Інтеграл складної статечної функції. Обчислення найпростіших невизначених інтегралів

Складні інтеграли

Ця стаття завершує тему невизначених інтегралів і до неї включені інтеграли, які я вважаю досить складними. Урок створений на неодноразові прохання відвідувачів, які висловлювали побажання, щоб на сайті були розібрані і складніші приклади.

Передбачається, що читач цього тексту добре підготовлений та вміє застосовувати основні прийоми інтегрування. Чайникам і людям, які не дуже впевнено розуміються на інтегралах, слід звернутися до першого уроку – Невизначений інтеграл. Приклади рішеньде можна освоїти тему практично з нуля. Більш досвідчені студенти можуть ознайомитися з прийомами та методами інтегрування, які ще не зустрічалися в моїх статтях.

Які інтеграли буде розглянуто?

Спочатку ми розглянемо інтеграли з корінням, для вирішення яких послідовно використовується заміна змінноїі інтегрування частинами. Тобто, в одному прикладі комбінуються одразу два прийоми. І навіть більше.

Потім ми познайомимося з цікавим та оригінальним методом зведення інтеграла до себе. Цим способом вирішується не так вже й мало інтегралів.

Третім номером програми підуть інтеграли від складних дробів, які пролетіли повз касу в попередніх статтях.

По-четверте, буде розібрано додаткові інтеграли від тригонометричних функцій. Зокрема, існують методи, які дозволяють уникнути трудомісткої універсальної тригонометричної підстановки.

(2) У підінтегральній функції почленно ділимо чисельник на знаменник.

(3) Використовуємо властивість лінійності невизначеного інтегралу. В останньому інтегралі відразу підводимо функцію під знак диференціалу.

(4) Беремо інтеграли, що залишилися. Зверніть увагу, що в логарифмі можна використовувати дужки, а не модуль, оскільки .

(5) Проводимо зворотну заміну, висловивши із прямої заміни «те»:

Студенти-мазохісти можуть продиференціювати відповідь і отримати вихідну підінтегральну функцію, як тільки це зробив я. Ні-ні, я в правильному сенсі виконав перевірку =)

Як бачите, в ході рішення довелося використовувати навіть більше двох прийомів рішення, таким чином, для розправи з подібними інтегралами потрібні впевнені навички інтегрування та не найменший досвід.

На практиці, звичайно, частіше зустрічається квадратний корінь, ось три приклади для самостійного вирішення:

Приклад 2

Знайти невизначений інтеграл

Приклад 3

Знайти невизначений інтеграл

Приклад 4

Знайти невизначений інтеграл

Ці приклади однотипні, тому повне рішення наприкінці статті буде лише для Прикладу 2, у Прикладах 3-4 – одні відповіді. Яку заміну застосовувати на початку рішень, гадаю, очевидно. Чому я підібрав однотипні приклади? Часто зустрічаються у своєму амплуа. Найчастіше, мабуть, тільки щось на зразок .

Не завжди, коли під арктангенсом, синусом, косинусом, експонентою та інших. функціями перебуває корінь з лінійної функції, доводиться застосовувати відразу кілька методів. У ряді випадків вдається "легко відбутися", тобто відразу після заміни виходить простий інтеграл, який елементарно береться. Найлегшим із запропонованих вище завдань є Приклад 4, у ньому після заміни виходить відносно нескладний інтеграл.

Методом зведення інтеграла до себе

Дотепний та красивий метод. Негайно розглянемо класику жанру:

Приклад 5

Знайти невизначений інтеграл

Під коренем знаходиться квадратний двочлен, і при спробі проінтегрувати цей приклад чайник може страждати годинами. Такий інтеграл береться частинами і зводиться до себе. У принципі, не складно. Якщо знаєш як.

Позначимо аналізований інтеграл латинською літерою і почнемо рішення:

Інтегруємо частинами:

(1) Готуємо підінтегральну функцію для почленного поділу.

(2) Почленно ділимо підінтегральну функцію. Можливо, не всім зрозуміло, розпишу докладніше:

(3) Використовуємо властивість лінійності невизначеного інтегралу.

(4) Беремо останній інтеграл («довгий» логарифм).

Тепер дивимося на початок рішення:

І наприкінці:

Що сталося? Внаслідок наших маніпуляцій інтеграл звівся до самого себе!

Прирівнюємо початок і кінець:

Переносимо до лівої частини зі зміною знака:

А двійку зносимо у праву частину. В результаті:

Константу, строго кажучи, треба було додати раніше, але приписав її наприкінці. Настійно рекомендую прочитати, у чому тут строгість:

Примітка: Суворіше заключний етап рішення виглядає так:

Таким чином:

Константу можна позначити через . Чому можна перепозначити? Тому що все одно приймає будь-якізначення, і в цьому сенсі між константами немає жодної різниці.
В результаті:

Подібний трюк з перепозначенням константи широко використовується в диференціальних рівняннях. І там я буду суворий. А тут така вільність допускається мною лише для того, щоб не плутати вас зайвими речами та акцентувати увагу саме на методі інтегрування.

