Графік та властивості функції y. Знаменник дробового показника – парний

    1) Область визначення функції та область значень функції.

    Область визначення функції - це безліч всіх допустимих дійсних значень аргументу x(змінною x), при яких функція y = f(x)визначено. Область значень функції - це безліч усіх дійсних значень y, що приймає функцію.

    В елементарної математики вивчаються функції лише з безлічі дійсних чисел.

    2) Нулі функції.

    Нуль функції – таке значення аргументу, у якому значення функції дорівнює нулю.

    3) Проміжки знаковості функції.

    Проміжки знакостійності функції – такі безлічі значень аргументу, у яких значення функції лише позитивні чи лише негативні.

    4) Монотонність функції.

    Зростаюча функція (у певному проміжку) - функція, яка має більшому значенню аргументу з цього проміжку відповідає більше значення функції.

    Зменшуюча функція (у певному проміжку) - функція, яка має більшому значенню аргументу з цього проміжку відповідає менше значення функції.

    5) парність (непарність) функції.

    Четна функція - функція, у якої область визначення симетрична щодо початку координат та для будь-якого хв галузі визначення виконується рівність f(-x) = f(x). Графік парної функції симетричний щодо осі ординат.

    Непарна функція - функція, у якої область визначення симетрична щодо початку координат та для будь-якого хв галузі визначення справедлива рівність f(-x) = - f(x). Графік непарної функції симетричний щодо початку координат.

    6) Обмежена та необмежена функції.

    Функція називається обмеженою, якщо є таке позитивне число M, що |f(x)| ≤ M для всіх значень x. Якщо такої кількості немає, то функція - необмежена.

    7) Періодичність функції.

    Функція f(x) - періодична, якщо існує таке відмінне від нуля число T, що для будь-якого x з області визначення функції має місце: f(x+T) = f(x). Таке найменше називається періодом функції. Усі тригонометричні функції є періодичними. (Тригонометричні формули).

    19. Основні елементарні функції, їх властивості та графіки. Застосування функцій економіки.

Основні елементарні функції. Їх властивості та графіки

1. Лінійна функція.

Лінійною функцією називається функція виду , де х - змінна, а і b - дійсні числа.

Число аназивають кутовим коефіцієнтом прямої, він дорівнює тангенсу кута нахилу цієї прямої до позитивного напрямку осі абсцис. Графік лінійної функції є пряма лінія. Вона визначається двома точками.

Властивості лінійної функції

1. Область визначення - безліч всіх дійсних чисел: Д(y) = R

2. Безліч значень - безліч всіх дійсних чисел: Е(у) = R

3. Функція набуває нульового значення при або.

4. Функція зростає (зменшується) по всій області визначення.

5. Лінійна функція безперервна по всій області визначення, диференційована і .

2. Квадратична функція.

Функція виду , де х – змінна, коефіцієнти а, b, с – дійсні числа, називається квадратичні.

Даний методичний матеріал має довідковий характер і відноситься до широкого кола тем. У статті наведено огляд графіків основних елементарних функцій та розглянуто найважливіше питання – як правильно і ШВИДКО побудувати графік. У ході вивчення вищої математики без знання графіків основних елементарних функцій доведеться важко, тому дуже важливо згадати, як виглядають графіки параболи, гіперболи, синуси, косинуси і т.д., запам'ятати деякі значення функцій. Також мова піде про деякі властивості основних функцій.

Я не претендую на повноту та наукову обґрунтованість матеріалів, наголос буде зроблено, перш за все, на практиці – тих речах, з якими доводиться стикатися буквально на кожному кроці, у будь-якій темі вищої математики. Графіки для чайників? Можна сказати й так.

На численні прохання читачів клікабельний зміст:

Крім того, є надкороткий конспект на тему
– освойте 16 видів графіків, вивчивши шість сторінок!

