинки в момент, коли Ахілес порівняється з черепахою. Якщо час зупиняється, Ахілес вже не може перегнати черепаху.

Якщо перевернути звичну нам логіку, все стає на свої місця. Ахілес біжить з постійною швидкістю. Кожен наступний відрізок його шляху вдесятеро коротший за попередній. Відповідно, і час, що витрачається на його подолання, у десять разів менший за попередній. Якщо застосовувати поняття "нескінченність" у цій ситуації, то правильно буде говорити "Ахіллес нескінченно швидко наздожене черепаху".

Як уникнути цієї логічної пастки? Залишатися в постійних одиницях виміру часу і переходити до зворотним величинам. Мовою Зенона це виглядає так:

За той час, за який Ахіллес пробіжить тисячу кроків, черепаха в той самий бік проповзе сто кроків. За наступний інтервал часу, що дорівнює першому, Ахіллес пробіжить ще тисячу кроків, а черепаха проповзе сто кроків. Тепер Ахіллес на вісімсот кроків випереджає черепаху.

Цей підхід адекватно визначає реальність без жодних логічних парадоксів. Але це не повне вирішення проблеми. На Зеноновську апорію "Ахіллес і черепаха" дуже схоже твердження Ейнштейна про непереборність швидкості світла. Цю проблему нам ще належить вивчити, переосмислити та вирішити. І рішення потрібно шукати не в нескінченно великих числах, а в одиницях виміру.

Інша цікава апорія Зенона оповідає про стрілу, що летить.

Летяча стріла нерухома, тому що в кожний момент часу вона спочиває, а оскільки вона спочиває в кожний момент часу, вона завжди спочиває.

У цій апорії логічний парадокс долається дуже просто - досить уточнити, що в кожний момент часу стріла, що летить, спочиває в різних точках простору, що, власне, і є рухом. Тут слід зазначити інший момент. За однією фотографією автомобіля на дорозі неможливо визначити ані факт його руху, ані відстань до нього. Для визначення факту руху автомобіля потрібні дві фотографії, зроблені з однієї точки в різні моменти часу, але не можна визначити відстань. Для визначення відстані до автомобіля потрібні дві фотографії, зроблені з різних точок простору в один момент часу, але не можна визначити факт руху (природно, ще потрібні додаткові дані для розрахунків, тригонометрія вам на допомогу). На що я хочу звернути особливу увагу, то це на те, що дві точки в часі та дві точки в просторі – це різні речі, які не варто плутати, адже вони надають різні можливості для дослідження.

середа, 4 липня 2018 р.

Дуже добре відмінності між безліччю та мультимножиною описані у Вікіпедії. Дивимося.

Як бачите, "у множині не може бути двох ідентичних елементів", але якщо ідентичні елементи у множині є, така множина називається "мультимножина". Подібну логіку абсурду розумним істотам не зрозуміти ніколи. Це рівень папуг, що говорять, і дресованих мавп, у яких розум відсутній від слова "зовсім". Математики виступають у ролі звичайних дресирувальників, проповідуючи нам свої абсурдні ідеї.

Колись інженери, які збудували міст, під час випробувань мосту перебували у човні під мостом. Якщо міст обрушувався, бездарний інженер гинув під уламками свого творіння. Якщо міст витримував навантаження, талановитий інженер будував інші мости.

Як би математики не ховалися за фразою "чур, я в будиночку", точніше "математика вивчає абстрактні поняття", є одна пуповина, яка нерозривно пов'язує їх із реальністю. Цією пуповиною є гроші. Застосуємо математичну теорію множин до самих математиків.

Ми дуже добре вчили математику і зараз сидимо у касі, видаємо зарплатню. Ось приходить до нас математик по свої гроші. Відраховуємо йому всю суму та розкладаємо у себе на столі на різні стопки, в які складаємо купюри однієї гідності. Потім беремо з кожної стопки по одній купюрі та вручаємо математику його "математичну безліч зарплати". Пояснюємо математику, що решта купюр він отримає тільки тоді, коли доведе, що безліч без однакових елементів не дорівнює безлічі з однаковими елементами. Ось тут почнеться найцікавіше.

Насамперед спрацює логіка депутатів: "до інших це застосовувати можна, до мене - низьзя!". Далі почнуться запевнення нас у тому, що на купюрах однакової гідності є різні номери купюр, а отже, їх не можна вважати однаковими елементами. Добре, відраховуємо зарплату монетами – на монетах немає номерів. Тут математик почне судомно згадувати фізику: на різних монетах є різна кількість бруду, кристалічна структура та розташування атомів у кожної монети унікально.

А тепер у мене найцікавіше питання: де проходить та грань, за якою елементи мультимножини перетворюються на елементи множини і навпаки? Такої межі не існує – все вирішують шамани, наука тут і близько не валялася.

