Приклади на властивості логарифмів. Розв'язання логарифмічних рівнянь - заключний урок

Логарифми, як і будь-які числа, можна складати, віднімати та всіляко перетворювати. Але оскільки логарифми — це не зовсім звичайні числа, тут є свої правила, які називаються основними властивостями.

Ці правила обов'язково треба знати - без них не вирішується жодне серйозне логарифмічне завдання. До того ж їх зовсім небагато — все можна вивчити за один день. Отже, почнемо.

Додавання та віднімання логарифмів

Розглянемо два логарифми з однаковими підставами: log a xта log a y. Тоді їх можна складати і віднімати, причому:

  1. log a x+ log a y= log a (x · y);
  2. log a x− log a y= log a (x : y).

Отже, сума логарифмів дорівнює логарифму твору, а різниця - приватного логарифму. Зверніть увагу: ключовий момент тут однакові підстави. Якщо підстави різні, ці правила не працюють!

Ці формули допоможуть обчислити логарифмічний вираз навіть тоді, коли окремі його частини не рахуються (див. урок «Що таке логарифм»). Погляньте на приклади і переконайтеся:

Log 6 4 + log 6 9.

Оскільки підстави у логарифмів однакові, використовуємо формулу суми:
log 6 4 + log 6 9 = log 6 (4 · 9) = log 6 36 = 2.

Завдання. Знайдіть значення виразу: log 2 48 − log 2 3.

Підстави однакові, використовуємо формулу різниці:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Завдання. Знайдіть значення виразу: log 3 135 − log 3 5.

Знову підстави однакові, тому маємо:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Як бачите, вихідні вирази складені з поганих логарифмів, які окремо не вважаються. Але після перетворень виходять цілком нормальні числа. На цьому факті збудовано багато контрольних робіт. Так що контрольні — подібні висловлювання на повному серйозі (іноді практично без змін) пропонуються на ЄДІ.

Винесення показника ступеня з логарифму

Тепер трохи ускладнимо завдання. Що, якщо у підставі чи аргументі логарифма стоїть ступінь? Тоді показник цього ступеня можна винести за знак логарифму за такими правилами:

Неважко помітити, що останнє правило слідує їх перших двох. Але краще його все ж таки пам'ятати — у деяких випадках це значно скоротить обсяг обчислень.

Зрозуміло, всі ці правила мають сенс за дотримання ОДЗ логарифму: a > 0, a ≠ 1, x> 0. І ще: вчитеся застосовувати всі формули як зліва направо, а й навпаки, тобто. можна вносити числа, що стоять перед знаком логарифму, до самого логарифму. Саме це найчастіше й потрібне.

Завдання. Знайдіть значення виразу: log 7 49 6 .

Позбавимося ступеня в аргументі за першою формулою:
log 7 49 6 = 6 · log 7 49 = 6 · 2 = 12

Завдання. Знайдіть значення виразу:

[Підпис до малюнка]

Зауважимо, що у знаменнику стоїть логарифм, основа та аргумент якого є точними ступенями: 16 = 2 4 ; 49 = 7 2 . Маємо:

[Підпис до малюнка]

Думаю, до останнього прикладу потрібні пояснення. Куди зникли логарифми? До останнього моменту ми працюємо лише зі знаменником. Представили підставу і аргумент логарифму, що там стоїть, у вигляді ступенів і винесли показники — отримали «триповерховий» дріб.

Тепер подивимося на основний дріб. У чисельнику та знаменнику стоїть те саме число: log 2 7. Оскільки log 2 7 ≠ 0, можемо скоротити дріб — у знаменнику залишиться 2/4. За правилами арифметики, четвірку можна перенести в чисельник, що було зроблено. В результаті вийшла відповідь: 2.

Перехід до нової основи

Говорячи про правила складання та віднімання логарифмів, я спеціально підкреслював, що вони працюють лише за однакових підстав. А що, коли підстави різні? Що, якщо вони не є точними ступенями того самого числа?

На допомогу приходять формули переходу до нової основи. Сформулюємо їх як теореми:

Нехай дано логарифм log a x. Тоді для будь-якого числа cтакого, що c> 0 та c≠ 1, вірна рівність:

[Підпис до малюнка]

Зокрема, якщо покласти c = x, Отримаємо:

[Підпис до малюнка]

З другої формули випливає, що можна міняти місцями основу та аргумент логарифму, але при цьому весь вислів «перевертається», тобто. логарифм опиняється у знаменнику.

Ці формули рідко зустрічається у звичайних числових виразах. Оцінити, наскільки вони зручні, можна лише при розв'язанні логарифмічних рівнянь та нерівностей.

Втім, існують завдання, які взагалі не вирішуються інакше як переходом до нової основи. Розглянемо пару таких:

Завдання. Знайдіть значення виразу: log 5 16 · log 2 25.

Зауважимо, що в аргументах обох логарифмів стоять точні ступені. Винесемо показники: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

А тепер «перевернемо» другий логарифм:

[Підпис до малюнка]

Оскільки від перестановки множників твір не змінюється, ми спокійно перемножили четвірку та двійку, а потім розібралися з логарифмами.