Приклад 6

Знайти невизначений інтеграл

Ще один типовий інтеграл для самостійного вирішення. Повне рішення та відповідь наприкінці уроку. Різниця з відповіддю попереднього прикладу буде!

Якщо під квадратним коренем знаходиться квадратний тричлен, то рішення у будь-якому випадку зводиться до двох розібраних прикладів.

Наприклад, розглянемо інтеграл . Все, що потрібно зробити – попередньо виділити повний квадрат:
.
Далі проводиться лінійна заміна, яка обходиться «без жодних наслідків»:
, у результаті виходить інтеграл . Щось знайоме, правда?

Або такий приклад із квадратним двочленом:
Виділяємо повний квадрат:
І, після лінійної заміни, отримуємо інтеграл, який також вирішується за вже розглянутим алгоритмом.

Розглянемо ще два типові приклади на прийом відомості інтеграла до самого себе:
- Інтеграл від експоненти, помноженої на синус;
- Інтеграл від експоненти, помноженої на косинус.

У перерахованих інтегралах частинами доведеться інтегрувати вже двічі:

Приклад 7

Знайти невизначений інтеграл

Підінтегральна функція – експонента, помножена на синус.

Двічі інтегруємо частинами і зводимо інтеграл до себе:


В результаті дворазового інтегрування частинами інтеграл звівся до самого себе. Прирівнюємо початок та закінчення рішення:

Переносимо в ліву частину зі зміною знака та виражаємо наш інтеграл:

Готово. Принагідно бажано зачесати праву частину, тобто. винести експоненту за дужки, а в дужках розташувати синус із косинусом у «красивому» порядку.

Тепер повернемося до початку прикладу, а точніше – до інтегрування частинами:

За ми окреслили експоненту. Виникає питання, чи саме експоненту завжди потрібно позначати за ? Не обов'язково. Насправді у розглянутому інтегралі принципово без різниці, Що позначати за , можна було піти іншим шляхом:

Чому таке можливе? Тому що експонента перетворюється сама в себе (і при диференціюванні, і при інтегруванні), синус з косинус взаємно перетворюються один на одного (знову ж таки – і при диференціюванні, і при інтегруванні).

Тобто, можна позначити і тригонометричну функцію. Але у розглянутому прикладі це менш раціонально, оскільки з'являться дроби. За бажання можете спробувати вирішити цей приклад другим способом, відповіді обов'язково повинні збігтися.

Приклад 8

Знайти невизначений інтеграл

Це приклад самостійного рішення. Перед тим як вирішувати, подумайте, що вигідніше в даному випадку позначити за експоненту, тригонометричну функцію? Повне рішення та відповідь наприкінці уроку.

І, звичайно, не забувайте, що більшість відповідей цього уроку досить легко перевірити диференціюванням!

Приклади були розглянуті не найскладніші. Насправді частіше зустрічаються інтеграли, де константа є у показнику експоненти й у аргументі тригонометричної функції, например: . Поплутатися в подібному інтегралі доведеться багатьом, часто плутаюсь і я сам. Справа в тому, що у вирішенні велика ймовірність появи дробів, і дуже просто що-небудь через неуважність втратити. Крім того, велика ймовірність помилки у знаках, зверніть увагу, що у показнику експоненти є знак «мінус», і це вносить додаткову трудність.

На завершальному етапі часто виходить приблизно таке:

Навіть наприкінці рішення слід бути дуже уважним і грамотно розібратися з дробами:

Інтегрування складних дробів

Потроху підбираємось до екватора уроку і починаємо розглядати інтеграли від дробів. Знову ж таки, не всі вони суперскладні, просто з тих чи інших причин приклади були трохи «не в тему» ​​в інших статтях.

Продовжуємо тему коріння

Приклад 9

Знайти невизначений інтеграл

У знаменнику під коренем знаходиться квадратний тричлен плюс за межами кореня доважок у вигляді ікса. Інтеграл такого виду вирішується за допомогою стандартної заміни.

Вирішуємо:

Заміна тут проста:

Дивимося на життя після заміни:

(1) Після підстановки приводимо до спільного знаменника доданки під коренем.
(2) Виносимо з-під кореня.
(3) Чисельник і знаменник скорочуємо на . Заодно під коренем я переставив доданки у зручному порядку. При певному досвіді кроки (1) (2) можна пропускати, виконуючи прокоментовані дії усно.
(4) Отриманий інтеграл, як ви пам'ятаєте з уроку Інтегрування деяких дробіввирішується методом виділення повного квадрата. Виділяємо повний квадрат.
(5) Інтегруванням отримуємо пересічний «довгий» логарифм.
(6) Проводимо зворотну заміну. Якщо спочатку , то назад: .
(7) Заключна дія спрямована на зачіску результату: під коренем знову наводимо доданки до спільного знаменника і виносимо з-під кореня.