Серйозно, шість, здивувався навіть сам. Даний конспект містить покращену графіку і доступний за символічну плату, демо-версію можна подивитися. Файл зручно надрукувати, щоб графіки завжди були під рукою. Дякуємо за підтримку проекту!

І одразу починаємо:

Як правильно збудувати координатні осі?

На практиці контрольні роботи майже завжди оформляються студентами в окремих зошитах, розлинених у клітку. Навіщо потрібна картата розмітка? Адже роботу, загалом, можна зробити і на листах А4. А клітка необхідна якраз для якісного та точного оформлення креслень.

Будь-яке креслення графіка функції починається з координатних осей.

Креслення бувають двовимірними та тривимірними.

Спочатку розглянемо двовимірний випадок декартової прямокутної системи координат:

1) Чортимо координатні осі. Вісь називається віссю абсцис , а вісь – віссю ординат . Рисувати їх завжди намагаємося акуратно і не криво. Стрілки теж не повинні нагадувати бороду Папи Карло.

2) Підписуємо осі великими літерами «ікс» та «ігрок». Не забуваємо підписувати осі.

3) Задаємо масштаб по осях: малюємо нуль і дві одиниці. При виконанні креслення найзручніший і найпоширеніший масштаб: 1 одиниця = 2 клітинки (креслення зліва) – по можливості дотримуйтеся саме його. Однак іноді трапляється так, що креслення не вміщається на зошит - тоді масштаб зменшуємо: 1 одиниця = 1 клітинка (креслення праворуч). Рідко, але буває, що масштаб креслення доводиться зменшувати (чи збільшувати) ще більше

НЕ ТРЕБА «строчити з кулемету» …-5, -4, -3, -1, 0, 1, 2, 3, 4, 5, ….Бо координатна площина – не пам'ятник Декартові, а студент – не голуб. Ставимо нульі дві одиниці по осях. Іноді замістьодиниць зручно "засікти" інші значення, наприклад, "двійку" на осі абсцис і "трійку" на осі ординат - і ця система (0, 2 і 3) теж однозначно задасть координатну сітку.

Передбачувані розміри креслення краще оцінити ще до побудови креслення. Так, наприклад, якщо в завданні потрібно накреслити трикутник з вершинами , , , то зрозуміло, що популярний масштаб 1 одиниця = 2 клітинки не підійде. Чому? Подивимося на точку - тут доведеться відміряти п'ятнадцять сантиметрів вниз, і, очевидно, що креслення не вмоститься (або вмоститься ледве) на зошит. Тому одночасно вибираємо дрібніший масштаб 1 одиниця = 1 клітинка.

До речі, про сантиметри і зошити. Чи правда, що у 30 зошитових клітинах міститься 15 сантиметрів? Відміряйте у зошиті для інтересу 15 сантиметрів лінійкою. У СРСР, можливо, це було правдою… Цікаво відзначити, що якщо відміряти ці сантиметри по горизонталі та вертикалі, то результати (у клітинах) будуть різними! Строго кажучи, сучасні зошити не картаті, а прямокутні. Можливо, це здасться нісенітницею, але, креслити, наприклад, коло циркулем при таких розкладах дуже незручно. Якщо чесно, в такі моменти починаєш замислюватися про правоту товариша Сталіна, який відправляв у табори за халтуру на виробництві, не кажучи вже про вітчизняне автомобілебудування, літаки, що падають, або вибухові електростанції.

До речі про якість, або коротка рекомендація щодо канцтоварів. На сьогоднішній день більшість зошитів у продажу, поганих слів не кажучи, повне гомно. Тому, що вони промокають, причому не тільки від гелевих, а й від кулькових ручок! На папері заощаджують. Для оформлення контрольних робіт рекомендую використовувати зошити Архангельського ЦПК (18 аркушів, клітинка) або «П'ятірочка», щоправда, вона дорожча. Ручку бажано вибрати гелеву, навіть найдешевший китайський гелевий стрижень набагато краще, ніж кулькова ручка, яка маже, то б'є папір. Єдиною «конкурентоспроможною» кульковою ручкою на моїй пам'яті є «Еріх Краузе». Вона пише чітко, красиво та стабільно – що з повним стрижнем, що із практично порожнім.

