Знайти найменше загальне кратне 10 12 30. Найбільший спільний дільник та найменше загальне кратне

Розглянемо три способи знаходження найменшого загального кратного.

Знаходження шляхом розкладання на множники

Перший спосіб полягає у знаходженні найменшого загального кратного шляхом розкладання даних чисел на прості множники.

Допустимо, нам потрібно знайти НОК чисел: 99, 30 і 28. Для цього розкладемо кожне з цих чисел на прості множники:

Щоб число ділилося на 99, на 30 і на 28, необхідно і достатньо, щоб до нього входили всі прості множники цих дільників. Для цього нам необхідно взяти всі прості множники цих чисел найбільшою мірою, що зустрічається, і перемножити їх між собою:

2 2 · 3 2 · 5 · 7 · 11 = 13 860

Таким чином, НОК (99, 30, 28) = 13860. Ніяке інше число менше 13860 не ділиться націло на 99, на 30 і на 28.

Щоб знайти найменше загальне кратне даних чисел, потрібно розкласти їх на прості множники, потім взяти кожен простий множник із найбільшим показником ступеня, з яким він зустрічається, та перемножити ці множники між собою.

Оскільки взаємно прості числа немає загальних простих множників, їх найменше загальне кратне дорівнює добутку цих чисел. Наприклад, три числа: 20, 49 та 33 – взаємно прості. Тому

НОК (20, 49, 33) = 20 · 49 · 33 = 32340.

Так само треба робити, коли знаходиться найменше загальне кратне різних простих чисел. Наприклад, НОК (3, 7, 11) = 3 · 7 · 11 = 231.

Знаходження шляхом підбору

Другий спосіб полягає у знаходженні найменшого загального кратного шляхом підбору.

Приклад 1. Коли найбільше з цих чисел ділиться націло інші дані числа, то НОК цих чисел дорівнює більшому їх. Наприклад, дано чотири числа: 60, 30, 10 та 6. Кожне з них ділиться націло на 60, отже:

НОК (60, 30, 10, 6) = 60

В інших випадках, щоб знайти найменше загальне кратне, використовується наступний порядок дій:

  1. Визначаємо найбільше з даних чисел.
  2. Далі знаходимо числа, кратні найбільшому числу, множачи його на натуральні числа в порядку їх зростання і перевіряючи чи діляться на отриманий твір інші дані числа.

Приклад 2. Дано три числа 24, 3 і 18. Визначаємо найбільше з них - це число 24. Далі знаходимо числа кратні 24, перевіряючи чи ділиться кожне з них на 18 і 3:

24 · 1 = 24 – ділиться на 3, але не ділиться на 18.

24 · 2 = 48 – ділиться на 3, але не ділиться на 18.

24 · 3 = 72 - ділиться на 3 та на 18.

Отже, НОК (24, 3, 18) = 72.

Знаходження шляхом послідовного знаходження НОК

Третій спосіб полягає у знаходженні найменшого загального кратного шляхом послідовного знаходження НОК.

НОК двох цих чисел дорівнює добутку цих чисел, поділеного з їхньої найбільший спільний дільник.

Приклад 1. Знайдемо НОК двох даних чисел: 12 та 8. Визначаємо їх найбільший спільний дільник: НОД (12, 8) = 4. Перемножуємо дані числа:

Ділимо твір на їхній НОД:

Отже, НОК (12, 8) = 24.

Щоб знайти НОК трьох чи більше чисел використовується наступний порядок дій:

  1. Спочатку знаходять НОК якихось двох із цих чисел.
  2. Потім НОК знайденого найменшого загального кратного і третього даного числа.
  3. Потім НОК отриманого найменшого загального кратного і четвертого числа і т.д.
  4. Таким чином, пошук НОК триває до тих пір, поки є числа.