Завдання. Знайдіть значення виразу: log 9 100 · lg 3.

Підстава та аргумент першого логарифму — точні ступені. Запишемо це і позбудемося показників:

[Підпис до малюнка]

Тепер позбудемося десяткового логарифму, перейшовши до нової основи:

[Підпис до малюнка]

Основне логарифмічне тотожність

Часто в процесі рішення потрібно представити число як логарифм на задану основу. У цьому випадку нам допоможуть формули:

У першому випадку число nстає показником ступеня, що стоїть у аргументі. Число nможе бути абсолютно будь-яким, адже це просто значення логарифму.

Друга формула – це фактично перефразоване визначення. Вона так і називається: основна логарифмічна тотожність.

Справді, що буде, якщо число bзвести в такий ступінь, що число bу цій мірі дає число a? Правильно: вийде це саме число a. Уважно прочитайте цей абзац ще раз — багато хто на ньому «зависає».

Подібно до формул переходу до нової основи, основна логарифмічна тотожність іноді буває єдино можливим рішенням.

Завдання. Знайдіть значення виразу:

[Підпис до малюнка]

Зауважимо, що log 25 64 = log 5 8 — просто винесли квадрат із підстави та аргументу логарифму. Враховуючи правила множення ступенів з однаковою основою, отримуємо:

[Підпис до малюнка]

Якщо хтось не в курсі, це було справжнє завдання з ЄДІ:)

Логарифмічна одиниця та логарифмічний нуль

Насамкінець наведу дві тотожності, які складно назвати властивостями — швидше, це наслідки з визначення логарифму. Вони постійно зустрічаються у завданнях і, що дивно, створюють проблеми навіть для «просунутих» учнів.

  1. log a a= 1 – це логарифмічна одиниця. Запам'ятайте раз і назавжди: логарифм з будь-якої основи aвід цього підстави дорівнює одиниці.
  2. log a 1 = 0 – це логарифмічний нуль. Підстава aможе бути будь-яким, але якщо в аргументі стоїть одиниця — логарифм дорівнює нулю! Тому що a 0 = 1 - це прямий наслідок визначення.

Ось і всі властивості. Обов'язково потренуйтеся застосовувати їх на практиці! Скачайте шпаргалку на початку уроку, роздрукуйте її і вирішуйте завдання.

Що таке логарифм?

Увага!
До цієї теми є додаткові
матеріали у розділі 555.
Для тих, хто сильно "не дуже..."
І для тих, хто "дуже навіть...")

Що таке логарифм? Як вирішувати логарифми? Ці питання багатьох випускників вводять у ступор. Традиційно тема логарифмів вважається складною, незрозумілою та страшною. Особливо – рівняння з логарифмами.

Це зовсім не так. Абсолютно! Чи не вірите? Добре. Зараз, за ​​якісь 10 – 20 хвилин ви:

1. Зрозумієте, що таке логарифм.

2. Навчіться розв'язувати цілий клас показових рівнянь. Навіть якщо про них нічого не чули.

3. Навчіться обчислювати прості логарифми.

Причому для цього вам потрібно буде знати лише таблицю множення, та як зводиться число до ступеня...

Відчуваю, сумніваєтеся ви... Ну гаразд, засікайте час! Поїхали!

Для початку вирішіть в умі ось таке рівняння:

Якщо Вам подобається цей сайт...

До речі, у мене є ще кілька цікавих сайтів для Вас.)

Можна потренуватися у вирішенні прикладів та дізнатися свій рівень. Тестування з миттєвою перевіркою. Вчимося – з інтересом!)

можна познайомитися з функціями та похідними.

основними властивостями.

  1. logax + logay = loga (x · y);
  2. logax – logay = loga (x: y).

однакові підстави

Log6 4+log6 9.

Тепер трохи ускладнимо завдання.

Приклади вирішення логарифмів

Що, якщо у підставі чи аргументі логарифма стоїть ступінь? Тоді показник цього ступеня можна винести за знак логарифму за такими правилами:

Зрозуміло, всі ці правила мають сенс за дотримання ОДЗ логарифму: a > 0, a ≠ 1, x >

Завдання. Знайдіть значення виразу:

Перехід до нової основи

Нехай даний логарифм logax. Тоді для будь-якого числа c такого, що c > 0 і c ≠ 1, правильна рівність:

Завдання. Знайдіть значення виразу:

Дивіться також:


Основні властивості логарифму

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Експонента дорівнює 2,718281828. Щоб запам'ятати експоненту, можете вивчити правило: експонента дорівнює 2,7 і двічі рік народження Льва Миколайовича Толстого.

Основні властивості логарифмів

Знаючи це правило знатимете і точне значення експоненти, і дату народження Льва Толстого.


Приклади на логарифми

Прологарифмувати вирази

приклад 1.
а). х=10ас^2 (а>0,с>0).

За властивостями 3,5 обчислюємо

2.

3.

4. де .