Додатково: бачення прямокутної системи координат очима аналітичної геометрії висвітлюється у статті Лінійна (не) залежність векторів. Базис векторів, детальну інформацію про координатні чверті можна знайти у другому параграфі уроку Лінійні нерівності.

Тривимірний випадок

Тут майже так само.

1) Чортимо координатні осі. Стандарт: вісь аплікат – спрямована вгору, вісь – спрямована вправо, вісь – ліворуч вниз суворопід кутом 45 градусів.

2) Підписуємо осі.

3) Задаємо масштаб по осях. Масштаб по осі – вдвічі менше, ніж масштаб по інших осях. Також зверніть увагу, що на правому кресленні я використав нестандартну «засічку» по осі (про таку можливість вже згадано вище). На мій погляд, так точніше, швидше і естетичніше – не потрібно під мікроскопом вишукувати середину клітини і «ліпити» одиницю впритул до початку координат.

При виконанні тривимірного креслення знову ж таки – віддавайте пріоритет масштабу
1 одиниця = 2 клітини (креслення зліва).

Навіщо потрібні всі ці правила? Правила існують у тому, щоб їх порушувати. Чим я зараз і займусь. Справа в тому, що наступні креслення статті будуть виконані мною в Екселі, і координатні осі будуть виглядати некоректно з точки зору правильного оформлення. Я б міг накреслити всі графіки від руки, але креслити їх насправді жах як небажання Ексель їх накреслить набагато точніше.

Графіки та основні властивості елементарних функцій

Лінійна функція задається рівнянням. Графік лінійної функцій є пряму. Для того, щоб побудувати пряму, достатньо знати дві точки.

Приклад 1

Побудувати графік функції. Знайдемо дві точки. Як одну з точок вигідно вибрати нуль.

Якщо , то

Беремо ще якусь точку, наприклад, 1.

Якщо , то

При оформленні завдань координати точок зазвичай зводяться до таблиці:


А самі значення розраховуються усно чи на чернетці, калькуляторі.

Дві точки знайдені, виконаємо креслення:


При оформленні креслення завжди підписуємо графіки.

Не зайвим буде згадати окремі випадки лінійної функції:


Зверніть увагу, як я розташував підписи, підписи не повинні допускати різночитань щодо креслення. В даному випадку вкрай небажано було поставити підпис поруч із точкою перетину прямих або праворуч внизу між графіками.

1) Лінійна функція виду () називається прямою пропорційністю. Наприклад, . Графік прямої пропорційності завжди проходить через початок координат. Таким чином, побудова прямої спрощується - достатньо знайти лише одну точку.

2) Рівняння виду задає пряму, паралельну осі, зокрема, сама вісь задається рівнянням. Графік функції будується відразу, без будь-яких точок. Тобто запис слід розуміти так: «гравець завжди дорівнює -4, при будь-якому значенні ікс».

3) Рівняння виду задає пряму, паралельну осі, зокрема, сама вісь задається рівнянням. Графік функції також будується одразу. Запис слід розуміти так: «ікс завжди, за будь-якого значення ігор, дорівнює 1».

Дехто запитає, ну навіщо згадувати 6 клас?! Так-то воно, може і так, тільки за роки практики я зустрів добрий десяток студентів, яких ставило в глухий кут завдання побудови графіка на кшталт або .

Побудова прямий – найпоширеніша дія у виконанні креслень.

Пряма лінія детально розглядається в курсі аналітичної геометрії, і бажаючі можуть звернутись до статті Рівняння прямої на площині.

Графік квадратичної, кубічної функції, графік багаточлена

Парабола. Графік квадратичної функції () являє собою параболу. Розглянемо знаменитий випадок:

Згадуємо деякі властивості функції.