Приклад 10

Знайти невизначений інтеграл

Це приклад самостійного рішення. Тут до самотнього «ікса» додано константу, і заміна майже така сама:

Єдине, що потрібно додатково зробити – висловити «ікс» із заміни, що проводиться:

Повне рішення та відповідь наприкінці уроку.

Іноді в такому інтегралі під коренем може бути квадратний двочлен, це не змінює спосіб вирішення, воно буде навіть простіше. Відчуйте різницю:

Приклад 11

Знайти невизначений інтеграл

Приклад 12

Знайти невизначений інтеграл

Короткі рішення та відповіді наприкінці уроку. Слід зазначити, що приклад 11 є в точності біноміальним інтегралом, метод вирішення якого розглядався на уроці Інтеграли від ірраціональних функцій.

Інтеграл від нерозкладного багаточлена 2-го ступеня

(багаточлен у знаменнику)

Більш рідкісний, проте, що зустрічає у практичних прикладах вид інтеграла.

Приклад 13

Знайти невизначений інтеграл

Але повернемося, наприклад, зі щасливим номером 13 (чесне слово, не підгадав). Цей інтеграл теж із розряду тих, з якими можна неабияк промучитися, якщо не знаєш, як вирішувати.

Рішення починається зі штучного перетворення:

Як почленно розділити чисельник на знаменник, гадаю, вже всі розуміють.

Отриманий інтеграл береться частинами:

Для інтеграла виду ( – натуральне число) виведено рекурентнаформула зниження ступеня:
, де - Інтеграл ступенем нижче.

Переконаємося у справедливості цієї формули для вирішеного інтеграла.
В даному випадку: , , використовуємо формулу:

Як бачите, відповіді збігаються.

Приклад 14

Знайти невизначений інтеграл

Це приклад самостійного рішення. У зразку рішення двічі послідовно використана вищезгадана формула.

Якщо під ступенем знаходиться нерозкладний на множникиквадратний тричлен, то рішення зводиться до двочлена шляхом виділення повного квадрата, наприклад:

Що робити, якщо додатково в чисельнику є багаточлен? У цьому випадку використовується метод невизначених коефіцієнтів і підінтегральна функція розкладається у суму дробів. Але у моїй практиці такого прикладу не зустрічалося жодного разутому я пропустив цей випадок у статті Інтеграли від дробово-раціональної функції, пропущу і зараз. Якщо такий інтеграл таки зустрінеться, дивіться підручник – там просто. Не вважаю за доцільне включати матеріал (навіть нескладний), ймовірність зустрічі з яким прагне до нуля.

Інтегрування складних тригонометричних функцій

Прикметник «складний» більшість прикладів знову носить багато в чому умовний характер. Почнемо з тангенсів та котангенсів у високих ступенях. З погляду використовуваних методів вирішення тангенс і котангенс – майже одне й теж, тому я більше говоритиму про тангенс, маючи на увазі, що продемонстрований прийом рішення інтеграла справедливий і для котангенсу теж.

На вищезгаданому уроці ми розглядали універсальну тригонометричну підстановкуна вирішення певного виду інтегралів від тригонометричних функцій. Недолік універсальної тригонометричної підстановки у тому, що з її застосуванні часто виникають громіздкі інтеграли з важкими обчисленнями. І у ряді випадків універсальної тригонометричної підстановки можна уникнути!

Розглянемо ще один канонічний приклад, інтеграл від одиниці, поділеної на синус:

Приклад 17

Знайти невизначений інтеграл

Тут можна використовувати універсальну тригонометричну підстановку та отримати відповідь, але існує більш раціональний шлях. Я наведу повне рішення з коментами до кожного кроку:

(1) Використовуємо тригонометричну формулу синуса подвійного кута.
(2) Проводимо штучне перетворення: У знаменнику ділимо та множимо на .
(3) За відомою формулою у знаменнику перетворюємо дріб на тангенс.
(4) Підводимо функцію під знак диференціала.
(5) Беремо інтеграл.

Пара простих прикладів для самостійного вирішення:

Приклад 18

Знайти невизначений інтеграл

Вказівка: Найпершою дією слід використовувати формулу приведення та акуратно провести аналогічні попередньому прикладу дії.

Приклад 19

Знайти невизначений інтеграл

Ну, це дуже простий приклад.

Повні рішення та відповіді наприкінці уроку.

Думаю, тепер ні в кого не виникне проблем із інтегралами:
і т.п.

У чому полягає ідея методу? Ідея полягає в тому, щоб за допомогою перетворень, тригонометричних формул організувати в підінтегральній функції тільки тангенси та похідну тангенсу. Тобто йдеться про заміну: . У Прикладах 17-19 ми фактично й застосовували цю заміну, але інтеграли були настільки прості, що справа обійшлася еквівалентною дією – підведенням функції під знак диференціалу.