Приклад 2. Знайти х, якщо


Приклад 3. Нехай задано значення логарифмів

Обчислити log(x), якщо




Основні властивості логарифмів

Логарифми, як і будь-які числа, можна складати, віднімати та всіляко перетворювати. Але оскільки логарифми — це не зовсім звичайні числа, тут є свої правила, які називаються основними властивостями.

Ці правила обов'язково треба знати - без них не вирішується жодне серйозне логарифмічне завдання. До того ж їх зовсім небагато — все можна вивчити за один день. Отже, почнемо.

Додавання та віднімання логарифмів

Розглянемо два логарифми з однаковими підставами: logax та logay. Тоді їх можна складати і віднімати, причому:

  1. logax + logay = loga (x · y);
  2. logax – logay = loga (x: y).

Отже, сума логарифмів дорівнює логарифму твору, а різниця - приватного логарифму. Зверніть увагу: ключовий момент тут однакові підстави. Якщо підстави різні, ці правила не працюють!

Ці формули допоможуть обчислити логарифмічний вираз навіть тоді, коли окремі його частини не рахуються (див. урок «Що таке логарифм»). Погляньте на приклади і переконайтеся:

Оскільки підстави у логарифмів однакові, використовуємо формулу суми:
log6 4 + log6 9 = log6 (4 · 9) = log6 36 = 2.

Завдання. Знайдіть значення виразу: log2 48 − log2 3.

Підстави однакові, використовуємо формулу різниці:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Завдання. Знайдіть значення виразу: log3 135 − log3 5.

Знову підстави однакові, тому маємо:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Як бачите, вихідні вирази складені з поганих логарифмів, які окремо не вважаються. Але після перетворень виходять цілком нормальні числа. На цьому факті збудовано багато контрольних робіт. Так що контрольні — подібні висловлювання на повному серйозі (іноді практично без змін) пропонуються на ЄДІ.

Винесення показника ступеня з логарифму

Неважко помітити, що останнє правило слідує їх перших двох. Але краще його все ж таки пам'ятати — у деяких випадках це значно скоротить обсяг обчислень.

Зрозуміло, всі ці правила мають сенс за дотримання ОДЗ логарифму: a > 0, a ≠ 1, x > 0. І ще: вчитеся застосовувати всі формули як зліва направо, а й навпаки, тобто. можна вносити числа, що стоять перед знаком логарифму, до самого логарифму. Саме це найчастіше й потрібне.

Завдання. Знайдіть значення виразу: log7 496.

Позбавимося ступеня в аргументі за першою формулою:
log7 496 = 6 · log7 49 = 6 · 2 = 12

Завдання. Знайдіть значення виразу:

Зауважимо, що у знаменнику стоїть логарифм, основа та аргумент якого є точними ступенями: 16 = 24; 49 = 72. Маємо:

Думаю, до останнього прикладу потрібні пояснення. Куди зникли логарифми? До останнього моменту ми працюємо лише зі знаменником.

Формули логарифмів. Логарифми – приклади рішення.

Представили підставу і аргумент логарифму, що там стоїть, у вигляді ступенів і винесли показники — отримали «триповерховий» дріб.

Тепер подивимося на основний дріб. У чисельнику та знаменнику стоїть те саме число: log2 7. Оскільки log2 7 ≠ 0, можемо скоротити дріб — у знаменнику залишиться 2/4. За правилами арифметики, четвірку можна перенести в чисельник, що було зроблено. В результаті вийшла відповідь: 2.

Перехід до нової основи

Говорячи про правила складання та віднімання логарифмів, я спеціально підкреслював, що вони працюють лише за однакових підстав. А що, коли підстави різні? Що, якщо вони не є точними ступенями того самого числа?

На допомогу приходять формули переходу до нової основи. Сформулюємо їх як теореми:

Нехай даний логарифм logax. Тоді для будь-якого числа c такого, що c > 0 і c ≠ 1, правильна рівність:

Зокрема, якщо покласти c = x отримаємо:

З другої формули випливає, що можна міняти місцями основу та аргумент логарифму, але при цьому весь вислів «перевертається», тобто. логарифм опиняється у знаменнику.

Ці формули рідко зустрічається у звичайних числових виразах. Оцінити, наскільки вони зручні, можна лише при розв'язанні логарифмічних рівнянь та нерівностей.

Втім, існують завдання, які взагалі не вирішуються інакше як переходом до нової основи. Розглянемо пару таких:

Завдання. Знайдіть значення виразу: log5 16 · log2 25.

Зауважимо, що в аргументах обох логарифмів стоять точні ступені. Винесемо показники: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

А тепер «перевернемо» другий логарифм:

Оскільки від перестановки множників твір не змінюється, ми спокійно перемножили четвірку та двійку, а потім розібралися з логарифмами.

Завдання. Знайдіть значення виразу: log9 100 · lg 3.

Підстава та аргумент першого логарифму — точні ступені. Запишемо це і позбудемося показників:

Тепер позбудемося десяткового логарифму, перейшовши до нової основи:

Основне логарифмічне тотожність

Часто в процесі рішення потрібно представити число як логарифм на задану основу. У цьому випадку нам допоможуть формули:

У першому випадку число n стає показником ступеня, що стоїть у аргументі. Число n може бути абсолютно будь-яким, адже це просто значення логарифму.