Отже, рішення нашого рівняння: - Саме в цій точці і знаходиться вершина параболи. Чому це так, можна дізнатися з теоретичної статті про похідну та уроку про екстремуми функції . А поки що розраховуємо відповідне значення «гравець»:

Таким чином, вершина знаходиться в точці

Тепер знаходимо інші точки, при цьому нахабно користуємося симетричністю параболи. Слід зауважити, що функція не є парноюПроте, симетричність параболи ніхто не скасовував.

В якому порядку знаходити інші точки, гадаю, буде зрозуміло з підсумкової таблиці:

Даний алгоритм побудови образно можна назвати "човником" або принципом "туди-сюди" з Анфісою Чеховою.

Виконаємо креслення:


З розглянутих графіків згадується ще одна корисна ознака:

Для квадратичної функції () справедливо наступне:

Якщо , то гілки параболи спрямовані нагору.

Якщо , то гілки параболи спрямовані вниз.

Поглиблені знання про криву можна отримати на уроці гіпербола і парабола.

Кубічна парабола задається функцією. Ось знайоме зі школи креслення:


Перерахуємо основні властивості функції

Графік функції

Він є однією з гілок параболи. Виконаємо креслення:


Основні властивості функції:

В даному випадку вісь є вертикальною асимптотою для графіка гіперболи при .

Буде ГРУБИЙ помилкою, якщо при оформленні креслення з недбалості допустити перетин графіка з асимптотою .

Також односторонні межі говорять нам про те, що гіпербола не обмежена зверхуі не обмежена знизу.

Досліджуємо функцію на нескінченності: тобто якщо ми почнемо йти по осі вліво (або вправо) на нескінченність, то «ігреки» струнким кроком будуть нескінченно близьконаближатися до нуля, і, відповідно, гілки гіперболи нескінченно близьконаближатися до осі.

Таким чином, вісь є горизонтальною асимптотою для графіка функції, якщо «ікс» прагне плюс або мінус нескінченності.

Функція є непарний, отже, гіпербола симетрична щодо початку координат. Цей факт очевидний з креслення, крім того, легко перевіряється аналітично: .

Графік функції виду () являє собою дві гілки гіперболи.

Якщо , то гіпербола розташована в першій та третій координатних чвертях(Див. малюнок вище).

Якщо , то гіпербола розташована у другій та четвертій координатних чвертях.

Зазначену закономірність місця проживання гіперболи неважко проаналізувати з погляду геометричних перетворень графіків.

Приклад 3

Побудувати праву гілку гіперболи

Використовуємо поточковий метод побудови, при цьому значення вигідно підбирати так, щоб ділилося націло:

Виконаємо креслення:


Не важко побудувати і ліву гілку гіперболи, тут якраз допоможе непарність функції. Грубо кажучи, в таблиці поточкового побудови подумки додаємо до кожного мінус, ставимо відповідні точки і прокреслюємо другу гілку.

Детальну геометричну інформацію про розглянуту лінію можна знайти у статті Гіперболу та параболу.

Графік показової функції

У даному параграфі я одразу розгляну експоненційну функцію, оскільки у завданнях вищої математики у 95% випадків зустрічається саме експонента.

Нагадую, що – це ірраціональне число: це буде потрібно при побудові графіка, який, власне, я без церемоній і побудую. Трьох точок, мабуть, вистачить:

Графік функції поки дамо спокій, про нього пізніше.

Основні властивості функції:

Принципово так само виглядають графіки функцій, і т.д.

Повинен сказати, що другий випадок зустрічається на практиці рідше, але він зустрічається, тому я вважав за потрібне включити його до цієї статті.

Графік логарифмічної функції

Розглянемо функцію з натуральним логарифмом.
Виконаємо крапковий креслення:

Якщо забули, що таке логарифм, будь ласка, зверніться до шкільних підручників.

Основні властивості функції:

Область визначення:

Область значень: .

Функція не обмежена зверху: , Нехай і повільно, але гілка логарифму йде на нескінченність.
Досліджуємо поведінку функції поблизу нуля праворуч: . Таким чином, вісь є вертикальною асимптотою для графіка функції при «ікс», що прагне до нуля праворуч.

Обов'язково потрібно знати та пам'ятати типове значення логарифму: .

Принципово так само виглядає графік логарифму на підставі: , , (десятковий логарифм на підставі 10) і т.д. При цьому, що більша підстава, то більш пологім буде графік.

Випадок розглядати не будемо, щось я не пригадаю, коли востаннє будував графік із такою підставою. Та й логарифм начебто в завданнях вищої математики дуже рідкісний гість.

На закінчення параграфа скажу ще про один факт: Експоненційна функція та логарифмічна функція– це дві взаємно зворотні функції. Якщо придивитися до графіка логарифму, то можна побачити, що це - та сама експонента, просто вона розташована трохи по-іншому.

Графіки тригонометричних функцій

З чого починаються тригонометричні муки у школі? Правильно. З синуса

Побудуємо графік функції

Ця лінія називається синусоїдою.

Нагадую, що «пі» – це ірраціональне число: і в тригонометрії від нього в очах рябить.

Основні властивості функції:

Ця функція є періодичноїз періодом. Що це означає? Подивимося на відрізок. Зліва і праворуч від нього нескінченно повторюється такий самий шматок графіка.

Область визначення: , тобто для будь-якого значення ікс існує значення синуса.

Область значень: . Функція є обмеженою: тобто всі «ігреки» сидять строго у відрізку .
Такого немає: чи , точніше кажучи, буває, але зазначені рівняння немає рішення.

Урок та презентація на тему: "Ступіньні функції. Властивості. Графіки"

Додаткові матеріали
Шановні користувачі, не забувайте залишати свої коментарі, відгуки, побажання! Усі матеріали перевірені антивірусною програмою.

Навчальні посібники та тренажери в інтернет-магазині "Інтеграл" для 11 класу
Інтерактивний посібник для 9–11 класів "Тригонометрія"
Інтерактивний посібник для 10–11 класів "Логарифми"

Ступінні функції, область визначення.

Діти, на минулому уроці ми дізналися, як працювати з числами з раціональним показником ступеня. На цьому уроці ми розглянемо статечні функції та обмежимося нагодою, коли показник ступеня раціональний.
Ми розглядатимемо функції виду: $y=x^(\frac(m)(n))$.
Розглянемо спочатку функції, які мають показник ступеня $\frac(m)(n)>1$.
Нехай нам дано конкретну функцію $y=x^2*5$.
Відповідно до визначення, яке ми дали минулого уроці: якщо $x≥0$, тобто область визначення нашої функції - це промінь $(x)$. Давайте схематично зобразимо наш графік функції.

Властивості функції $y=x^(\frac(m)(n))$, $0 2. Не є ні парною, ні непарною.
3. Зростає на $$,
б) $ (2,10) $,
в) на промені $$.
Рішення.
Хлопці, ви пам'ятаєте, як ми знаходили найбільше та найменше значення функції на відрізку в 10 класі?
Правильно, ми використали похідну. Давайте розв'яжемо наш приклад і повторимо алгоритм пошуку найменшого та найбільшого значення.
1. Знайдемо похідну заданої функції:
$y"=\frac(16)(5)*\frac(5)(2)x^(\frac(3)(2))-x^3=8x^(\frac(3)(2)) -x^3=8sqrt(x^3)-x^3$.
2. Похідна існує по всій області визначення вихідної функції, тоді критичних точок немає. Знайдемо стаціонарні точки:
$y"=8\sqrt(x^3)-x^3=0$.
$8*\sqrt(x^3)=x^3$.
$64x^3=x^6$.
$x^6-64x^3=0$.
$ x ^ 3 (x ^ 3-64) = 0 $.
$x_1=0$ і $x_2=\sqrt(64)=4$.
Заданому відрізку належить лише одне рішення $x_2=4$.
Побудуємо таблицю значень нашої функції на кінцях відрізка та у точці екстремуму:
Відповідь: $ y_ (найм.) = -862,65 $ при $ x = 9 $; $ y_ (Наиб.) = 38,4 $ при $ x = 4 $.