Аналогічні міркування, як я вже говорив, можна провести для котангенсу.

Існує і формальна передумова для застосування вищезазначеної заміни:

Сума ступенів косинуса та синуса – ціле негативне ЧЕТНЕ число, наприклад:

для інтеграла – ціле негативне ЧЕТНЕ число.

! Примітка Якщо підінтегральна функція містить ТІЛЬКИ синус або ТІЛЬКИ косинус, то інтеграл береться і при негативному непарному ступені (найпростіші випадки – у Прикладах №№17, 18).

Розглянемо пару більш змістовних завдань цього правила:

Приклад 20

Знайти невизначений інтеграл

Сума ступенів синуса та косинуса : 2 – 6 = –4 – ціле негативне ЧЕТНЕ число, отже, інтеграл можна звести до тангенсів та його похідної:

(1) Перетворимо знаменник.
(2) За відомою формулою отримуємо .
(3) Перетворимо знаменник.
(4) Використовуємо формулу .
(5) Підводимо функцію під знак диференціала.
(6) Проводимо заміну. Досвідченіші студенти заміну можуть і не проводити, але все-таки краще замінити тангенс однією літерою - менше ризик заплутатися.

Приклад 21

Знайти невизначений інтеграл

Це приклад самостійного рішення.

Тримайтеся, починаються чемпіонські раунди =)

Найчастіше в підінтегральній функції знаходиться «солянка»:

Приклад 22

Знайти невизначений інтеграл

У цьому інтегралі спочатку є тангенс, що відразу наштовхує на вже знайому думку:

Штучне перетворення на самому початку та інші кроки залишу без коментарів, оскільки про все вже говорилося вище.

Пара творчих прикладів для самостійного вирішення:

Приклад 23

Знайти невизначений інтеграл

Приклад 24

Знайти невизначений інтеграл

Так, у них, звичайно, можна знизити ступеня синуса, косинуса, використовувати універсальну тригонометричну підстановку, але рішення буде набагато ефективнішим і коротшим, якщо його провести через тангенси. Повне рішення та відповіді наприкінці уроку

Показано, що інтеграл від твору статечних функцій від sin x та cos x можна призвести до інтегралу від диференціального бінома. При цілих значеннях показників ступеня такі інтеграли легко обчислюються частинами або за допомогою формул приведення. Дано висновок формул приведення. Наводиться приклад обчислення такого інтегралу.

Зміст

Див. також:
Таблиця невизначених інтегралів

Приведення до інтегралу від диференціального бінома

Розглянемо інтеграли виду:

Такі інтеграли зводяться до інтеграла від диференціального бінома однієї з підстановок t = sin xабо t = cos x.

Продемонструємо це, виконавши підстановку
t = sin x.
Тоді
dt = (sin x)′ dx = cos x dx;
cos 2 x = 1 - sin 2 x = 1 - t 2;

Якщо m і n - раціональні числа, слід застосовувати методи інтегрування диференціального бінома.

Інтегрування з цілими m та n

Далі, розглянемо випадок, коли m і n – цілі числа (не обов'язково позитивні). У цьому випадку, підінтегральний вираз є раціональною функцією від sin xі cos x.

Тому можна застосувати правила, подані у розділі "Інтегрування тригонометричних раціональних функцій".

Однак, враховуючи специфічні особливості, простіше скористатися формулами приведення, які легко виходять інтегруванням частинами.

Формули наведення

Формули приведення для інтегралу

;
;
;
.

мають вигляд:

Їх немає необхідності запам'ятовувати, оскільки вони легко виходять інтегруванням частинами.

Доказ формул наведення


Інтегруємо частинами.

Помножуючи на m + n отримуємо першу формулу:

Аналогічно одержуємо другу формулу.


Інтегруємо частинами.

Помножуючи на m + n отримуємо другу формулу:

Аналогічно одержуємо другу формулу.


Третя формула. + 1 Помножуючи на n

, Отримуємо третю формулу:

Аналогічно одержуємо другу формулу.


Аналогічно для четвертої формули. + 1 Помножуючи на m

отримуємо четверту формулу:

приклад

Обчислимо інтеграл:

Перетворюємо: Тут m.

= 10, n = - 4

Застосовуємо формулу наведення: Тут m:

Застосовуємо формулу наведення: При m:

= 10, n = - 4

Застосовуємо формулу наведення: = 8, n = - 2:

Застосовуємо формулу наведення: = 6, n = - 0:

Застосовуємо формулу наведення: = 4, n = - 0:

= 2, n = - 0

Збираємо проміжні результати одну формулу.

Використана література:
Н.М. Гюнтер, Р.О. Кузьмін, Збірник завдань з вищої математики, "Лань", 2003.

Див. також:

На цій сторінці ви знайдете:

1. Власне, таблицю первісних - її можна завантажити у форматі PDF та роздрукувати;

2. Відео, присвячене тому, як цією таблицею користуватися;

3. Купу прикладів обчислення первісної з різних підручників та контрольних робіт.

У самому відео ми розберемо безліч завдань, де потрібно порахувати першорядні функцій, часто досить складних, але головне — статечних. Усі функції, зведені в таблицю, запропоновану вище, необхідно знати напам'ять, подібно до похідних. Без них неможливе подальше вивчення інтегралів та їх застосування для вирішення практичних завдань.

Сьогодні ми продовжуємо займатися першорядними і переходимо до більш складної теми. Якщо минулого разу ми розглядали первісні лише від статечних функцій і трохи складніших конструкцій, то сьогодні ми розберемо тригонометрію та багато іншого.

Як я говорив на минулому занятті, первісні на відміну від похідних ніколи не вирішуються «напролом» за допомогою будь-яких стандартних правил. Понад те, погана новина у тому, що на відміну похідної, первообразная взагалі може вважатися. Якщо ми напишемо зовсім випадкову функцію і спробуємо знайти її похідну, то це з дуже великою ймовірністю у нас вийде, а ось первісна практично ніколи в цьому випадку не вважатиметься. Але є й хороша новина: існує досить великий клас функцій, які називають елементарними, первісні від яких дуже легко вважаються. А всі інші складніші конструкції, які дають на всіляких контрольних, самостійних та іспитах, насправді складаються з цих елементарних функцій шляхом складання, віднімання та інших нескладних дій. Першорядні такі функції давно пораховані і зведені в спеціальні таблиці. Саме з такими функціями та таблицями ми сьогодні працюватимемо.

Але почнемо ми, як завжди, з повторення: пригадаємо, що таке первообразна, чому їх нескінченно багато і як визначити їхній загальний вигляд. Для цього я підібрав два прості завдання.

Рішення легких прикладів

Приклад №1

Відразу зауважимо, що $\frac(\text( )\!\!\pi\!\!\text( ))(6)$ і взагалі наявність $\text( )\!\!\pi\!\!\ text( )$ відразу натякає нам, що шукана первісна функції пов'язані з тригонометрією. І, дійсно, якщо ми подивимося в таблицю, то виявимо, що $ frac (1) (1 + ((x) ^ (2))) $ - не що інше як $ text (arctg) x $. Так і запишемо:

Для того, щоб знайти, необхідно записати наступне:

\[\frac(\pi )(6)=\text(arctg)\sqrt(3)+C\]

\[\frac(\text( )\!\!\pi\!\!\text( ))(6)=\frac(\text( )\!\!\pi\!\!\text( )) (3)+C]

Приклад №2

Тут також йдеться про тригонометричні функції. Якщо ми подивимося в таблицю, то дійсно так і вийде:

Нам потрібно серед усієї множини первісних знайти ту, яка проходить через вказану точку:

\[\text( )\!\!\pi\!\!\text( )=\arcsin \frac(1)(2)+C\]

\[\text( )\!\!\pi\!\!\text( )=\frac(\text( )\!\!\pi\!\!\text( ))(6)+C\]

Давайте остаточно запишемо:

Отак усе просто. Єдина проблема полягає в тому, щоб вважати первісні простих функцій, потрібно вивчити таблицю первісних. Однак після вивчення похідних таблиці для вас, я думаю, це не буде проблемою.

Вирішення задач, що містять показову функцію

Для початку запишемо такі формули:

\[((e)^(x))\to ((e)^(x))\]

\[((a)^(x))\to \frac(((a)^(x)))(\ln a)\]

Погляньмо, як це все працює на практиці.

Приклад №1

Якщо ми подивимося на вміст дужок, то зауважимо, що в таблиці первісних немає такого виразу, щоб $((e)^(x))$ стояло у квадраті, тому цей квадрат необхідно розкрити. Для цього скористаємося формулами скороченого множення:

Давайте знайдемо першорядну для кожного з доданків:

\[((e)^(2x))=((\left(((e)^(2)) \right))^(x))\to \frac(((\left(((e)^) (2)) \right))^(x)))(\ln ((e)^(2)))=\frac(((e)^(2x)))(2)\]

\[((e)^(-2x))=((\left(((e)^(-2)) \right))^(x))\to \frac(((\left(((e )^(-2)) \right))^(x)))(\ln ((e)^(-2)))=\frac(1)(-2((e)^(2x))) \]

А тепер зберемо всі складові в єдиний вираз і отримаємо загальну первісну:

Приклад №2

Цього разу ступінь вже більший, тому формула скороченого множення буде досить складною. Отже розкриємо дужки:

Тепер від цієї конструкції спробуємо взяти первісну від нашої формули:

Як бачите, в первинних показових функціях немає нічого складного і надприродного. Всі один вважаються через таблиці, проте уважні учні напевно помітять, що первісна $((e)^(2x))$ набагато ближче просто до $((e)^(x))$ ніж до $((a)^(x )) $. Так, можливо, існує якесь більш спеціальне правило, що дозволяє, знаючи первісну $((e)^(x))$, знайти $((e)^(2x))$? Так, таке правило існує. І, більше, воно є невід'ємною частиною роботи з таблицею первісних. Його ми зараз розберемо на прикладі тих самих виразів, з якими ми щойно працювали.

Правила роботи з таблицею первісних

Ще раз випишемо нашу функцію:

У попередньому випадку ми використовували для вирішення таку формулу:

\[((a)^(x))\to \frac(((a)^(x)))(\operatorname(lna))\]

Але зараз зробимо трохи інакше: пригадаємо, на якому знов $((e)^(x))\to ((e)^(x))$. Як уже й казав, тому що похідна $((e)^(x))$ — це не що інше як $((e)^(x))$, тому її першорядна дорівнюватиме тому ж самому $((e) ^(x))$. Але проблема в тому, що у нас $((e)^(2x))$ і $((e)^(-2x))$. Зараз спробуємо знайти похідну $((e)^(2x))$:

\[((\left(((e)^(2x)) \right))^(\prime ))=((e)^(2x))\cdot ((\left(2x \right))^( \prime ))=2\cdot ((e)^(2x))\]

Давайте ще раз перепишемо нашу конструкцію:

\[((\left(((e)^(2x)) \right))^(\prime ))=2\cdot ((e)^(2x))\]

\[((e)^(2x))=((\left(\frac(((e)^(2x))))(2) \right))^(\prime ))\]

А це означає, що при знаходженні первісної $((e)^(2x))$ ми отримаємо наступне:

\[((e)^(2x))\to \frac(((e)^(2x)))(2)\]

Як бачите, ми отримали той самий результат, що й раніше, проте не скористалися формулою для знаходження $((a)^(x))$. Зараз це може здатися дурістю: навіщо ускладнювати обчислення, коли є стандартна формула? Однак у трохи складніших висловлюваннях ви переконаєтеся, що це прийом дуже ефективний, тобто. використання похідних для знаходження первісних.

Давайте як розминку аналогічним способом знайдемо первісну від $((e)^(2x))$:

\[((\left(((e)^(-2x)) \right))^(\prime ))=((e)^(-2x))\cdot \left(-2 \right)\]

\[((e)^(-2x))=((\left(\frac(((e)^(-2x))))(-2) \right))^(\prime ))\]

При обчисленні наша конструкція запишеться так:

\[((e)^(-2x))\to -\frac(((e)^(-2x)))(2)\]

\[((e)^(-2x))\to -\frac(1)(2\cdot ((e)^(2x)))\]

Ми отримали той самий результат, але пішли при цьому іншим шляхом. Саме цей шлях, який зараз здається нам трохи складнішим, надалі виявиться більш ефективним для обчислення складніших первісних та використання таблиць.

Зверніть увагу! Це дуже важливий момент: первісні як і похідні можна вважати безліччю різних способів. Однак якщо всі обчислення та викладки будуть рівні, то відповідь вийде одним і тим же. Ми переконалися в цьому щойно на прикладі $((e)^(-2x))$ — з одного боку ми порахували цю первісну «напролом», скориставшись визначенням і порахувавши її за допомогою перетворень, з іншого боку, ми згадали, що $ ((e)^(-2x))$ може бути представлено як $((\left(((e)^(-2)) \right))^(x))$ і вже потім скористалися первісною для функції $( (a)^(x))$. Тим не менш, після всіх перетворень результат вийшов одним і тим самим, як і передбачалося.

А тепер, коли ми все це зрозуміли, настав час перейти до чогось більшого. Зараз ми розберемо дві простенькі конструкцій, проте прийом, який буде закладений при їх вирішенні, є більш потужним та корисним інструментом, ніж просте «бігання» між сусідніми з таблиці.

Розв'язання задач: знаходимо первісну функцію

Приклад №1

Давайте суму, яка коштує в чисельники, розклади на три окремі дроби:

Це досить природний та зрозумілий перехід — у більшості учнів проблем із ним не виникає. Перепишемо наш вираз так:

А тепер згадаємо таку формулу:

У нашому випадку ми отримаємо таке:

Щоб позбавитися всіх цих триповерхових дробів, пропоную вчинити так:

Приклад №2

На відміну від попереднього дробу у знаменнику стоїть не твір, а сума. У цьому випадку ми вже не можемо розділити наш дріб на суму кількох простих дробів, а потрібно якимось чином постаратися зробити так, щоб у чисельнику стояло приблизно такий самий вираз як у знаменнику. У цьому випадку зробити це досить просто:

Такий запис, який мовою математики називається «додавання нуля», дозволить нам знову розділити дріб на два шматочки:

Тепер знайдемо те, що шукали:

Ось і всі обчислення. Незважаючи на велику складність, ніж у попередній задачі, обсяг обчислень вийшов навіть меншим.