Приклад 2. Знайдемо НОК трьох даних чисел: 12, 8 та 9. НОК чисел 12 та 8 ми вже знайшли у попередньому прикладі (це число 24). Залишилося знайти найменше загальне кратне числа 24 та третього даного числа - 9. Визначаємо їх найбільший спільний дільник: НОД (24, 9) = 3. Перемножуємо НОК з числом 9:

Ділимо твір на їхній НОД:

Отже, НОК (12, 8, 9) = 72.

Тема «Кратні числа» вивчається у 5 класі загальноосвітньої школи. Її метою є вдосконалення письмових та усних навичок математичних обчислень. На цьому уроці вводяться нові поняття – «кратні числа» та «ділителі», відпрацьовується техніка знаходження дільників та кратних натурального числа, уміння знаходити НОК у різний спосіб.

Ця тема є дуже важливою. Знання з неї можна застосувати під час вирішення прикладів з дробами. Для цього необхідно знайти спільний знаменник шляхом розрахунку найменшого загального кратного (НОК).

Кратним А вважається ціле число, яке ділиться на А без решти.

Кожне натуральне число має нескінченну кількість кратних чисел. Найменшим вважається воно саме. Кратне не може бути менше самого числа.

Потрібно довести, що число 125 кратне числу 5. Для цього потрібно перше число поділити на друге. Якщо 125 ділиться на 5 без залишку, то відповідь позитивна.

Даний спосіб застосовується для невеликих чисел.

При розрахунку НОК трапляються особливі випадки.

1. Якщо потрібно знайти загальне кратне для 2-х чисел (наприклад, 80 і 20), де одне з них (80) ділиться без залишку на інше (20), то це число (80) і є найменше кратне цих двох чисел.

НОК (80, 20) = 80.

2. Якщо два немає спільного дільника, можна сказати, що й НОК - це твір цих двох чисел.

НОК (6, 7) = 42.

Розглянемо останній приклад. 6 та 7 по відношенню до 42 є дільниками. Вони ділять кратне число без залишку.

У цьому прикладі 6 та 7 є парними дільниками. Їх добуток дорівнює самому кратному числу (42).

Число називається простим, якщо ділиться тільки на себе або на 1 (3:1=3; 3:3=1). Інші називаються складовими.

В іншому прикладі слід визначити, чи є 9 дільником по відношенню до 42.

42: 9 = 4 (залишок 6)

Відповідь: 9 не є дільником числа 42, тому що у відповіді є решта.

Дільник відрізняється від кратного тим, що дільник - це число, яким ділять натуральні числа, а кратне саме ділиться цього число.

Найбільший спільний дільник чисел aі b, помножений на їх найменше кратне, дасть добуток самих чисел aі b.

А саме: НОД(а, b) х НОК(а, b) = а х b.

Загальні кратні числа більш складних чисел знаходять в такий спосіб.

Наприклад, знайти НОК для 168, 180, 3024.

Ці числа розкладаємо на прості множники, записуємо у вигляді добутку ступенів:

168 = 2?х3?х7?

2⁴х3³х5¹х7¹=15120

НОК (168, 180, 3024) = 15120.

Друге число: b=

Розділювач розрядівБез роздільника пропуск " ´

Результат:

Найбільший спільний дільник НОД( a,b)=6

Найменше загальне кратне НОК( a,b)=468

Найбільше натуральне число, яке діляться без залишку числа a і b, називається найбільшим спільним дільником(НД) цих чисел. Позначається НОД(a,b), (a,b), gcd(a,b) або hcf(a,b).

Найменше загальне кратне(НОК) двох цілих чисел a та b є найменше натуральне число, яке ділиться на a та b без залишку. Позначається НОК(a,b), або lcm(a,b).

Цілі числа a та b називаються взаємно простимиякщо вони не мають жодних спільних дільників крім +1 і −1.

Найбільший спільний дільник

Нехай дані два позитивні числа a 1 і a 2 1). Потрібно знайти спільний дільник цих чисел, тобто. знайти таке число λ , яке ділить числа a 1 і a 2 одночасно. Опишемо алгоритм.

