Як довести теорему піфагору. Пару слів про Піфагорові трійки

Анімаційний доказ теореми Піфагора – одна з основоположнихтеорем евклідової геометрії, що встановлює співвідношення між сторонами прямокутного трикутника. Вважається, що вона доведена грецьким математиком Піфагором, на честь якого її названо (є й інші версії, зокрема альтернативна думка, що ця теорема у загальному вигляді була сформульована математиком-піфагорійцем Гіппасом).
Теорема каже:

У прямокутному трикутнику площа квадрата, побудованого на гіпотенузі, дорівнює сумі площ квадратів, побудованих на катетах.

Позначивши довжину гіпотенузи трикутника c,а довжини катетів як aі b,отримаємо таку формулу:

Таким чином, теорема Піфагора встановлює співвідношення, яке дозволяє визначити сторону прямокутного трикутника, знаючи довжини двох інших. Теорема Піфагора є окремим випадком теореми косінусів, яка визначає співвідношення між сторонами довільного трикутника.
Також доведено зворотне твердження (називають також зворотну теорему Піфагора):

Для будь-яких трьох позитивних чисел a, b і c, таких, що a ? + b? = c?, Існує прямокутний трикутник з катетами a і b і гіпотенузою c.

Візуальний доказ трикутника (3, 4, 5) з книги «Чу Пей» 500-200 до н.е. Історію теореми можна розділити на чотири частини: знання про Піфагорові числа, знання про відношення сторін у прямокутному трикутнику, знання про відношення суміжних кутів та доказ теореми.
Мегалітичні споруди близько 2500 р. до н.е. в Єгипті та Північній Європі містять прямокутні трикутники зі сторонами з цілих чисел. Бартель Леендерт ван дер Варден висловив гіпотезу, що в ті часи Піфагорові числа було знайдено алгебраїчно.
Написаний між 2000 та 1876 до н.е. папірус часів Середнього Єгипетського царства Berlin 6619містить завдання розв'язанням якої є числа Піфагора.
За правління Хаммурапі Великого, вівілонська табличка Plimpton 322,написана між 1790 і 1750 е. містить багато записів тісно пов'язаних з числами Піфагора.
У сутрах Будхаяни, які датуються за різними версіями восьмою чи другою століть до н.е. в Індії, що містить Піфагорові числа виведені алгебраїчно, формулювання теореми Піфагора та геометричний доказ для рівнобедреного прямокутного трикутника.
У сутрах Апастамба (близько 600 е.) міститься числове підтвердження теореми Піфагора з допомогою обчислення площі. Ван дер Варден вважає, що він був заснований на традиціях попередників. Згідно з Альбертом Бурком, це оригінальний доказ теореми і він припускає, що Піфагор відвідав Араконам і скопіював його.
Піфагор, роки життя якого зазвичай вказують 569 - 475 до н. використовує алгебраїчні методи розрахунку піфагорових чисел, згідно з Прокловим коментарями до Евкліда. Прокл, однак, жив між 410 та 485 роками н.е. Згідно з Томасом Гізом, немає жодних вказівок на авторство теореми протягом п'яти століть після Піфагора. Однак, коли такі автори, як Плутарх або Цицерон, приписують теорему Піфагору, вони роблять це так, ніби авторство широко відоме і безсумнівне.
Близько 400 до зв. е. відповідно Прокла, Платон дав метод розрахунку піфагорових чисел, що поєднував алгебру та геометрію. Близько 300 до н.е. ПочаткахЄвкліда маємо найдавніший аксіоматичний доказ, який зберігся до наших днів.
Написані десь між 500 е. і 200 до н.е., китайська математична книга «Чу Пей» (? ? ? ?), дає візуальний доказ теореми Піфагора, яка в Китаї називається теорема гугу (????), для трикутника зі сторонами (3, 4, 5). Під час правління династії Хань, з 202 до н. до 220 н. Піфагорові числа з'являються у книзі «Дев'ять розділів математичного мистецтва» разом із згадкою про прямокутні трикутники.
Вперше зафіксовано використання теореми у Китаї, де вона відома як теорема гугу (????) та в Індії, де вона відома як теорема Баскара.
Багато хто дискутується була теорема Піфагора відкрита один раз або багаторазово. Бойєр (1991) вважає, що знання виявлені в Шульбі Сутра можуть бути месопотамського походження.
Алгебраїчний доказ
Квадрати утворюються із чотирьох прямокутних трикутників. Відомо понад сто доказів теореми Піфагора. Тут представлені докази засновані на теоремі існування площі фігури:

Розмістимо чотири однакові прямокутні трикутники так, як це зображено малюнку.
Чотирикутник зі сторонами cє квадратом, оскільки сума двох гострих кутів , а розгорнутий кут – .
Площа всієї фігури дорівнює, з одного боку, площі квадрата зі стороною «a + b», з другого – сумі площ чотирьох трикутників і внутрішнього квадрата.