Нюанси рішення

І ось у цьому криється основна складність роботи з табличними первісними, особливо це помітно на другому завданні. Справа в тому, що для того, щоб виділити якісь елементи, які легко вважаються через таблицю, нам потрібно знати, що конкретно ми шукаємо, і саме в пошуку цих елементів і полягає все обчислення первісних.

Інакше кажучи, недостатньо просто зазубрити таблицю первісних — треба вміти бачити щось, чого ще немає, але що мав на увазі автор і укладач цього завдання. Саме тому багато математиків, вчителів та професорів постійно сперечаються: «А що таке взяття першорядних чи інтегрування — це просто інструмент чи це справжнє мистецтво?». Насправді, особисто на мій погляд, інтегрування — це не мистецтво — в ньому немає нічого піднесеного, це просто практика і ще раз практика. І щоб попрактикуватися, давайте вирішимо ще три серйозніші приклади.

Тренуємося в інтегруванні на практиці

Завдання №1

Запишемо такі формули:

\[((x)^(n))\to \frac(((x)^(n+1)))(n+1)\]

\[\frac(1)(x)\to \ln x\]

\[\frac(1)(1+((x)^(2)))\to \text(arctg)x\]

Давайте запишемо таке:

Завдання №2

Перепишемо так:

Разом перша буде дорівнювати:

Завдання №3

Складність цього завдання у тому, що на відміну попередніх функцій зверху взагалі відсутня якась змінна $x$, тобто. нам незрозуміло, що додавати, віднімати, щоб отримати хоч щось схоже на те, що стоїть знизу. Однак, насправді, цей вираз вважається навіть простіше, ніж будь-який вираз із попередніх конструкцій, тому що цю функцію можна переписати так:

Можливо, ви зараз запитаєте: чому ці функції рівні? Давайте перевіримо:

Ще перепишемо:

Трохи перетворимо наш вираз:

І коли я все це пояснюю своїм учням, практично завжди виникає та сама проблема: з першою функцією все більш-менш зрозуміло, з другою теж при везенні чи практиці можна розібратися, але яку альтернативну свідомість треба мати, щоб вирішити третій приклад? Насправді не лякайтеся. Той прийом, який ми використовували при обчисленні останньої первісної, називається «розкладання функції на найпростіші», і це дуже серйозний прийом, і йому буде присвячено окремий відеоурок.

А поки що пропоную повернутися до того, що ми щойно вивчили, а саме, до показових функцій і дещо ускладнити завдання з їх змістом.

Більш складні завдання на вирішення первинних показових функцій

Завдання №1

Зауважимо таке:

\[((2)^(x))\cdot ((5)^(x))=((\left(2\cdot 5 \right))^(x))=((10)^(x) )\]

Щоб знайти первісної цього виразу, досить просто скористатися стандартною формулою - $((a)^(x))\to \frac(((a)^(x)))(\ln a)$.

У нашому випадку первісна буде така:

Зрозуміло, на тлі тієї конструкції, яку ми вирішували щойно, ця виглядає більш простою.

Завдання №2

Знову ж таки, неважко помітити, що цю функцію нескладно розділити на два окремих доданків — два окремі дроби. Перепишемо:

Залишилося знайти первісну від кожного від цих доданків за формулою:

Незважаючи на велику складність показових функцій у порівнянні зі статечними, загальний обсяг обчислень і викладок вийшов набагато простіше.

Звичайно, для знаючих учнів те, що ми тільки-но розібрали (особливо на тлі того, що ми розібрали до цього), може здатися елементарними виразами. Однак вибираючи саме ці дві задачі для сьогоднішнього відеоуроку, я не ставив собі за мету розповісти вам ще один складний і наворочений прийом — все, що я хотів вам показати, так це те, що не варто боятися використовувати стандартні прийоми алгебри для перетворення вихідних функцій.

Використання «секретного» прийому

На закінчення хотілося б розібрати ще один цікавий прийом, який, з одного боку виходить за межі того, що ми сьогодні переважно розбирали, але, з іншого боку, він, по-перше, зовсім не складний, тобто. його можуть освоїти навіть учні-початківці, а, по-друге, він часто зустрічається на всіляких контрольних і самостійних роботах, тобто. знання його буде дуже корисно на додаток до знання таблиці первісних.