1) У цій статті під словом число будемо розуміти ціле число.

Нехай a 1 ≥ a 2 , і нехай

де m 1 , a 3 деякі цілі числа, a 3 <a 2 (залишок від розподілу a 1 на a 2 має бути менше a 2).

Припустимо, що λ ділить a 1 і a 2 , тоді λ ділить m 1 a 2 та λ ділить a 1 −m 1 a 2 =a 3 (Затвердження 2 статті "Дільність чисел. Ознака ділимості"). Звідси випливає, що кожен спільний дільник a 1 і a 2 є спільним дільником a 2 та a 3 . Справедливе і протилежне, якщо λ спільний дільник a 2 та a 3 , то m 1 a 2 та a 1 =m 1 a 2 +a 3 також поділяються на λ . Отже спільний дільник a 2 та a 3 є також спільний дільник a 1 і a 2 . Так як a 3 <a 2 ≤a 1 , то можна сказати, що розв'язання задачі знаходження загального дільника чисел a 1 і a 2 зведено до більш простого завдання знаходження загального дільника чисел a 2 та a 3 .

Якщо a 3 ≠0, то можна розділити a 2 на a 3 . Тоді

,

де m 1 і a 4 деякі цілі числа, ( a 4 залишок від розподілу a 2 на a 3 (a 4 <a 3)). Подібними міркуваннями ми приходимо до висновку, що спільні дільники чисел a 3 та a 4 збігаються із загальними дільниками чисел a 2 та a 3 , а також із спільними дільниками a 1 і a 2 . Так як a 1 , a 2 , a 3 , a 4 , ... числа, що постійно зменшуються, і так як існує кінцева кількість цілих чисел між a 2 і 0, то на якомусь кроці n, залишок від ділення a n на a n+1 дорівнюватиме нулю ( a n+2 = 0).

.

Кожен спільний дільник λ чисел a 1 і a 2 також дільник чисел a 2 та a 3 , a 3 та a 4 , .... a n та a n+1. Справедливо та зворотне, спільні дільники чисел a n та a n+1 є також дільниками чисел a n−1 та a n, ...., a 2 та a 3 , a 1 і a 2 . Але спільний дільник чисел a n та a n+1 є число a n+1, т.к. a n та a n+1 без залишку поділяються на a n+1 (згадаймо, що a n+2 = 0). Отже a n+1 є і дільником чисел a 1 і a 2 .

Зазначимо, що число a n+1 є найбільшим дільником чисел a n та a n+1 , оскільки найбільший дільник a n+1 є сам a n+1. Якщо a n+1 можна як твори цілих чисел, то ці числа також є загальними дільниками чисел a 1 і a 2 . Число a n+1 називають найбільшим спільним дільникомчисел a 1 і a 2 .

Числа a 1 і a 2 може бути як позитивними, і негативними числами. Якщо один із чисел дорівнює нулю, то найбільший загальний дільник цих чисел дорівнюватиме абсолютній величині іншого числа. Найбільшого загального дільника нульових чисел не визначено.

Вищевикладений алгоритм називається алгоритмом Евклідадля знаходження найбільшого спільного дільника двох цілих чисел.

Приклад знаходження найбільшого спільного дільника двох чисел

Знайти найбільший спільний дільник двох чисел 630 та 434.

  • Крок 1. Ділимо число 630 на 434. Залишок 196.
  • Крок 2. Ділимо число 434 на 196. Залишок 42.
  • Крок 3. Ділимо число 196 на 42. Залишок 28.
  • Крок 4. Ділимо число 42 на 28. Залишок 14.
  • Крок 5. Ділимо число 28 на 14. Залишок 0.

На кроці 5 залишок від розподілу дорівнює 0. Отже, найбільший загальний дільник чисел 630 і 434 дорівнює 14. Зауважимо, що числа 2 і 7 також є дільниками чисел 630 і 434.