Ось дивіться. Ми відбираємо футбольні стадіони із однаковою площею поля. Площа полів однакова – значить у нас вийшло мультимножина. Але якщо розглядати назви цих стадіонів - у нас виходить безліч, адже назви різні. Як бачите, той самий набір елементів одночасно є і безліччю, і мультимножиною. Як правильно? А ось тут математик-шаман-шуллер дістає з рукава козирний туз і починає нам розповідати або про множину, або про мультимножину. У будь-якому разі він переконає нас у своїй правоті.

Щоб зрозуміти, як сучасні шамани оперують теорією множин, прив'язуючи її до реальності, достатньо відповісти на одне питання: чим елементи однієї множини відрізняються від елементів іншої множини? Я вам покажу, без будь-яких "мислиме як не єдине ціле" або "не мислиме як єдине ціле".

неділя, 18 березня 2018 р.

Сума цифр числа - це танець шаманів з бубном, який до математики жодного стосунку не має. Так, на уроках математики нас вчать знаходити суму цифр числа та користуватися нею, але на те вони й шамани, щоб навчати нащадків своїм навичкам та премудростям, інакше шамани просто вимруть.

Вам потрібні докази? Відкрийте Вікіпедію та спробуйте знайти сторінку "Сума цифр числа". Її немає. Немає в математиці формули, якою можна знайти суму цифр будь-якого числа. Адже цифри - це графічні символи, з яких записуємо числа і мовою математики завдання звучить так: "Знайти суму графічних символів, що зображують будь-яке число". Математики це завдання вирішити що неспроможні, тоді як шамани - елементарно.

Давайте розберемося, що як ми робимо у тому, щоб знайти суму цифр заданого числа. Тож нехай у нас є число 12345. Що потрібно зробити для того, щоб знайти суму цифр цього числа? Розглянемо всі кроки по порядку.

1. Записуємо число на папірці. Що ми зробили? Ми перетворили число на графічний символ числа. Це не математична дія.

2. Розрізаємо одну отриману картинку на кілька картинок, що містять окремі цифри. Розрізання картинки - це математична дія.

3. Перетворюємо окремі графічні символи на числа. Це не математична дія.

4. Складаємо отримані числа. Це вже математика.

Сума цифр числа 12345 дорівнює 15. Ось такі ось "курси крою та шиття" від шаманів застосовують математики. Але це ще не все.

З погляду математики немає значення, у якій системі числення ми записуємо число. Так от, у різних системах числення сума цифр одного і того ж числа буде різною. У математиці система числення вказується як нижнього індексу праворуч від числа. З великим числом 12345 я не хочу голову морочити, розглянемо число 26 статті про . Запишемо це число у двійковій, вісімковій, десятковій та шістнадцятковій системах числення. Ми не розглядатимемо кожен крок під мікроскопом, це ми вже зробили. Подивимося результат.

Як бачите, у різних системах числення сума цифр одного й того ж числа виходить різною. Подібний результат до математики жодного стосунку не має. Це все одно, що при визначенні площі прямокутника в метрах і сантиметрах ви отримували б різні результати.

Нуль у всіх системах числення виглядає однаково і суми цифр немає. Це ще один аргумент на користь того, що . Питання математикам: як у математиці позначається те, що є числом? Що для математиків нічого, крім чисел, не існує? Для шаманів я можу таке припустити, але для вчених – ні. Реальність складається не лише з чисел.

Отриманий результат слід як доказ те, що системи числення є одиницями виміру чисел. Адже ми не можемо порівнювати числа з різними одиницями виміру. Якщо одні й самі дії з різними одиницями виміру однієї й тієї ж величини призводять до різних результатів після їх порівняння, це має нічого спільного з математикою.

Що таке справжня математика? Це коли результат математичної дії не залежить від величини числа, що застосовується одиниці виміру і від того, хто це виконує.

Табличка на дверях Відчиняє двері і каже:

Ой! А це хіба не жіночий туалет?
- Дівчино! Це лабораторія з вивчення індефільної святості душ під час вознесіння на небеса! Німб зверху і стрілка вгору. Який ще туалет?

Жіночий... Німб зверху та стрілочка вниз – це чоловічий.

Якщо у вас перед очима кілька разів на день мелькає ось такий витвір дизайнерського мистецтва,

Тоді не дивно, що у своєму автомобілі ви раптом виявляєте дивний значок:

Особисто я роблю над собою зусилля, щоб в людині, яка кавала (одна картинка), побачити мінус чотири градуси (композиція з декількох картинок: знак мінус, цифра чотири, позначення градусів). І я не вважаю цю дівчину дурницею, яка не знає фізики. Просто вона має дугою стереотип сприйняття графічних образів. І математики нас цього постійно навчають. Ось приклад.

1А - це не "мінус чотири градуси" або "один а". Це "какая людина" або число "двадцять шість" у шістнадцятковій системі числення. Ті люди, які постійно працюють у цій системі числення, автоматично сприймають цифру та букву як один графічний символ.