Що й потрібно довести.
За подібністю трикутників
Використання таких трикутників. Нехай ABC- Прямокутний трикутник, в якому кут Cпрямий, як показано на малюнку. Проведемо висоту з точки C,і назвемо Hточку перетину зі стороною AB.Утворено трикутник ACHподібний до трикутника ABC,оскільки вони обидва прямокутні (за визначенням висоти), і вони мають загальний кут A,Вочевидь третій кут буде у цих трикутників також однаковий. Аналогічно міркуючи, трикутник CBHтакож подібний до трикутника ABC.З подоби трикутників: Якщо

Це можна записати у вигляді

Якщо додати ці дві рівності, отримаємо

HB + c times AH = c times (HB + AH) = c ^ 2, ! Src = "http://upload.wikimedia.org/math/7/0/9/70922f59b11b561621c245e11be0b61b.png" />

Іншими словами, теорема Піфагора:

Доказ Евкліда
Доказ Евкліда в евклідових "Початках", теорема Піфагора доведена методом паралелограмів. Нехай A, B, Cвершини прямокутного трикутника, з прямим кутом A.Опустимо перпендикуляр із крапки Aна протилежну сторону гіпотенузи в квадраті побудованому на гіпотенузі. Лінія ділить квадрат на два прямокутники, кожен з яких має таку ж площу, що квадрати побудовані на катетах. Головна ідея при доказі полягає в тому, що верхні квадрати перетворюються на паралелограми такої самої площі, а потім повертаються і перетворюються на прямокутники в нижньому квадраті і знову при незмінній площі.

Проведемо відрізки CFі AD,отримаємо трикутники BCFі BDA.
Кути CABі BAG- Прямі; відповідно точки C, Aі G- Колінеарні. Так само B, Aі H.
Кути CBDі FBA- Обидва прямі, тоді кут ABDдорівнює куту FBC,оскільки обидва є сумою прямого кута та кута ABC.
Трикутник ABDі FBCрівні з обох боків та кутку між ними.
Оскільки точки A, Kі L– колінеарні, площа прямокутника BDLK дорівнює двом площам трикутника ABD (BDLK = BAGF = AB 2)
Аналогічно міркуючи отримаємо CKLE = ACIH = AC 2
З одного боку площа CBDEдорівнює сумі площ прямокутників BDLKі CKLE,а з іншого боку площа квадрата BC 2,або AB 2 + AC 2 = BC 2.

Використовуючи диференціали
Використання диференціалів. Теоремі Піфагора можна прийти, якщо вивчати як приріст сторони впливає на ведичину гіпотенузи, як показано на малюнку праворуч і застосувати невелике обчислення.
Внаслідок приросту сторони a,з подібних трикутників для нескінченно малих прирощень

Інтегруючи отримаємо

Якщо a= 0 тоді c = b,так що "константа" - b 2.Тоді

Як можна побачити, квадрати отримані завдяки пропорції між прирощеннями та сторонами, тоді як сума є результатом незалежного вкладу приростів сторін, не очевидно з геометричних доказів. У цих рівняннях daі dc– відповідно нескінченно малі збільшення сторін aі c.Але замість них ми використовуємо? aі? c,тоді межа відношення, якщо вони прагнуть нуля дорівнює da / dc,похідна, а також дорівнює c / a,відношенню довжин сторін трикутників, в результаті одержуємо диференціальне рівняння.
У разі ортогональної системи векторів має місце рівність, яку також називають теоремою Піфагора:

Якщо – це проекції вектора на координатні осі, то ця формула збігається з відстанню Евкліда і означає, що довжина вектора дорівнює кореню квадратної суми квадратів його компонентів.
Аналог цієї рівності у разі нескінченної системи векторів називається рівності Парсеваля.

В одному можна бути впевненим на всі сто відсотків, що на питання, чому дорівнює квадрат гіпотенузи, будь-яка доросла людина сміливо відповість: «Сумі квадратів катетів». Ця теорема міцно засіла у свідомості кожної освіченої людини, але достатньо лише попросити когось її довести, і тут можуть виникнути складнощі. Тому давайте згадаємо і розглянемо різні методи підтвердження теореми Піфагора.

Короткий огляд біографії

Теорема Піфагора знайома практично кожному, але чомусь біографія людини, яка справила її на світ, не така популярна. Це можна виправити. Тому як вивчити різні методи підтвердження теореми Піфагора, необхідно коротко познайомитися з його особистістю.

Піфагор - філософ, математик, мислитель родом із Сьогодні дуже складно відрізнити його біографію від легенд, які склалися на згадку про цю велику людину. Але, як випливає з праць його послідовників, Піфагор Самоський народився на острові Самос. Його батько був звичайний каменеріз, а ось мати походила зі знатного роду.

Судячи з легенди, поява на світ Піфагора передбачила жінка на ім'я Піфія, на чию честь і назвали хлопчика. За її пророцтвом народжений хлопчик мав принести багато користі та добра людству. Що взагалі він і зробив.

Народження теореми

У юності Піфагор переїхав до Єгипту, щоб зустрітися там з відомими єгипетськими мудрецями. Після зустрічі з ними він був допущений до навчання, де й пізнав усі великі досягнення єгипетської філософії, математики та медицини.