Друга формула – це фактично перефразоване визначення. Вона і називається: .

Справді, що буде, якщо число b звести на такий ступінь, що число b у цій мірі дає число a? Правильно: вийде це саме число a. Уважно прочитайте цей абзац ще раз — багато хто на ньому «зависає».

Подібно до формул переходу до нової основи, основна логарифмічна тотожність іноді буває єдино можливим рішенням.

Завдання. Знайдіть значення виразу:

Зауважимо, що log25 64 = log5 8 — просто винесли квадрат із підстави та аргументу логарифму. Враховуючи правила множення ступенів з однаковою основою, отримуємо:

Якщо хтось не в курсі, це було справжнє завдання з ЄДІ 🙂

Логарифмічна одиниця та логарифмічний нуль

Насамкінець наведу дві тотожності, які складно назвати властивостями — швидше, це наслідки з визначення логарифму. Вони постійно зустрічаються у завданнях і, що дивно, створюють проблеми навіть для «просунутих» учнів.

  1. logaa = 1 – це. Запам'ятайте раз і назавжди: логарифм з будь-якої основи a від самої цієї основи дорівнює одиниці.
  2. loga 1 = 0 це. Підстава a може бути будь-якою, але якщо в аргументі стоїть одиниця — логарифм дорівнює нулю! Тому що a0 = 1 — це прямий наслідок визначення.

Ось і всі властивості. Обов'язково потренуйтеся застосовувати їх на практиці! Скачайте шпаргалку на початку уроку, роздрукуйте її і вирішуйте завдання.

Дивіться також:

Логарифмом числа b на підставі a позначають вираз . Обчислити логарифм означає знайти такий ступінь x (), при якому виконується рівність

Основні властивості логарифму

Наведені властивості необхідно знати, оскільки, на їх основі вирішуються практично всі завдання та приклади пов'язані з логарифмами. Інші екзотичні властивості можна вивести шляхом математичних маніпуляцій з даними формулами

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

При обчисленнях формули суми та різниці логарифмів (3,4) зустрічаються досить часто. Інші дещо складні, але у ряді завдань є незамінними для спрощення складних виразів та обчислення їх значень.

Поширені випадки логарифмів

Одними з поширених логарифмів є такі в яких основа рівна десять, експоненті або двійці.
Логарифм на основі десять прийнято називати десятковим логарифмом і спрощено позначати lg(x).

Із запису видно, що основи запису не пишуть. Для прикладу

Натуральний логарифм – це логарифм, у якого за основу експонента (позначають ln(x)).

Експонента дорівнює 2,718281828. Щоб запам'ятати експоненту, можете вивчити правило: експонента дорівнює 2,7 і двічі рік народження Льва Миколайовича Толстого. Знаючи це правило знатимете і точне значення експоненти, і дату народження Льва Толстого.

І ще один важливий логарифм на основі два позначають

Похідна від логарифм функції дорівнює одиниці розділеної на змінну

Інтеграл чи первісна логарифма визначається залежністю

Наведеного матеріалу Вам достатньо, щоб вирішувати широкий клас завдань, пов'язаних з логарифмами та логарифмування. Для засвоєння матеріалу наведу лише кілька поширених прикладів зі шкільної програми та ВНЗ.

Приклади на логарифми

Прологарифмувати вирази

приклад 1.
а). х=10ас^2 (а>0,с>0).

За властивостями 3,5 обчислюємо

2.
За властивістю різниці логарифмів маємо

3.
Використовуючи властивості 3,5 знаходимо

4. де .

На вигляд складне вираження з використанням низки правил спрощується до вигляду

Знаходження значень логарифмів

Приклад 2. Знайти х, якщо

Рішення. Для обчислення застосуємо до останнього доданку 5 і 13 властивості

Підставляємо в запис і сумуємо

Оскільки основи рівні, то прирівнюємо вирази

Логарифми. Початковий рівень.

Нехай задано значення логарифмів

Обчислити log(x), якщо

Рішення: Прологарифмуємо змінну, щоб розписати логарифм через суму доданків


На цьому знайомство з логарифмами та їх властивостями лише починається. Вправляйтеся в обчисленнях, збагачуйте практичні навички - отримані знання скоро знадобляться для вирішення логарифмічних рівнянь. Вивчивши основні методи вирішення таких рівнянь, ми розширимо Ваші знання для іншої не менш важливої ​​теми — логарифмічні нерівності.

Основні властивості логарифмів

Логарифми, як і будь-які числа, можна складати, віднімати та всіляко перетворювати. Але оскільки логарифми — це не зовсім звичайні числа, тут є свої правила, які називаються основними властивостями.

Ці правила обов'язково треба знати - без них не вирішується жодне серйозне логарифмічне завдання. До того ж їх зовсім небагато — все можна вивчити за один день. Отже, почнемо.