Взаємно прості числа

Визначення 1. Нехай найбільший спільний дільник чисел a 1 і a 2 дорівнює одиниці. Тоді ці числа називаються взаємно простими числами, що не мають спільного дільника

Теорема 1. Якщо a 1 і a 2 взаємно прості числа, а λ якесь число, то будь-який спільний дільник чисел λa 1 і a 2 є також загальним дільником чисел λ і a 2 .

Доведення. Розглянемо алгоритм Евкліда знаходження найбільшого спільного дільника чисел a 1 і a 2 (див. вище).

.

З умови теореми випливає, що найбільшим спільним дільником чисел a 1 і a 2 , і отже a n та a n+1 є 1. Тобто. a n+1 =1.

Помножимо всі ці рівності на λ тоді

.

Нехай спільний дільник a 1 λ і a 2 є δ . Тоді δ входить множником у a 1 λ , m 1 a 2 λ і в a 1 λ -m 1 a 2 λ =a 3 λ (Див. "Дільність чисел",Твердження 2). Далі δ входить множником у a 2 λ і m 2 a 3 λ , і, отже, входить множником у a 2 λ -m 2 a 3 λ =a 4 λ .

Розмірковуючи так ми переконуємось, що δ входить множником у a n−1 λ і m n−1 a n λ , і, отже, в a n−1 λ m n−1 a n λ =a n+1 λ . Так як a n+1 =1, то δ входить множником у λ . Отже число δ є спільним дільником чисел λ і a 2 .

Розглянемо окремі випадки теореми 1.

Слідство 1. Нехай aі cпрості числа щодо b. Тоді їхній твір acє простим числом щодо b.

Справді. З теореми 1 acі bмають тих же спільних дільників, що й cі b. Але числа cі bвзаємно прості, тобто. мають єдиний спільний дільник 1. acі bтакож мають єдиний спільний дільник 1. Отже acі bвзаємно прості.

Слідство 2. Нехай aі bвзаємно прості числа та нехай bділить ak. Тоді bділить і k.

Справді. З умови затвердження akі bмають спільний дільник b. У силу теореми 1, bмає бути спільним дільником bі k. Отже bділить k.

Наслідок 1 можна узагальнити.

Слідство 3. 1. Нехай числа a 1 , a 2 , a 3 , ..., a m прості щодо числа b. Тоді a 1 a 2 , a 1 a 2 · a 3 , ..., a 1 a 2 a 3 ··· a m , добуток цих чисел простий щодо числа b.

2. Нехай маємо два ряди чисел

таких, що кожне число першого ряду просте по відношенню до кожного числа другого ряду. Тоді твір

Потрібно знайти такі числа, які поділяються на кожне із цих чисел.

Якщо число ділиться на a 1 , то воно має вигляд sa 1 , де sякесь число. Якщо qє найбільший спільний дільник чисел a 1 і a 2 , то

де s 1 - деяке ціле число. Тоді

є найменшим загальним кратним чисел a 1 і a 2 .

a 1 і a 2 взаємно прості, то найменше загальне кратне чисел a 1 і a 2:

Потрібно знайти найменше загальне кратне цих чисел.

З вищевикладеного випливає, що будь-яке кратне чисел a 1 , a 2 , a 3 має бути кратним чисел ε і a 3 і назад. Нехай найменше загальне кратне чисел ε і a 3 є ε 1 . Далі, кратне чисел a 1 , a 2 , a 3 , a 4 має бути кратним чисел ε 1 і a 4 . Нехай найменше загальне кратне чисел ε 1 і a 4 є ε 2 . Таким чином з'ясували, що всі кратні чисел a 1 , a 2 , a 3 ,...,a m збігаються з кратними деякого певного числа ε n, яке називають найменшим загальним кратним даних чисел.