Ймовірно, саме в Єгипті Піфагор надихнувся величністю та красою пірамід та створив свою велику теорію. Це може шокувати читачів, але сучасні історики вважають, що Піфагор не доводив своєї теорії. А лише передав своє знання послідовникам, які згодом і завершили всі необхідні математичні обчислення.

Як би там не було, сьогодні відома не одна методика доказу цієї теореми, а відразу кілька. Сьогодні залишається лише гадати, як саме давні греки робили свої обчислення, тому тут розглянемо різні способи доказу теореми Піфагора.

Теорема Піфагора

Перш ніж починати будь-які обчислення, потрібно з'ясувати, яку теорію доведеться довести. Теорема Піфагора звучить так: «У трикутнику, у якого один із кутів дорівнює 90 про, сума квадратів катетів дорівнює квадрату гіпотенузи».

Усього існує 15 різних способів доказу теореми Піфагора. Це досить велика цифра, тому приділимо увагу найпопулярнішим із них.

Спосіб перший

Спочатку позначимо, що нам дано. Ці дані будуть поширюватися і інші способи доказів теореми Піфагора, тому варто відразу запам'ятати всі наявні позначення.

Припустимо, дано прямокутний трикутник, з катетами а, в і гіпотенузою, що дорівнює с. Перший спосіб доказу полягає в тому, що з прямокутного трикутника потрібно домалювати квадрат.

Щоб це зробити, потрібно до катета довжиною а домалювати відрізок рівний катету, і навпаки. Так має вийти дві рівні сторони квадрата. Залишається тільки намалювати дві паралельні прямі, і квадрат готовий.

Усередині фігури, що вийшла, потрібно накреслити ще один квадрат зі стороною рівної гіпотенузі вихідного трикутника. Для цього від вершин ас і св потрібно намалювати два паралельні відрізки рівних с. Таким чином, вийти три сторони квадрата, одна з яких і є гіпотенуза вихідного прямокутного трикутника. Залишається лише докреслити четвертий відрізок.

На підставі малюнка можна зробити висновок, що площа зовнішнього квадрата дорівнює (а + в) 2 . Якщо заглянути всередину фігури, можна побачити, що крім внутрішнього квадрата в ній є чотири прямокутні трикутники. Площа кожного дорівнює 0,5 ав.

Тому площа дорівнює: 4*0,5ав+с2 =2ав+с2

Звідси (а+в) 2 =2ав+з 2

І, отже, з 2 = а 2 + 2

Теорему доведено.

Спосіб два: подібні трикутники

Ця формула доказу теореми Піфагора була виведена на підставі затвердження з розділу геометрії про подібні трикутники. Воно говорить, що катет прямокутного трикутника - середнє пропорційне для його гіпотенузи та відрізка гіпотенузи, що виходить з вершини кута 90 о.

Вихідні дані залишаються самі, тому почнемо відразу з докази. Проведемо перпендикулярний стороні АВ відрізок ЦД. Ґрунтуючись на вищеописаному затвердженні катети трикутників рівні:

АС=√АВ*АД, СВ=√АВ*ДВ.

Щоб відповісти питанням, як довести теорему Піфагора, доказ потрібно прокласти зведенням у квадрат обох нерівностей.

АС 2 = АВ * АД і СВ 2 = АВ * ДВ

Тепер потрібно скласти нерівності.

АС 2 + СВ 2 = АВ * (АД * ДВ), де АД + ДВ = АВ

Виходить, що:

АС 2 + СВ 2 = АВ * АВ

І, отже:

АС2 + СВ2 = АВ2

Доказ теореми Піфагора та різні способи її вирішення потребують різнобічного підходу до цього завдання. Однак цей варіант є одним із найпростіших.

Ще одна методика розрахунків

Опис різних способів доказу теореми Піфагора можуть ні про що не сказати, доти поки самостійно не приступиш до практики. Багато методик передбачають як математичні розрахунки, а й побудова з вихідного трикутника нових постатей.

У разі необхідно від катета ВС добудувати ще один прямокутний трикутник ВСД. Таким чином, тепер є два трикутники із загальним катетом ВС.

Знаючи, що площі подібних фігур мають співвідношення як квадрати їх подібних лінійних розмірів, то:

S авс * з 2 - S авд *в 2 =S авд *а 2 - S всд *а 2

S авс *(з 2 -в 2)=а 2 *(S авд -S нд)

з 2 -2 = а 2

з 2 = а 2 + 2

Оскільки з різних способів доказів теореми Піфагора для 8 класу цей варіант навряд чи підійде, можна скористатися такою методикою.

Найпростіший спосіб довести теорему Піфагора. Відгуки

Як вважають історики, цей спосіб був вперше використаний для доказу теореми ще у Стародавній Греції. Він є найпростішим, тому що не вимагає жодних розрахунків. Якщо правильно накреслити малюнок, то доказ твердження, що а 2 + 2 = с 2 буде видно наочно.

Умови для цього способу трохи відрізнятимуться від попереднього. Щоб довести теорему, припустимо, що прямокутний трикутник АВС рівнобедрений.

Гіпотенузу АС приймаємо за бік квадрата та докреслюємо три його сторони. Крім цього необхідно провести дві діагональні прямі в квадраті, що вийшов. Таким чином, щоб усередині нього вийшло чотири рівнобедрених трикутники.

До катетів АВ і СВ також потрібно докреслити по квадрату і провести по одній діагональній прямій у кожному з них. Першу пряму креслимо з вершини А, другу - із З.

Тепер потрібно уважно вдивитися в малюнок, що вийшов. Оскільки на гіпотенузі АС лежить чотири трикутники, рівні вихідному, а на катетах по два, це говорить про правдивість цієї теореми.

До речі, завдяки цій методиці доказу теореми Піфагора і з'явилася світ знаменита фраза: «Піфагорові штани на всі боки рівні».

Доказ Дж. Гарфілда

Джеймс Гарфілд – двадцятий президент Сполучених Штатів Америки. Крім того, що він залишив свій слід в історії як правитель США, він був ще й обдарованим самоуком.

На початку своєї кар'єри він був звичайним викладачем у народній школі, але незабаром став директором одного із вищих навчальних закладів. Прагнення саморозвитку і дозволило йому запропонувати нову теорію доказу теореми Піфагора. Теорема та приклад її вирішення виглядає наступним чином.

Спочатку потрібно накреслити на аркуші паперу два прямокутні трикутники таким чином, щоб катет одного з них був продовженням другого. Вершини цих трикутників потрібно з'єднати, щоб зрештою вийшла трапеція.

Як відомо, площа трапеції дорівнює добутку напівсуми її підстав на висоту.

S=а+в/2* (а+в)

Якщо розглянути трапецію, як фігуру, що складається з трьох трикутників, то її площу можна знайти так:

S=ав/2 *2 + з 2/2

Тепер необхідно зрівняти два вихідні вирази

2ав/2 + с/2=(а+в) 2 /2

з 2 = а 2 + 2

Про теорему Піфагора та способи її доказу можна написати не один том навчального посібника. Але чи є в ньому сенс, коли ці знання не можна застосувати на практиці?

Практичне застосування теореми Піфагора

На жаль, у сучасних шкільних програмах передбачено використання цієї теореми лише у геометричних завданнях. Випускники скоро покинуть шкільні стіни, так і не дізнавшись, а як вони можуть застосувати свої знання та вміння на практиці.

Насправді використати теорему Піфагора у своєму повсякденному житті може кожен. Причому у професійної діяльності, а й у звичайних домашніх справах. Розглянемо кілька випадків, коли теорема Піфагора і її докази можуть виявитися вкрай необхідними.

Зв'язок теореми та астрономії

Здавалося б, як можуть бути пов'язані зірки та трикутники на папері. Насправді астрономія - це наукова сфера, у якій широко використовується теорема Піфагора.

Наприклад, розглянемо рух світлового променя у космосі. Відомо, що світло рухається обидві сторони з однаковою швидкістю. Траєкторію АВ, якою рухається промінь світла назвемо l. А половину часу, який необхідно світлу, щоб потрапити з точки А до точки Б, назвемо t. І швидкість променя - c. Виходить, що: c*t=l

Якщо подивитися на цей промінь з іншої площини, наприклад, з космічного лайнера, який рухається зі швидкістю v, то при такому спостереженні тіл їх швидкість зміниться. При цьому навіть нерухомі елементи рухатимуться зі швидкістю v у зворотному напрямку.

Припустимо, комічний лайнер пливе праворуч. Тоді точки А і В, між якими метається промінь, рухатимуться вліво. Причому, коли промінь рухається від точки А до точки В, точка А встигає переміститися і, відповідно, світло вже прибуде до нової точки С. Щоб знайти половину відстані, на яку змістилася точка А, потрібно швидкість лайнера помножити на половину часу подорожі променя (t ").

А щоб знайти, яку відстань за цей час зміг пройти промінь світла, потрібно позначити половину шляху нової букової s і отримати такий вираз:

Якщо уявити, що точки світла С і В, а також космічний лайнер - це вершини рівнобедреного трикутника, то відрізок від точки А до лайнера розділить його на два прямокутні трикутники. Тому завдяки теоремі Піфагора можна знайти відстань, яку зміг пройти промінь світла.

Цей приклад, звичайно, не найвдаліший, тому що тільки одиницям може пощастити випробувати його на практиці. Тому розглянемо приземлені варіанти застосування цієї теореми.

Радіус передачі мобільного сигналу

Сучасне життя вже неможливо уявити без смартфонів. Але чи багато було б від них користі, якби вони не могли з'єднувати абонентів за допомогою мобільного зв'язку?!

Якість мобільного зв'язку безпосередньо залежить від того, на якій висоті знаходиться антена мобільного оператора. Для того, щоб обчислити, яку відстань від мобільної вежі телефон може приймати сигнал, можна застосувати теорему Піфагора.

Допустимо, потрібно знайти приблизну висоту стаціонарної вежі, щоб вона могла поширювати сигнал у радіусі 200 кілометрів.

АВ (висота вежі) = х;

НД (радіус передачі сигналу) = 200 км;

ОС (радіус земної кулі) = 6380 км;

ОВ=ОА+АВОВ=r+х

Застосувавши теорему Піфагора, з'ясуємо, що мінімальна висота вишки має становити 2,3 кілометри.