Додавання та віднімання логарифмів

Розглянемо два логарифми з однаковими підставами: logax та logay. Тоді їх можна складати і віднімати, причому:

  1. logax + logay = loga (x · y);
  2. logax – logay = loga (x: y).

Отже, сума логарифмів дорівнює логарифму твору, а різниця - приватного логарифму. Зверніть увагу: ключовий момент тут однакові підстави. Якщо підстави різні, ці правила не працюють!

Ці формули допоможуть обчислити логарифмічний вираз навіть тоді, коли окремі його частини не рахуються (див. урок «Що таке логарифм»). Погляньте на приклади і переконайтеся:

Завдання. Знайдіть значення виразу: log6 4 + log6 9.

Оскільки підстави у логарифмів однакові, використовуємо формулу суми:
log6 4 + log6 9 = log6 (4 · 9) = log6 36 = 2.

Завдання. Знайдіть значення виразу: log2 48 − log2 3.

Підстави однакові, використовуємо формулу різниці:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Завдання. Знайдіть значення виразу: log3 135 − log3 5.

Знову підстави однакові, тому маємо:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Як бачите, вихідні вирази складені з поганих логарифмів, які окремо не вважаються. Але після перетворень виходять цілком нормальні числа. На цьому факті збудовано багато контрольних робіт. Так що контрольні — подібні висловлювання на повному серйозі (іноді практично без змін) пропонуються на ЄДІ.

Винесення показника ступеня з логарифму

Тепер трохи ускладнимо завдання. Що, якщо у підставі чи аргументі логарифма стоїть ступінь? Тоді показник цього ступеня можна винести за знак логарифму за такими правилами:

Неважко помітити, що останнє правило слідує їх перших двох. Але краще його все ж таки пам'ятати — у деяких випадках це значно скоротить обсяг обчислень.

Зрозуміло, всі ці правила мають сенс за дотримання ОДЗ логарифму: a > 0, a ≠ 1, x > 0. І ще: вчитеся застосовувати всі формули як зліва направо, а й навпаки, тобто. можна вносити числа, що стоять перед знаком логарифму, до самого логарифму.

Як вирішувати логарифми

Саме це найчастіше й потрібне.

Завдання. Знайдіть значення виразу: log7 496.

Позбавимося ступеня в аргументі за першою формулою:
log7 496 = 6 · log7 49 = 6 · 2 = 12

Завдання. Знайдіть значення виразу:

Зауважимо, що у знаменнику стоїть логарифм, основа та аргумент якого є точними ступенями: 16 = 24; 49 = 72. Маємо:

Думаю, до останнього прикладу потрібні пояснення. Куди зникли логарифми? До останнього моменту ми працюємо лише зі знаменником. Представили підставу і аргумент логарифму, що там стоїть, у вигляді ступенів і винесли показники — отримали «триповерховий» дріб.

Тепер подивимося на основний дріб. У чисельнику та знаменнику стоїть те саме число: log2 7. Оскільки log2 7 ≠ 0, можемо скоротити дріб — у знаменнику залишиться 2/4. За правилами арифметики, четвірку можна перенести в чисельник, що було зроблено. В результаті вийшла відповідь: 2.

Перехід до нової основи

Говорячи про правила складання та віднімання логарифмів, я спеціально підкреслював, що вони працюють лише за однакових підстав. А що, коли підстави різні? Що, якщо вони не є точними ступенями того самого числа?

На допомогу приходять формули переходу до нової основи. Сформулюємо їх як теореми:

Нехай даний логарифм logax. Тоді для будь-якого числа c такого, що c > 0 і c ≠ 1, правильна рівність:

Зокрема, якщо покласти c = x отримаємо:

З другої формули випливає, що можна міняти місцями основу та аргумент логарифму, але при цьому весь вислів «перевертається», тобто. логарифм опиняється у знаменнику.

Ці формули рідко зустрічається у звичайних числових виразах. Оцінити, наскільки вони зручні, можна лише при розв'язанні логарифмічних рівнянь та нерівностей.

Втім, існують завдання, які взагалі не вирішуються інакше як переходом до нової основи. Розглянемо пару таких:

Завдання. Знайдіть значення виразу: log5 16 · log2 25.

Зауважимо, що в аргументах обох логарифмів стоять точні ступені. Винесемо показники: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

А тепер «перевернемо» другий логарифм:

Оскільки від перестановки множників твір не змінюється, ми спокійно перемножили четвірку та двійку, а потім розібралися з логарифмами.

Завдання. Знайдіть значення виразу: log9 100 · lg 3.

Підстава та аргумент першого логарифму — точні ступені. Запишемо це і позбудемося показників:

Тепер позбудемося десяткового логарифму, перейшовши до нової основи:

Основне логарифмічне тотожність

Часто в процесі рішення потрібно представити число як логарифм на задану основу. У цьому випадку нам допоможуть формули:

У першому випадку число n стає показником ступеня, що стоїть у аргументі. Число n може бути абсолютно будь-яким, адже це просто значення логарифму.

Друга формула – це фактично перефразоване визначення. Вона і називається: .