Завдання №1

Очевидно, що перед нами щось дуже схоже на статечну функцію. Як нам вчинити у цьому випадку? Давайте замислимося: $x-5$ відрізняється від $x$ не так вже й сильно - просто додали $-5$. Запишемо так:

\[((x)^(4))\to \frac(((x)^(5)))(5)\]

\[((\left(\frac(((x)^(5))))(5) \right))^(\prime ))=\frac(5\cdot ((x)^(4))) (5) = ((x) ^ (4)) \]

Давайте спробуємо знайти похідну від $((\left(x-5 \right))^(5))$:

\[((\left(((\left(x-5 \right))^(5)) \right))^(\prime ))=5\cdot ((\left(x-5 \right)) ^(4))\cdot ((\left(x-5 \right))^(\prime ))=5\cdot ((\left(x-5 \right))^(4))\]

Звідси випливає:

\[((\left(x-5 \right))^(4))=((\left(\frac(((\left(x-5 \right))^(5))))(5) \ right))^(\prime ))\]

У таблиці немає такого значення, тому ми зараз самі вивели цю формулу, використовуючи стандартну формулу первісної для статечної функції. Давайте так і запишемо відповідь:

Завдання №2

Багатьом учням, які подивляться на перше рішення, може здатися, що все дуже просто: достатньо замінити в статечній функції $x$ лінійним виразом, і все стане на свої місця. На жаль, все не так просто, і зараз ми переконаємося в цьому.

За аналогією з першим виразом запишемо наступне:

\[((x)^(9))\to \frac(((x)^(10)))(10)\]

\[((\left(((\left(4-3x \right))^(10)) \right))^(\prime ))=10\cdot ((\left(4-3x \right)) ^(9))\cdot ((\left(4-3x \right))^(\prime ))=\]

\[=10\cdot ((\left(4-3x \right))^(9))\cdot \left(-3 \right)=-30\cdot ((\left(4-3x \right)) ^(9))\]

Повертаючись до нашої похідної, ми можемо записати:

\[((\left(((\left(4-3x \right))^(10)) \right))^(\prime ))=-30\cdot ((\left(4-3x \right) )^(9))\]

\[((\left(4-3x \right))^(9))=((\left(\frac(((\left(4-3x \right))^(10))))--30) \right))^(\prime ))\]

Звідси відразу випливає:

Нюанси рішення

Зверніть увагу: якщо минулого разу насправді нічого не змінилося, то в другому випадку замість $-10$ з'явилося $-30$. На що відрізняється $-10$ та $-30$? Вочевидь, що у множник $-3$. Запитання: звідки він узявся? Придивившись, можна побачити, що вона взялася в результаті обчислень похідної складної функції - той коефіцієнт, який стояв при $x$, з'являється в першорядній внизу. Це дуже важливе правило, яке я спочатку взагалі не планував розбирати в сьогоднішньому відеоуроці, але без нього виклад табличних первісних було б неповним.

Тож давайте ще раз. Нехай є наша основна статечна функція:

\[((x)^(n))\to \frac(((x)^(n+1)))(n+1)\]

А тепер замість $x$ давайте підставимо вираз $kx+b$. Що тоді станеться? Нам потрібно знайти таке:

\[((\left(kx+b \right))^(n))\to \frac(((\left(kx+b \right))^(n+1)))(\left(n+) 1 \right)\cdot k)\]

На якій підставі це ми стверджуємо? Дуже просто. Давайте знайдемо похідну написаної вище конструкції:

\[((\left(\frac(((\left(kx+b \right))^(n+1))))(\left(n+1 \right)\cdot k) \right))^( \prime ))=\frac(1)(\left(n+1 \right)\cdot k)\cdot \left(n+1 \right)\cdot ((\left(kx+b \right))^ (n))\cdot k=((\left(kx+b \right))^(n))\]

Це той самий вираз, який спочатку був. Таким чином, ця формула теж вірна, і нею можна доповнити таблицю первісних, а краще просто запам'ятати всю таблицю.

Висновки із «секретного: прийому:

  • Обидві функції, які ми щойно розглянули, насправді, можуть бути зведені до первісних, зазначених у таблиці, шляхом розкриття ступенів, але якщо з четвертим ступенем ми ще більш-менш якось упораємося, то ось дев'ятий ступінь я б взагалі не ризикнув розкривати.
  • Якби ми розкрили ступеня, то ми отримали б такий обсяг обчислень, що просте завдання зайняло б у нас неадекватно велику кількість часу.
  • Саме тому такі завдання, усередині яких стоять лінійні вирази, не потрібно вирішувати «напролом». Як тільки ви зустрічаєте первісну, яка відрізняється від тієї, що в таблиці, лише наявністю виразу $kx+b$ всередині, відразу згадуйте написану вище формулу, підставляйте її у вашу табличну первісну, і все у вас вийде набагато швидше та простіше.

Звичайно, через складність і серйозність цього прийому ми ще неодноразово повернемося до його розгляду в майбутніх відеоуроках, але на сьогодні у мене все. Сподіваюся, цей урок справді допоможе тим учням, які хочуть розібратися у першорядних та в інтегруванні.