приклад. Розв'язати рівняння: $x^(\frac(4)(3))=24-x$.
Рішення. Графік функції $y=x^(\frac(4)(3))$ зростає, а графік функції $у=24-х$ зменшується. Діти, ми з вами знаємо: якщо одна функція зростає, а інша зменшується, то вони перетинаються лише в одній точці, тобто у нас лише одне рішення.
Зауважимо:
$8^(\frac(4)(3))=\sqrt(8^4)=(\sqrt(8))^4=2^4=16$.
$24-8=16$.
Тобто при $х=8$ ми здобули правильну рівність $16=16$, це і є рішення нашого рівняння.
Відповідь: $ х = 8 $.

приклад.
Побудувати графік функції: $ y = (x-3) ^ \ frac (3) (4) + 2 $.
Рішення.
Графік нашої функції виходить з графіка функції $ y = x ^ (\ frac (3) (4)) $, зміщенням його на 3 одиниці вправо і 2 одиниці вгору.

приклад. Скласти рівняння дотичної до прямої $y=x^(-\frac(4)(5))$ у точці $х=1$.
Рішення. Рівняння дотичної визначається відомою нам формулою:
$y=f(a)+f"(a)(x-a)$.
У нашому випадку $a = 1 $.
$f(a)=f(1)=1^(-\frac(4)(5))=1$.
Знайдемо похідну:
$y"=-\frac(4)(5)x^(-\frac(9)(5))$.
Обчислимо:
$f"(a)=-\frac(4)(5)*1^(-\frac(9)(5))=-\frac(4)(5)$.
Знайдемо рівняння дотичної:
$y=1-\frac(4)(5)(x-1)=-\frac(4)(5)x+1\frac(4)(5)$.
Відповідь: $y=-\frac(4)(5)x+1\frac(4)(5)$.

Завдання для самостійного вирішення

1. Знайти найбільше та найменше значення функції: $y=x^\frac(4)(3)$ на відрізку:
а) $$.
б) $ (4,50) $.
в) на промені $$.
3. Розв'язати рівняння: $x^(\frac(1)(4))=18-x$.
4. Побудувати графік функції: $y=(x+1)^(\frac(3)(2))-1$.
5. Скласти рівняння дотичної до прямої $y=x^(-\frac(3)(7))$ у точці $х=1$.

Ступінна функція, її властивості та графік Демонстраційний матеріал Урок-лекція Поняття функції. Властивості функції. Ступенева функція, її властивості та графік. 10 клас Усі права захищені. Copyright з Copyright з




Хід уроку: Повторення. функція. Властивості функцій. Вивчення нового матеріалу. 1. Визначення статечної функції. Визначення статечної функції. 2. Властивості та графіки статечних функцій. Властивості та графіки статечних функцій. Закріплення дослідженого матеріалу. Усний рахунок. Усний рахунок. Підсумок уроку. Завдання додому.






Область визначення та область значень функції Усі значення незалежної змінної утворюють область визначення функції х y=f(x) f Область визначення функції Область значень функції Усі значення, які приймає залежна змінна, утворюють область значень функції Функція. Властивості функції


Графік функції Нехай задана функція де хУ у х,75 3 0,6 4 0,5 Графік функції – це безліч усіх точок координатної площини, абсциси яких дорівнюють значенням аргументу, а ординати – відповідним значенням функції. функція. Властивості функції


У х Область визначення та область значень функції 4 y=f(x) Область визначення функції: Область значень функції: Функція. Властивості функції


Функція у=f(x) називається парною, якщо f(-x) = f(x) для будь-якого х з області визначення функції Функція. Властивості функції


Непарна функція у х y=f(x) Графік непарної функції симетричний щодо початку координат О(0;0) Функція у=f(x) називається непарною, якщо f(-x) = -f(x) для будь-якого х з області Визначення функції Функція. Властивості функції


Визначення статечної функції Функція, де р - задане дійсне число, називається статечною. р у = х р Р = х у 0 Хід уроку








Ступінна функція х у 1.Областью визначення та областю значень статечних функцій виду, де n - натуральне число, є всі дійсні числа. 2. Ці функції – непарні. Графік їх симетричний щодо початку координат. Властивості та графіки статечної функції




Ступінні функції з раціональним позитивним показником Область визначення - всі позитивні числа і число 0. Область значень функцій з таким показником - також всі позитивні числа та число 0. Ці функції не є парними і непарними. у х Властивості та графіки статечної функції


Ступінна функція з раціональним негативним показником. Областю визначення та областю значень таких функцій є всі позитивні числа. Функції є парними ні непарними. Такі функції зменшуються по всій своїй області визначення. у х Властивості та графіки статечної функції Хід уроку

1. Ступенева функція, її властивості та графік;

2. Перетворення:

Паралельне перенесення;

Симетрія щодо осей координат;

Симетрія щодо початку координат;

Симетрія щодо прямої y = x;

Розтягування та стиск уздовж осей координат.

3. Показова функція, її властивості та графік, аналогічні перетворення;

4. Логарифмічна функція, її властивості та графік;

5. Тригонометрична функція, її властивості та графік, аналогічні перетворення (y = sin x; y = cos x; y = tg x);

Функція: y = x\n - її властивості та графік.

Ступенева функція, її властивості та графік

y = x, y = x 2 , y = x 3 , y = 1/xі т. д. Всі ці функції є окремими випадками статечної функції, тобто функції y = x pде p - задане дійсне число.
Властивості та графік статечної функції суттєво залежить від властивостей ступеня з дійсним показником, і зокрема від того, за яких значень xі pмає сенс ступінь x p. Перейдемо до такого розгляду різних випадків залежно від
показника ступеня p.

  1. Показник p = 2n- парне натуральне число.

y = x 2n, де n- натуральне число, має такі властивості:

  • область визначення - всі дійсні числа, тобто множина R;
  • безліч значень - невід'ємні числа, тобто y більше або 0;
  • функція y = x 2nпарна, оскільки x 2n = (-x) 2n
  • функція є спадною на проміжку x< 0 і зростаючою на проміжку x > 0.

Графік функції y = x 2nмає такий самий вигляд, як наприклад графік функції y = x 4.

2. Показник p = 2n - 1- непарне натуральне число

У цьому випадку статечна функція y = x 2n-1, де натуральне число, має наступні властивості:

  • область визначення - множина R;
  • безліч значень - множина R;
  • функція y = x 2n-1непарна, оскільки (- x) 2n-1= x 2n-1;
  • функція є зростаючою на всій дійсній осі.

Графік функції y = x 2n-1 y = x 3.

3. Показник p = -2n, де n -натуральне число.

У цьому випадку статечна функція y = x -2n = 1/x 2nмає такі властивості:

  • множина значень - позитивні числа y>0;
  • функція y = 1/х 2nпарна, оскільки 1/(-x) 2n= 1/x 2n;
  • функція зростає на проміжку x0.

Графік функції y = 1/х 2nмає такий самий вигляд, як, наприклад, графік функції y = 1/х 2.

4. Показник p = -(2n-1), де n- Натуральне число.
У цьому випадку статечна функція y = x-(2n-1)має такі властивості:

  • область визначення - множина R, крім x = 0;
  • безліч значень - множина R, крім y = 0;
  • функція y = x-(2n-1)непарна, оскільки (- x) -(2n-1) = -x-(2n-1);
  • функція є спадною на проміжках x< 0 і x > 0.

Графік функції y = x-(2n-1)має такий самий вигляд, як, наприклад, графік функції y = 1/x 3.