Справді, що буде, якщо число b звести на такий ступінь, що число b у цій мірі дає число a? Правильно: вийде це саме число a. Уважно прочитайте цей абзац ще раз — багато хто на ньому «зависає».

Подібно до формул переходу до нової основи, основна логарифмічна тотожність іноді буває єдино можливим рішенням.

Завдання. Знайдіть значення виразу:

Зауважимо, що log25 64 = log5 8 — просто винесли квадрат із підстави та аргументу логарифму. Враховуючи правила множення ступенів з однаковою основою, отримуємо:

Якщо хтось не в курсі, це було справжнє завдання з ЄДІ 🙂

Логарифмічна одиниця та логарифмічний нуль

Насамкінець наведу дві тотожності, які складно назвати властивостями — швидше, це наслідки з визначення логарифму. Вони постійно зустрічаються у завданнях і, що дивно, створюють проблеми навіть для «просунутих» учнів.

  1. logaa = 1 – це. Запам'ятайте раз і назавжди: логарифм з будь-якої основи a від самої цієї основи дорівнює одиниці.
  2. loga 1 = 0 це. Підстава a може бути будь-якою, але якщо в аргументі стоїть одиниця — логарифм дорівнює нулю! Тому що a0 = 1 — це прямий наслідок визначення.

Ось і всі властивості. Обов'язково потренуйтеся застосовувати їх на практиці! Скачайте шпаргалку на початку уроку, роздрукуйте її і вирішуйте завдання.

\(a^(b)=c\) \(\Leftrightarrow\) \(\log_(a)(c)=b\)

Пояснимо простіше. Наприклад, \(\log_(2)(8)\) дорівнює ступеня, в яку треба звести \(2\), щоб отримати \(8\). Звідси відомо, що (log_(2)(8)=3).

Приклади:

\(\log_(5)(25)=2\)

т.к. \(5^(2)=25\)

\(\log_(3)(81)=4\)

т.к. \ (3 ^ (4) = 81 \)

\(\log_(2)\)\(\frac(1)(32)\) \(=-5\)

т.к. \(2^(-5)=\)\(\frac(1)(32)\)

Аргумент та основа логарифму

Будь-який логарифм має таку «анатомію»:

Аргумент логарифму зазвичай пишеться з його рівні, а основа - підрядковим шрифтом ближче до знаку логарифму. А читається цей запис так: «логарифм двадцяти п'яти на підставі п'ять».

Як визначити логарифм?

Щоб обчислити логарифм – потрібно відповісти на запитання: в який ступінь слід звести основу, щоб отримати аргумент?

Наприклад, обчисліть логарифм: а) \(\log_(4)(16)\) б) \(\log_(3)\)\(\frac(1)(3)\) в) \(\log_(\sqrt (5))(1)\) г) \(\log_(\sqrt(7))(\sqrt(7))\) д) \(\log_(3)(\sqrt(3))\)

а) В який ступінь треба звести (4), щоб отримати (16)? Вочевидь у другу. Тому:

\(\log_(4)(16)=2\)

\(\log_(3)\)\(\frac(1)(3)\) \(=-1\)

в) В який ступінь треба звести (sqrt(5)), щоб отримати (1)? А який рівень робить будь-яке число одиницею? Нуль, звичайно!

\(\log_(\sqrt(5))(1)=0\)

г) В який ступінь треба звести \(\sqrt(7)\), щоб отримати \(\sqrt(7)\)? У першу - будь-яке число в першому ступені дорівнює самому собі.

\(\log_(\sqrt(7))(\sqrt(7))=1\)

д) В який ступінь треба звести (3), щоб отримати (sqrt (3))? З ми знаємо, що - це дробовий ступінь, і значить квадратний корінь - це ступінь \(\frac(1)(2)\).

\(\log_(3)(\sqrt(3))=\)\(\frac(1)(2)\)

приклад : Обчислити логарифм \(\log_(4\sqrt(2))(8)\)

Рішення :

\(\log_(4\sqrt(2))(8)=x\)

Нам треба знайти значення логарифму, позначимо його за ікс. Тепер скористаємося визначенням логарифму:
\(\log_(a)(c)=b\) \(\Leftrightarrow\) \(a^(b)=c\)

\((4\sqrt(2))^(x)=8\)

Що пов'язує \(4\sqrt(2)\) і \(8\)? Двійка, тому що і те, і інше число можна уявити двійки:
\(4=2^(2)\) \(\sqrt(2)=2^(\frac(1)(2))\) \(8=2^(3)\)

\(((2^(2)\cdot2^(\frac(1)(2))))^(x)=2^(3)\)

Зліва скористаємось властивостями ступеня: \(a^(m)\cdot a^(n)=a^(m+n)\) та \((a^(m))^(n)=a^(m\cdot n)\)

\(2^(\frac(5)(2)x)=2^(3)\)

Підстави рівні, переходимо до рівності показників

\(\frac(5x)(2)\) \(=3\)


Помножимо обидві частини рівняння на \(\frac(2)(5)\)


Корінь, що вийшов, і є значення логарифму

Відповідь : \(\log_(4\sqrt(2))(8)=1,2\)

Навіщо вигадали логарифм?