Теорема Піфагора у побуті

Як не дивно, теорема Піфагора може бути корисною навіть у побутових справах, таких як визначення висоти шафи-купе, наприклад. На перший погляд немає необхідності використовувати такі складні обчислення, адже можна просто зняти мірки за допомогою рулетки. Але багато хто дивується, чому в процесі складання виникають певні проблеми, якщо всі мірки були зняті більш ніж точно.

Справа в тому, що шафа-купе збирається в горизонтальному положенні і тільки потім піднімається та встановлюється до стіни. Тому боковина шафи в процесі підйому конструкції повинна вільно проходити і висотою, і по діагоналі приміщення.

Припустимо, є шафа-купе глибиною 800 мм. Відстань від підлоги до стелі – 2600 мм. Досвідчений мебляр скаже, що висота шафи повинна бути на 126 мм менше, ніж висота приміщення. Але чому саме на 126 мм? Розглянемо з прикладу.

При ідеальних габаритах шафи перевіримо дію теореми Піфагора:

АС=√АВ 2 +√ВС 2

АС = √2474 2 +800 2 =2600 мм - все сходиться.

Допустимо, висота шафи дорівнює не 2474 мм, а 2505 мм. Тоді:

АС=√2505 2 +√800 2 =2629 мм.

Отже, ця шафа не підійде для встановлення у цьому приміщенні. Так як при піднятті його у вертикальне положення можна завдати шкоди його корпусу.

Мабуть, розглянувши різні методи підтвердження теореми Піфагора різними вченими, можна дійти невтішного висновку, що вона більш ніж правдива. Тепер можна використовувати отриману інформацію у своєму повсякденному житті і бути цілком впевненим, що всі розрахунки будуть не тільки корисними, а й вірними.

Коли ви тільки починали вивчати квадратне коріння та способи вирішення ірраціональних рівнянь (рівностей, що містять невідому під знаком кореня), ви, ймовірно, отримали перше уявлення про їхнє практичне використання. Вміння отримувати квадратний корінь із чисел також необхідне вирішення завдань застосування теореми Піфагора. Ця теорема пов'язує довжини сторін будь-якого прямокутного трикутника.

Нехай довжини катетів прямокутного трикутника (тих двох сторін, які сходяться під прямим кутом) будуть позначені літерами і , а довжина гіпотенузи (найдовшої сторони трикутника, розташованої навпроти прямого кута) буде позначена літерою . Тоді відповідні довжини пов'язані наступним співвідношенням:

Дане рівняння дозволяє знайти довжину сторони прямокутного трикутника у тому випадку, коли відома довжина двох інших сторін. Крім того, воно дозволяє визначити, чи трикутник, що розглядається, прямокутним, за умови, що довжини всіх трьох сторін заздалегідь відомі.

Розв'язання задач з використанням теореми Піфагора

Для закріплення матеріалу вирішимо такі завдання застосування теореми Піфагора.

Отже, дано:

  1. Довжина одного з катетів дорівнює 48, гіпотенузи - 80.
  2. Довжина катета дорівнює 84, гіпотенузи - 91.

Приступимо до вирішення:

a) Підстановка даних у наведене вище рівняння дає такі результати:

48 2 + b 2 = 80 2

2304 + b 2 = 6400

b 2 = 4096

b= 64 або b = -64

Оскільки довжина сторони трикутника може бути виражена негативним числом, другий варіант автоматично відкидається.

Відповідь до першого малюнку: b = 64.

b) Довжина катета другого трикутника знаходиться тим самим способом:

84 2 + b 2 = 91 2

7056 + b 2 = 8281

b 2 = 1225

b= 35 або b = -35

Як і попередньому випадку, негативне рішення відкидається.

Відповідь до другого малюнку: b = 35

Нам дано:

  1. Довжини менших сторін трикутника дорівнюють 45 і 55 відповідно, більшій – 75.
  2. Довжини менших сторін трикутника дорівнюють 28 і 45 відповідно, більшій – 53.

Вирішуємо завдання:

a) Необхідно перевірити, чи дорівнює сума квадратів довжин менших сторін даного трикутника квадрату довжини більшої:

45 2 + 55 2 = 2025 + 3025 = 5050

Отже, перший трикутник не прямокутний.

b) Виконується та сама операція:

28 2 + 45 2 = 784 + 2025 = 2809

Отже, другий трикутник прямокутний.

Спочатку знайдемо довжину найбільшого відрізка, утвореного точками з координатами (-2, -3) та (5, -2). Для цього використовуємо відому формулу для знаходження відстані між точками у прямокутній системі координат:

Аналогічно знаходимо довжину відрізка, укладеного між точками з координатами (-2, -3) та (2, 1):

Нарешті, визначаємо довжину відрізка між точками з координатами (2, 1) та (5, -2):

Оскільки має місце рівність:

то відповідний трикутник прямокутний.

Таким чином, можна сформулювати відповідь до завдання: оскільки сума квадратів сторін із найменшою довжиною дорівнює квадрату сторони з найбільшою довжиною, точки є вершинами прямокутного трикутника.

Основа (розташована строго горизонтально), косяк (розташований строго вертикально) і трос (протягнутий по діагоналі) формують прямокутний трикутник, відповідно, для знаходження довжини троса може використовуватися теорема Піфагора:

Таким чином, довжина троса складатиме приблизно 3,6 метра.

Дано: відстань від точки R до точки P (катет трикутника) дорівнює 24, від точки R до точки Q (гіпотенуза) – 26.

Отже, допомагаємо Віте вирішити завдання. Оскільки сторони трикутника, зображеного на малюнку, імовірно утворюють прямокутний трикутник, для знаходження довжини третьої сторони можна використовувати теорему Піфагора:

Отже, ширина ставка становить 10 метрів.

Сергій Валерійович

Теорема Піфагора- Одна з основних теорем евклідової геометрії, що встановлює співвідношення

між сторонами прямокутного трикутника.

Вважається, що доведено грецьким математиком Піфагором, на честь якого названо.

Геометричне формулювання теореми Піфагора.

Спочатку теорема була сформульована наступним чином:

У прямокутному трикутнику площа квадрата, побудованого на гіпотенузі, дорівнює сумі площ квадратів,

побудованих на катетах.

Алгебраїчне формулювання теореми Піфагора.

У прямокутному трикутнику квадрат довжини гіпотенузи дорівнює сумі квадратів довжин катетів.

Тобто, позначивши довжину гіпотенузи трикутника через c, а довжини катетів через aі b:

Обидві формулювання теореми Піфагораеквівалентні, але друге формулювання більш елементарне, воно не

потребує поняття площі. Тобто друге твердження можна перевірити, нічого не знаючи про площу та

вимірявши тільки довжини сторін прямокутного трикутника.

Зворотний теорема Піфагора.

Якщо квадрат однієї сторони трикутника дорівнює сумі квадратів двох інших сторін, то

трикутник прямокутний.

Або, іншими словами:

Для будь-якої трійки позитивних чисел a, bі c, такий, що

існує прямокутний трикутник із катетами aі bта гіпотенузою c.

Теорема Піфагора для рівнобедреного трикутника.

Теорема Піфагора для рівнобічного трикутника.

Докази теореми Піфагора.

На даний момент у науковій літературі зафіксовано 367 доказів цієї теореми. Ймовірно, теорема

Піфагора є єдиною теоремою з настільки значним числом доказів. Таке різноманіття

можна пояснити лише фундаментальним значенням теореми для геометрії.

Зрозуміло, концептуально їх можна розбити на малу кількість класів. Найвідоміші з них:

докази методом площ, аксіоматичніі екзотичні докази(наприклад,

за допомогою диференціальних рівнянь).

1. Доказ теореми Піфагора через трикутники.

Наступний доказ алгебраїчного формулювання - найпростіший з доказів, що будуються

безпосередньо з аксіом. Зокрема воно не використовує поняття площі фігури.

Нехай ABCє прямокутний трикутник із прямим кутом C. Проведемо висоту з Cі позначимо

її заснування через H.

Трикутник ACHподібний до трикутника ABЗ двома кутами. Аналогічно трикутник CBHподібний ABC.

Ввівши позначення:

отримуємо:

,

що відповідає -

Склавши a 2 та b 2, отримуємо:

або , що потрібно було довести.

2. Підтвердження теореми Піфагора шляхом площ.

Нижче наведені докази, незважаючи на їхню простоту, зовсім не такі прості. Усі вони

використовують властивості площі, докази яких складніші за доказ самої теореми Піфагора.

  • Доказ через рівнодоповнюваність.

Розташуємо чотири рівні прямокутні

трикутника так, як показано на малюнку

праворуч.

Чотирикутник зі сторонами c- Квадратом,

оскільки сума двох гострих кутів 90°, а

розгорнутий кут - 180 °.

Площа всієї фігури дорівнює, з одного боку,

площі квадрата зі стороною ( a+b), а з іншого боку, сумі площ чотирьох трикутників і

Що й потрібно було довести.

3. Доказ теореми Піфагора методом нескінченно малих.


Розглядаючи креслення, показане на малюнку, і

спостерігаючи зміну сторониa, ми можемо

записати наступне співвідношення для нескінченно

малих прирощень сторінзі a(використовуючи подобу

трикутників):

Використовуючи метод поділу змінних, знаходимо:

Більш загальний вираз зміни гіпотенузи у разі прирощень обох катетів:

Інтегруючи дане рівняння та використовуючи початкові умови, отримуємо:

Таким чином, ми приходимо до бажаної відповіді:

Як неважко бачити, квадратична залежність у остаточній формулі з'являється завдяки лінійній

пропорційності між сторонами трикутника та прирощеннями, тоді як сума пов'язана з незалежними

вкладами від збільшення різних катетів.

Простіший доказ можна отримати, якщо вважати, що один з катетів не відчуває збільшення

(в даному випадку катет b). Тоді для константи інтегрування отримаємо:

Теорема Піфагора: Сума площ квадратів, що спираються на катети ( aі b), дорівнює площі квадрата, побудованого на гіпотенузі ( c).

Геометричне формулювання:

Спочатку теорема була сформульована наступним чином:

Алгебраїчне формулювання:

Тобто, позначивши довжину гіпотенузи трикутника через c, а довжини катетів через aі b :

a 2 + b 2 = c 2

Обидві формулювання теореми еквівалентні, але друге формулювання більш елементарне, вона вимагає поняття площі . Тобто друге твердження можна перевірити, нічого не знаючи про площу та вимірявши лише довжини сторін прямокутного трикутника.

Зворотня теорема Піфагора:

Докази

На даний момент у науковій літературі зафіксовано 367 доказів цієї теореми. Ймовірно, теорема Піфагора є єдиною теоремою з настільки значним числом доказів. Таке різноманіття можна пояснити лише фундаментальним значенням теореми для геометрії.

Зрозуміло, концептуально їх можна розбити на малу кількість класів. Найвідоміші з них: докази методом площ, аксіоматичні та екзотичні докази (наприклад, за допомогою диференціальних рівнянь).

Через подібні трикутники

Наступний доказ алгебраїчної формулювання - найпростіший з доказів, що будуються безпосередньо з аксіом. Зокрема, воно не використовує поняття площі фігури.

Нехай ABCє прямокутний трикутник із прямим кутом C. Проведемо висоту з Cі позначимо її основу через H. Трикутник ACHподібний до трикутника ABCпо двох кутах. Аналогічно трикутник CBHподібний ABC. Ввівши позначення

отримуємо

Що еквівалентно

Склавши, отримуємо

Докази методом площ

Нижче наведені докази, незважаючи на їхню простоту, зовсім не такі прості. Всі вони використовують властивості площі, докази яких складніші за доказ самої теореми Піфагора.

Доказ через рівнодоповнюваність

  1. Розташуємо чотири рівні прямокутні трикутники так, як показано на малюнку 1.
  2. Чотирикутник зі сторонами cє квадратом, оскільки сума двох гострих кутів 90 °, а розгорнутий кут - 180 °.
  3. Площа всієї фігури дорівнює, з одного боку, площі квадрата зі стороною (a+b), з другого боку, сумі площ чотирьох трикутників і двох внутрішніх квадратів.

Що й потрібно було довести.

Докази через рівноскладність

Елегантний доказ за допомогою перестановки

Приклад одного з таких доказів вказано на кресленні праворуч, де квадрат, побудований на гіпотенузі, перестановкою перетворюється на два квадрати, побудованих на катетах.

Доказ Евкліда

Креслення до доказу Евкліда

Ілюстрація до доказу Евкліда

Ідея доказу Евкліда полягає в наступному: спробуємо довести, що половина площі квадрата, побудованого на гіпотенузі, дорівнює сумі половин площ квадратів, побудованих на катетах, а тоді площі великого і двох малих квадратів рівні.

Розглянемо креслення зліва. На ньому ми побудували квадрати на сторонах прямокутного трикутника і провели з вершини прямого кута С промінь перпендикулярно до гіпотенузи AB, він розсікає квадрат ABIK, побудований на гіпотенузі, на два прямокутники - BHJI і HAKJ відповідно. Виявляється, що площі даних прямокутників точно рівні площам квадратів, побудованих на відповідних катетах.

Спробуємо довести, що площа квадрата DECA дорівнює площі прямокутника AHJK Для цього скористаємося допоміжним спостереженням: Площа трикутника з тією самою висотою та основою, що й даний прямокутник дорівнює половині площі заданого прямокутника. Це наслідок визначення площі трикутника як половини добутку основи висоту. З цього спостереження випливає, що площа трикутника ACK дорівнює площі трикутника AHK (не зображеного на малюнку), яка, у свою чергу, дорівнює половині площі прямокутника AHJK.

Доведемо тепер, що площа трикутника ACK також дорівнює половині площі квадрата DECA. Єдине, що необхідно для цього зробити, - це довести рівність трикутників ACK і BDA (оскільки площа трикутника BDA дорівнює половині площі квадрата за вказаною вище властивістю). Рівність це очевидно, трикутники рівні з обох боків та кутку між ними. Саме - AB=AK,AD=AC - рівність кутів CAK і BAD легко довести методом руху: повернемо трикутник CAK на 90° проти годинникової стрілки, тоді очевидно, що відповідні сторони двох трикутників, що розглядаються, збігатимуться (через кут при вершині квадрата - 90 °).

Міркування про рівність площ квадрата BCFG і прямокутника BHJI абсолютно аналогічне.

Тим самим було доведено, що площа квадрата, побудованого на гіпотенузі, складається з площ квадратів, побудованих на катетах. Ідея цього доказу додатково проілюстрована за допомогою анімації, яка розташована вище.

Доказ Леонардо да Вінчі

Доказ Леонардо да Вінчі

Головні елементи доказу – симетрія та рух.

Розглянемо креслення, як видно з симетрії, відрізок CIрозсікає квадрат ABHJ на дві однакові частини (оскільки трикутники ABCі JHIрівні за побудовою). Користуючись поворотом на 90 градусів проти годинникової стрілки, ми вбачаємо рівність заштрихованих фігур CAJI і GDAB . Тепер ясно, що площа заштрихованої нами фігури дорівнює сумі половин площ квадратів, побудованих на катетах, та площі вихідного трикутника. З іншого боку, вона дорівнює половині площі квадрата, побудованого на гіпотенузі плюс площа вихідного трикутника. Останній крок у доказі надається читачеві.

Доказ методом нескінченно малих

Наступний доказ за допомогою диференціальних рівнянь часто приписують відомому англійському математику Харді, який жив у першій половині XX ст.

Розглядаючи креслення, показане на малюнку, і спостерігаючи зміну сторони a, ми можемо записати наступне співвідношення для нескінченно малих прирощень сторін зі a(використовуючи подобу трикутників):

Доказ методом нескінченно малих

Користуючись методом поділу змінних, знаходимо

Більше загальний вираз зміни гіпотенузи у разі прирощень обох катетов

Інтегруючи дане рівняння та використовуючи початкові умови, отримуємо

c 2 = a 2 + b 2+ constant.

Таким чином, ми приходимо до бажаної відповіді

c 2 = a 2 + b 2 .

Як неважко бачити, квадратична залежність у остаточній формулі з'являється завдяки лінійній пропорційності між сторонами трикутника та прирощеннями, тоді як сума пов'язана з незалежними вкладами від прирощення різних катетів.

Простіший доказ можна отримати, якщо вважати, що один із катетів не відчуває прирощення (в даному випадку катет b). Тоді для константи інтегрування отримаємо

Варіації та узагальнення

  • Якщо замість квадратів побудувати на катетах інші подібні фігури, то вірно наступне узагальнення теореми Піфагора: У прямокутному трикутнику сума площ подібних фігур, побудованих на катетах, дорівнює площі фігури, побудованої на гіпотенузі.Зокрема:
    • Сума площ правильних трикутників, побудованих на катетах, дорівнює площі правильного трикутника, побудованого на гіпотенузі.
    • Сума площ півколів, побудованих на катетах (як діаметрі), дорівнює площі півкола, побудованого на гіпотенузі. Цей приклад використовується при доказі властивостей фігур, обмежених дугами двох кіл і носять ім'я гіпократових луночок.

Історія

Чу-пей 500-200 до н. Зліва напис: сума квадратів довжин висоти та основи є квадрат довжини гіпотенузи.

У давньокитайській книзі Чу-пей йдеться про піфагоровий трикутник зі сторонами 3, 4 і 5: У цій же книзі запропоновано малюнок, який збігається з одним із креслень індуської геометрії Басхари.

Кантор (найбільший німецький історик математики) вважає, що рівність 3 + 4 + 5 = було відомо вже єгиптянам ще близько 2300 до н. е.., за часів царя Аменемхета I (згідно з папірусом 6619 Берлінського музею). На думку Кантора гарпедонапти, або натягувачі мотузок, будували прямі кути за допомогою прямокутних трикутників зі сторонами 3, 4 і 5.

Дуже легко можна відтворити їхній спосіб побудови. Візьмемо мотузку завдовжки 12 м і прив'яжемо до неї по кольоровій смужці на відстані 3м. від одного кінця та 4 метри від іншого. Прямий кут виявиться ув'язненим між сторонами завдовжки 3 і 4 метри. Гарпедонаптам можна було б заперечити, що їх спосіб побудови ставати зайвим, якщо скористатися, наприклад, дерев'яним косинцем, що застосовується всіма теслярами. Відомі єгипетські малюнки, на яких зустрічається такий інструмент, наприклад малюнки, що зображують столярну майстерню.

Дещо більше відомо про теорему Піфагора у вавилонян. В одному тексті, що відноситься до часу Хаммурабі, тобто до 2000 до н. е., наводиться наближене обчислення гіпотенузи прямокутного трикутника. Звідси можна дійти невтішного висновку, що у Дворіччя вміли робити обчислення з прямокутними трикутниками, по крайнього заходу у деяких випадках. Грунтуючись, з одного боку, на сьогоднішньому рівні знань про єгипетську та вавілонську математику, а з іншого – на критичному вивченні грецьких джерел, Ван-дер-Варден (голландський математик) зробив такий висновок:

Література

Російською мовою

  • Скопець З. А.Геометричні мініатюри. М., 1990
  • Єленьський Щ.Слідами Піфагора. М., 1961
  • Ван-дер-Варден Б. Л.Пробуджена наука. Математика Стародавнього Єгипту, Вавилону та Греції. М., 1959
  • Глейзер Г. І.Історія математики у школі. М., 1982
  • Ст Літцман, «Теорема Піфагора» М., 1960.
    • Сайт про теорему Піфагора з великою кількістю доказів матеріал узятий із книги В.Літцмана, велика кількість креслень представлена ​​у вигляді окремих графічних файлів.
  • Теорема Піфагора і трійки Піфагора глава з книги Д. В. Аносова «Погляд на математику і щось з неї»
  • Про теорему Піфагора та способи її доказу Г. Глейзер, академік РАВ, Москва

Англійською

  • Теорема Піфагора на WolframMathWorld (англ.)
  • Cut-The-Knot, секція присвячена теоремі піфагора, близько 70 доказів та додаткова інформація (англ.)

Wikimedia Foundation. 2010 .