В окремому випадку, коли числа a 1 , a 2 , a 3 ,...,a m взаємно прості, то найменше загальне кратне чисел a 1 , a 2 як було показано вище має вигляд (3). Далі, оскільки a 3 просте по відношенню до чисел a 1 , a 2 , тоді a 3 просте стосовно числа a 1 · a 2 (Наслідок 1). Значить найменше загальне кратне чисел a 1 ,a 2 ,a 3 є число a 1 · a 2 · a 3 . Розмірковуючи аналогічним чином, ми приходимо до наступних тверджень.

Твердження 1. Найменше загальне кратне взаємно простих чисел a 1 , a 2 , a 3 ,...,a m дорівнює їхньому твору a 1 · a 2 · a 3 ··· a m.

Твердження 2. Будь-яке число, яке ділиться на кожне із взаємно простих чисел a 1 , a 2 , a 3 ,...,a m ділиться також на їх твір a 1 · a 2 · a 3 ··· a m.

Продовжимо розмову про найменше спільне кратне, яке ми розпочали у розділі «НОК – найменше загальне кратне, визначення, приклади». У цій темі ми розглянемо способи знаходження НОК для трьох чисел і більше, розберемо питання, як знайти НОК негативного числа.

Yandex.RTB R-A-339285-1

Обчислення найменшого загального кратного (НОК) через НОД

Ми вже встановили зв'язок найменшого загального кратного із найбільшим спільним дільником. Тепер навчимося визначати НОК через НОД. Спочатку розберемося, як це робити для позитивних чисел.

Визначення 1

Знайти найменше загальне кратне через найбільший спільний дільник можна за формулою НОК (a, b) = a · b: НОД (a, b).

Приклад 1

Необхідно знайти НОК чисел 126 та 70 .

Рішення

Приймемо a = 126, b = 70. Підставимо значення у формулу обчислення найменшого загального кратного через найбільший спільний дільник НОК (a, b) = a · b: НОД (a, b).

Знайде НОД чисел 70 та 126 . Для цього нам знадобиться алгоритм Евкліда: 126 = 70 · 1 + 56, 70 = 56 · 1 + 14, 56 = 14 · 4, отже, НОД (126 , 70) = 14 .

Обчислимо НОК: НОК (126, 70) = 126 · 70: НОД (126, 70) = 126 · 70: 14 = 630.

Відповідь:НОК (126, 70) = 630 .

Приклад 2

Знайдіть число 68 і 34 .

Рішення

НОД у разі нейти нескладно, оскільки 68 ділиться на 34 . Обчислимо найменше загальне кратне за формулою: НОК (68, 34) = 68 · 34: НОД (68, 34) = 68 · 34: 34 = 68.

Відповідь:НОК (68, 34) = 68 .

У цьому прикладі ми використовували правило знаходження найменшого загального кратного для цілих позитивних чисел a і b: якщо перше число ділиться на друге, що НОК цих чисел дорівнюватиме першому числу.

Знаходження НОК за допомогою розкладання чисел на прості множники

Тепер давайте розглянемо спосіб знаходження НОК, який ґрунтується на розкладанні чисел на прості множники.

Визначення 2

Для знаходження найменшого загального кратного нам знадобиться виконати низку нескладних дій:

  • складаємо добуток всіх простих множників чисел, для яких нам потрібно знайти НОК;
  • виключаємо їх отриманих творів усі прості множники;
  • отриманий після виключення загальних простих множників твір дорівнюватиме НОК даних чисел.

Цей спосіб знаходження найменшого загального кратного заснований на рівні НОК (a, b) = a · b: НОД (a, b). Якщо подивитися на формулу, то стане зрозуміло: добуток чисел a та b дорівнює добутку всіх множників, які беруть участь у розкладанні цих двох чисел. При цьому НОД двох чисел дорівнює добутку всіх простих множників, які одночасно присутні в розкладах на множники цих двох чисел.