Щоб це зрозуміти, розв'яжемо рівняння: \(3^(x)=9\). Просто підберіть \(x\), щоб рівність спрацювала. Звичайно, (x = 2).

А тепер розв'яжіть рівняння: \(3^(x)=8\).Чому дорівнює ікс? Ось у тому й справа.

Найдогадливіші скажуть: «ікс трохи менше двох». А як точно записати це число? Для відповіді це питання і придумали логарифм. Завдяки йому відповідь тут можна записати як \(x=\log_(3)(8)\).

Хочу наголосити, що \(\log_(3)(8)\), як і будь-який логарифм - це просто число. Так, виглядає незвично, зате коротко. Тому що, якби ми захотіли записати його у вигляді десяткового дробу, воно виглядало б ось так: \(1,892789260714.....\)

приклад : Розв'яжіть рівняння \(4^(5x-4)=10\)

Рішення :

\(4^(5x-4)=10\)

\(4^(5x-4)\) і \(10\) жодної підстави не привести. Значить, тут не обійтися без логарифму.

Скористаємося визначенням логарифму:
\(a^(b)=c\) \(\Leftrightarrow\) \(\log_(a)(c)=b\)

\(\log_(4)(10)=5x-4\)

Дзеркально перевернемо рівняння, щоб ікс був ліворуч

\(5x-4=\log_(4)(10)\)

Перед нами. Перенесемо (4) праворуч.

І не лякайтеся логарифму, ставтеся до нього як до звичайного числа.

\(5x=\log_(4)(10)+4\)

Поділимо рівняння на 5

\(x=\)\(\frac(\log_(4)(10)+4)(5)\)


Ось наш корінь. Так, виглядає незвично, але відповіді не обирають.

Відповідь : \(\frac(\log_(4)(10)+4)(5)\)

Десятковий та натуральний логарифми

Як зазначено у визначенні логарифму, його основою може бути будь-яке позитивне число, крім одиниці ((a>0, a\neq1)). І серед усіх можливих підстав є два такі часто, що для логарифмів з ними придумали особливий короткий запис:

Натуральний логарифм: логарифм, у якого основа - число Ейлера (e) (рівне приблизно (2,7182818 ...)), і записується такий логарифм як (ln (a)).

Тобто, \(\ln(a)\) це те саме, що і \(\log_(e)(a)\)

Десятковий логарифм: логарифм, у якого основа дорівнює 10, записується \(\lg(a)\).

Тобто, \(\lg(a)\) це те саме, що і \(\log_(10)(a)\), де (a) - деяке число.

Основне логарифмічне тотожність

У логарифмів є багато властивостей. Одне з них носить назву «Основна логарифмічна тотожність» і виглядає так:

\(a^(\log_(a)(c))=c\)

Ця властивість випливає безпосередньо з визначення. Подивимося, як саме ця формула з'явилася.

Згадаймо короткий запис визначення логарифму:

якщо \(a^(b)=c\), то \(\log_(a)(c)=b\)

Тобто, \(b\) - це теж саме, що \(\log_(a)(c)\). Тоді ми можемо у формулі \(a^(b)=c\) написати \(\log_(a)(c)\) замість \(b\). Вийшло \(a^(\log_(a)(c))=c\) – основна логарифмічна тотожність.

Інші властивості логарифмів ви можете знайти. З їх допомогою можна спрощувати та обчислювати значення виразів з логарифмами, які «в лоб» порахувати складно.

приклад : Знайдіть значення виразу \(36^(\log_(6)(5))\)

Рішення :

Відповідь : \(25\)

Як записати число у вигляді логарифму?

Як було сказано вище – будь-який логарифм це число. Вірно і зворотне: будь-яке число може бути записане як логарифм. Наприклад, ми знаємо, що \(\log_(2)(4)\) дорівнює двом. Тоді можна замість двійки писати \(\log_(2)(4)\).

Але \(\log_(3)(9)\) теж дорівнює \(2\), значить, також можна записати \(2=\log_(3)(9)\). Аналогічно і з (log_(5)(25)\), і з (log_(9)(81)\), і т.д. Тобто виходить

\(2=\log_(2)(4)=\log_(3)(9)=\log_(4)(16)=\log_(5)(25)=\log_(6)(36)=\ log_(7)(49)...\)

Таким чином, якщо нам потрібно, ми можемо будь-де (хоч у рівнянні, хоч у виразі, хоч у нерівності) записувати двійку як логарифм з будь-якою основою – просто як аргумент пишемо основу в квадраті.

Так само і з трійкою – її можна записати як \(\log_(2)(8)\), або як \(\log_(3)(27)\), або як \(\log_(4)(64) \) ... Тут ми як аргумент пишемо основу в кубі:

\(3=\log_(2)(8)=\log_(3)(27)=\log_(4)(64)=\log_(5)(125)=\log_(6)(216)=\ log_(7)(343)...\)

І з четвіркою:

\(4=\log_(2)(16)=\log_(3)(81)=\log_(4)(256)=\log_(5)(625)=\log_(6)(1296)=\ log_(7)(2401)...\)

І з мінус одиницею:

\(-1=\) \(\log_(2)\)\(\frac(1)(2)\) \(=\) \(\log_(3)\)\(\frac(1)( 3)\) \(=\) \(\log_(4)\)\(\frac(1)(4)\) \(=\) \(\log_(5)\)\(\frac(1) )(5)\) \(=\) \(\log_(6)\)\(\frac(1)(6)\) \(=\) \(\log_(7)\)\(\frac (1)(7)\) \(...\)

І з однієї третьої:

\(\frac(1)(3)\) \(=\log_(2)(\sqrt(2))=\log_(3)(\sqrt(3))=\log_(4)(\sqrt( 4))=\log_(5)(\sqrt(5))=\log_(6)(\sqrt(6))=\log_(7)(\sqrt(7))...\)

Будь-яке число \(a\) може бути представлене як логарифм з основою \(b\): \(a=\log_(b)(b^(a))\)

приклад : Знайдіть значення виразу \(\frac(\log_(2)(14))(1+\log_(2)(7))\)

Рішення :

Відповідь : \(1\)

Логарифмом позитивного числа b на підставі a (a>0, a не дорівнює 1) називають таке число с, що a c = b: log a b = c ⇔ a c = b (a > 0, a ≠ 1, b > 0) nbsp nbsp nbsp

Зверніть увагу: логарифм від позитивного числа не визначено. Крім того, в основі логарифму має бути позитивне число, не рівне 1. Наприклад, якщо ми зведемо -2 у квадрат, отримаємо число 4, але це не означає, що логарифм на підставі -2 від 4 дорівнює 2.

Основне логарифмічне тотожність

a log a b = b (a > 0, a ≠ 1) (2)

Важливо, що області визначення правої та лівої частин цієї формули відрізняються. Ліва частина визначена тільки за b>0, a>0 і a ≠ 1. Права частина визначена за будь-якого b, а від a взагалі не залежить. Таким чином, застосування основної логарифмічної "тотожності" при вирішенні рівнянь та нерівностей може призвести до зміни ОДЗ.

Два очевидні наслідки визначення логарифму

log a a = 1 (a > 0, a ≠ 1) (3)
log a 1 = 0 (a > 0, a ≠ 1) (4)

Дійсно, при зведенні числа a в першу міру ми отримаємо те саме число, а при зведенні в нульовий ступінь - одиницю.

Логарифм твору та логарифм приватного

log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0) (5)

Log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0) (6)

Хотілося б застерегти школярів від бездумного застосування даних формул під час вирішення логарифмічних рівнянь та нерівностей. При їх використанні "зліва направо" відбувається звуження ОДЗ, а при переході від суми чи різниці логарифмів до логарифму твору або приватного - розширення ОДЗ.

Дійсно, вираз log a (f (x) g (x)) визначено у двох випадках: коли обидві функції суворо позитивні або коли f (x) і g (x) обидві менше від нуля.

Перетворюючи цей вираз у суму log a f (x) + log a g (x) , ми змушені обмежуватися лише випадком, коли f(x)>0 і g(x)>0. В наявності звуження області допустимих значень, а це категорично неприпустимо, тому що може призвести до втрати рішень. Аналогічна проблема існує й у формули (6).

Ступінь можна виносити за знак логарифму

log a b p = p log a b (a > 0, a ≠ 1, b > 0) (7)

І знову хотілося б покликати до акуратності. Розглянемо наступний приклад:

Log a (f(x) 2 = 2 log a f(x)

Ліва частина рівності визначена, очевидно, за всіх значень f(х), крім нуля. Права частина - тільки за f(x)>0! Виносячи ступінь із логарифму, ми знову звужуємо ОДЗ. Зворотна процедура призводить до розширення області допустимих значень. Всі ці зауваження стосуються не тільки ступеня 2, але й будь-якого парного ступеня.

Формула переходу до нової основи

log a b = log c b log ca (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1) (8)

Той рідкісний випадок, коли ОДЗ не змінюється під час перетворення. Якщо ви розумно вибрали основу з (позитивна і не рівна 1), формула переходу до нової основи є абсолютно безпечною.

Якщо в якості нової підстави вибрати число b, отримаємо важливий окремий випадок формули (8):

Log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1) (9)

Декілька простих прикладів з логарифмами

Приклад 1. Обчисліть: lg2 + lg50.
Рішення. lg2 + lg50 = lg100 = 2. Ми скористалися формулою суми логарифмів (5) та визначенням десяткового логарифму.


Приклад 2. Розрахуйте: lg125/lg5.
Рішення. lg125/lg5 = log 5 125 = 3. Ми використали формулу переходу до нової основи (8).

Таблиця формул, пов'язаних із логарифмами

a log a b = b (a > 0, a ≠ 1)
log a a = 1 (a > 0, a ≠ 1)
log a 1 = 0 (a > 0, a ≠ 1)
log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b p = p log a b (a > 0, a ≠ 1, b > 0)
log a b = log c b log ca (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1)
log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1)