Приклад 3

У нас є два числа 75 та 210 . Ми можемо розкласти їх на множники так: 75 = 3 · 5 · 5і 210 = 2 · 3 · 5 · 7. Якщо скласти добуток всіх множників двох вихідних чисел, то вийде: 2 · 3 · 3 · 5 · 5 · 5 · 7.

Якщо виключити загальні для обох чисел множники 3 і 5 ми отримаємо твір наступного виду: 2 · 3 · 5 · 5 · 7 = 1050. Цей твір буде нашим НОК для чисел 75 і 210 .

Приклад 4

Знайдіть НОК чисел 441 і 700 , розклавши обидва числа на прості множники

Рішення

Знайдемо всі прості множники чисел, даних за умови:

441 147 49 7 1 3 3 7 7

700 350 175 35 7 1 2 2 5 5 7

Отримуємо два ланцюжки чисел: 441 = 3 · 3 · 7 · 7 і 700 = 2 · 2 · 5 · 5 · 7 .

Добуток усіх множників, які брали участь у розкладанні даних чисел, матиме вигляд: 2 · 2 · 3 · 3 · 5 · 5 · 7 · 7 · 7. Знайдемо спільні множники. Це число 7. Виключимо його із загального твору: 2 · 2 · 3 · 3 · 5 · 5 · 7 · 7. Виходить, що НОК (441, 700) = 2 · 2 · 3 · 3 · 5 · 5 · 7 · 7 = 44 100.

Відповідь:НОК (441, 700) = 44 100 .

Дамо ще одне формулювання методу знаходження НОК шляхом розкладання чисел на прості множники.

Визначення 3

Раніше ми виключали з усієї кількості множників спільні для обох чисел. Тепер ми зробимо інакше:

  • розкладемо обидва числа на прості множники:
  • додамо до твору простих множників першого числа відсутні множники другого числа;
  • отримаємо твір, який і буде шуканий НОК двох чисел.

Приклад 5

Повернемося до числа 75 і 210, для яких ми вже шукали НОК в одному з попередніх прикладів. Розкладемо їх на прості множники: 75 = 3 · 5 · 5і 210 = 2 · 3 · 5 · 7. До твору множників 3 , 5 5 числа 75 додамо відсутні множники 2 і 7 числа 210 . Отримуємо: 2 · 3 · 5 · 5 · 7 .Це і є НОК чисел 75 та 210 .

Приклад 6

Необхідно обчислити НОК чисел 84 та 648 .

Рішення

Розкладемо числа із умови на прості множники: 84 = 2 · 2 · 3 · 7і 648 = 2 · 2 · 2 · 3 · 3 · 3 · 3. Додамо до твору множників 2 , 2 , 3 7 числа 84 множники 2 , 3 , 3 і
3 числа 648 . Отримуємо твір 2 · 2 · 2 · 3 · 3 · 3 · 3 · 7 = 4536 .Це і є найменше загальне кратне чисел 84 і 648.

Відповідь:НОК (84, 648) = 4536.

Знаходження НОК трьох та більшої кількості чисел

Незалежно від того, з якою кількістю чисел ми маємо справу, алгоритм наших дій завжди буде однаковим: ми будемо послідовно знаходити НОК двох чисел. На цей випадок є теорема.

Теорема 1

Припустимо, що ми маємо цілі числа a 1 , a 2 , … , a k. НОК m kцих чисел перебуває при послідовному обчисленні m 2 = НОК (a 1 , a 2) , m 3 = НОК (m 2 , a 3) , … , m k = НОК (m k − 1 , a k) .

Тепер розглянемо, як можна застосовувати теорему на вирішення конкретних завдань.

Приклад 7

Необхідно обчислити найменше загальне кратне чотирьох чисел 140, 9, 54 та 250 .

Рішення

Введемо позначення: a1 = 140, a2 = 9, a3 = 54, a4 ​​= 250.

Почнемо з того, що обчислимо m 2 = НОК (a 1, a 2) = НОК (140, 9). Застосуємо алгоритм Евкліда для обчислення НОД чисел 140 і 9: 140 = 9 · 15 + 5, 9 = 5 · 1 + 4, 5 = 4 · 1 + 1, 4 = 1 · 4. Отримуємо: НОД (140, 9) = 1, НОК (140, 9) = 140 · 9: НОД (140, 9) = 140 · 9: 1 = 1260. Отже, m 2 = 1260 .

Тепер обчислимо за тим алгоритмом m 3 = НОК (m 2 , a 3) = НОК (1 260 , 54) . У результаті обчислень отримуємо m 3 = 3 780 .

Нам залишилося обчислити m4 = НОК (m3, a4) = НОК (3780, 250). Діємо за тим самим алгоритмом. Отримуємо m 4 = 94500 .

НОК чотирьох чисел із умови прикладу дорівнює 94500 .

Відповідь:НОК (140, 9, 54, 250) = 94500.

Як бачите, обчислення виходять нескладними, але досить трудомісткими. Щоб заощадити час, можна йти іншим шляхом.

Визначення 4

Пропонуємо вам наступний алгоритм дій:

  • розкладаємо всі числа на прості множники;
  • до твору множників першого числа додаємо множники, що відсутні, з твору другого числа;
  • до отриманого на попередньому етапі твору додаємо множники третього числа, що бракують, і т.д.;
  • отриманий твір буде найменшим загальним кратним усіх чисел з умови.

Приклад 8

Необхідно знайти НОК п'яти чисел 84, 6, 48, 7, 143.

Рішення

Розкладемо всі п'ять чисел на прості множники: 84 = 2 · 2 · 3 · 7, 6 = 2 · 3, 48 = 2 · 2 · 2 · 2 · 3, 7, 143 = 11 · 13 . Прості числа, яким є число 7 на прості множники не розкладаються. Такі числа збігаються зі своїми розкладанням на прості множники.

Тепер візьмемо добуток простих множників 2 , 2 , 3 і 7 числа 84 і додамо до них множники другого числа. Ми розклали число 6 на 2 та 3 . Ці множники вже є у творі першого числа. Отже, їх опускаємо.

Продовжуємо додавати відсутні множники. Переходимо до 48 , з добутку простих множників якого беремо 2 і 2 . Потім додаємо простий множник 7 від четвертого числа та множники 11 і 13 п'ятого. Отримуємо: 2 · 2 · 2 · 2 · 3 · 7 · 11 · 13 = 48 048 . Це і є найменша загальна кратність п'яти вихідних чисел.

Відповідь:НОК (84, 6, 48, 7, 143) = 48 048.

Знаходження найменшого загального кратного негативних чисел

Для того, щоб знайти найменше загальне кратне негативних чисел, ці числа необхідно спочатку замінити на числа з протилежним знаком, а потім провести обчислення за наведеними вище алгоритмами.

Приклад 9

НОК (54, -34) = НОК (54, 34), а НОК (-622, -46, -54, -888) = НОК (622, 46, 54, 888).

Такі дії допустимі у зв'язку з тим, що якщо прийняти, що aі − a- Протилежні числа,
то безліч кратних числа aзбігається з безліччю кратних числа − a.

Приклад 10

Необхідно обчислити НОК негативних чисел − 145 і − 45 .

Рішення

Зробимо заміну чисел − 145 і − 45 на протилежні їм числа 145 і 45 . Тепер за алгоритмом обчислимо НОК (145, 45) = 145 · 45: НОД (145, 45) = 145 · 45: 5 = 1305, попередньо визначивши НОД за алгоритмом Евкліда.

Отримаємо, що НОК чисел – 145 та − 45 одно 1 305 .

Відповідь:НОК (− 145 , − 45) = 1 305 .

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter