Арифметична та геом прогресія. Геометрична прогресія

Урок та презентація на тему: "Числові послідовності. Геометрична прогресія"

Додаткові матеріали
Шановні користувачі, не забувайте залишати свої коментарі, відгуки, побажання! Усі матеріали перевірені антивірусною програмою.

Навчальні посібники та тренажери в інтернет-магазині "Інтеграл" для 9 класу
Ступені та коріння Функції та графіки

Діти, сьогодні ми познайомимося з ще одним видом прогресії.
Тема сьогоднішнього заняття – геометрична прогресія.

Геометрична прогресія

Визначення. Числова послідовність, у якій кожен член, починаючи з другого, дорівнює добутку попереднього та деякого фіксованого числа, називається геометричною прогресією.
Задамо нашу послідовність рекурентно: $b_(1)=b$, $b_(n)=b_(n-1)*q$,
де b та q – певні задані числа. Число q називається знаменником прогресії.

приклад. 1,2,4,8,16… Геометрична прогресія, яка має перший член дорівнює одиниці, а $q=2$.

приклад. 8,8,8,8 ... Геометрична прогресія, у якої перший член дорівнює восьми,
а $ q = 1 $.

приклад. 3,-3,3,-3,3… Геометрична прогресія, у якої перший член дорівнює трьом,
а $ q = -1 $.

Геометрична прогресія має властивості монотонності.
Якщо $b_(1)>0$, $q>1$,
то послідовність зростаюча.
Якщо $b_(1)>0$, $0 Послідовність прийнято позначати як $b_(1), b_(2), b_(3), ..., b_(n), ...$.

Так само як і в арифметичній прогресії, якщо в геометричній прогресії кількість елементів звичайно, то прогресія називається кінцевою геометричною прогресією.

$b_(1), b_(2), b_(3), ..., b_(n-2), b_(n-1), b_(n)$.
Зазначимо, якщо послідовність є геометричною прогресією, то й послідовність квадратів членів також є геометричною прогресією. У другий послідовність перший член дорівнює $b_(1)^2$, а знаменник дорівнює $q^2$.

Формула n-ого члена геометричної прогресії

Геометричну прогресію можна ставити і в аналітичній формі. Давайте подивимося, як це зробити:
$b_(1)=b_(1)$.
$b_(2)=b_(1)*q$.
$b_(3)=b_(2)*q=b_(1)*q*q=b_(1)*q^2$.
$b_(4)=b_(3)*q=b_(1)*q^3$.
$b_(5)=b_(4)*q=b_(1)*q^4$.
Ми легко помічаємо закономірність: $b_(n)=b_(1)*q^(n-1)$.
Наша формула називається "формулою n-ого члена геометричної прогресії".

Повернемося до наших прикладів.

приклад. 1,2,4,8,16 ... Геометрична прогресія, у якої перший член дорівнює одиниці,
а $ q = 2 $.
$b_(n)=1*2^(n)=2^(n-1)$.

приклад. 16,8,4,2,1,1/2… Геометрична прогресія, яка має перший член дорівнює шістнадцяти, а $q=\frac(1)(2)$.
$b_(n)=16*(\frac(1)(2))^(n-1)$.

приклад. 8,8,8,8… Геометрична прогресія, яка має перший член дорівнює восьми, а $q=1$.
$b_(n)=8*1^(n-1)=8$.

приклад. 3,-3,3,-3,3 ... Геометрична прогресія, у якої перший член дорівнює трьом, а $ q = -1 $.
$b_(n)=3*(-1)^(n-1)$.

приклад. Дано геометричну прогресію $b_(1), b_(2), …, b_(n), … $.
а) Відомо, що $ b_ (1) = 6, q = 3 $. Знайти $b_(5)$.
б) Відомо, що $b_(1)=6, q=2, b_(n)=768$. Знайти n.
в) Відомо, що $q=-2, b_(6)=96$. Знайти $b_(1)$.
г) Відомо, що $b_(1)=-2, b_(12)=4096$. Знайти q.

Рішення.
а) $b_(5)=b_(1)*q^4=6*3^4=486$.
б) $b_n=b_1*q^(n-1)=6*2^(n-1)=768$.
$2^(n-1)=\frac(768)(6)=128$,оскільки $2^7=128 => n-1=7; n = 8 $.
в) $b_(6)=b_(1)*q^5=b_(1)*(-2)^5=-32*b_(1)=96 => b_(1)=-3$.
р) $b_(12)=b_(1)*q^(11)=-2*q^(11)=4096 => q^(11)=-2048 => q=-2$.

приклад. Різниця між сьомим і п'ятим членами геометричної прогресії дорівнює 192, сума п'ятого та шостого члена прогресії дорівнює 192. Знайти десятий член цієї прогресії.

Рішення.
Нам відомо, що $b_(7)-b_(5)=192$ і $b_(5)+b_(6)=192$.
Ми також знаємо: $b_(5)=b_(1)*q^4$; $b_(6)=b_(1)*q^5$; $b_(7)=b_(1)*q^6$.
Тоді:
$b_(1)*q^6-b_(1)*q^4=192$.
$b_(1)*q^4+b_(1)*q^5=192$.
Отримали систему рівнянь:
$\begin(cases)b_(1)*q^4(q^2-1)=192\b_(1)*q^4(1+q)=192\end(cases)$.
Прирівнявши, наші рівняння отримаємо:
$b_(1)*q^4(q^2-1)=b_(1)*q^4(1+q)$.
$q^2-1=q+1$.
$q^2-q-2=0$.
Отримали два рішення q: $q_(1)=2, q_(2)=-1$.
Послідовно підставимо на друге рівняння:
$b_(1)*2^4*3=192 => b_(1)=4$.
$b_(1)*(-1)^4*0=192 =>$ немає рішень.
Отримали що $b_(1)=4, q=2$.
Знайдемо десятий член: $b_(10)=b_(1)*q^9=4*2^9=2048$.

Сума кінцевої геометричної прогресії

Нехай ми маємо кінцеву геометричну прогресію. Давайте, як і для арифметичної прогресії, порахуємо суму її членів.

Нехай дано кінцеву геометричну прогресію: $b_(1),b_(2),…,b_(n-1),b_(n)$.
Введемо позначення суми її членів: $S_(n)=b_(1)+b_(2)+⋯+b_(n-1)+b_(n)$.
Якщо $q=1$. Усі члени геометричної прогресії дорівнюють першому члену, тоді очевидно, що $S_(n)=n*b_(1)$.
Розглянемо тепер випадок $q≠1$.
Помножимо зазначену вище суму на q.
$S_(n)*q=(b_(1)+b_(2)+⋯+b_(n-1)+b_(n))*q=b_(1)*q+b_(2)*q+⋯ +b_(n-1)*q+b_(n)*q=b_(2)+b_(3)+⋯+b_(n)+b_(n)*q$.
Зауважимо:
$S_(n)=b_(1)+(b_(2)+⋯+b_(n-1)+b_(n))$.
$S_(n)*q=(b_(2)+⋯+b_(n-1)+b_(n))+b_(n)*q$.

$S_(n)*q-S_(n)=(b_(2)+⋯+b_(n-1)+b_(n))+b_(n)*q-b_(1)-(b_(2) )+⋯+b_(n-1)+b_(n))=b_(n)*q-b_(1)$.

$S_(n)(q-1)=b_(n)*q-b_(1)$.

$S_(n)=\frac(b_(n)*q-b_(1))(q-1)=\frac(b_(1)*q^(n-1)*q-b_(1)) (q-1)=\frac(b_(1)(q^(n)-1))(q-1)$.

$S_(n)=\frac(b_(1)(q^(n)-1))(q-1)$.

Ми отримали формулу суми кінцевої геометричної прогресії.


приклад.
Знайти суму перших семи членів геометричної прогресії, яка має перший член дорівнює 4, а знаменник 3.

Рішення.
$S_(7)=\frac(4*(3^(7)-1))(3-1)=2*(3^(7)-1)=4372$.

приклад.
Знайти п'ятий член геометричної прогресії, яку відомо: $b_(1)=-3$; $ b_ (n) = -3072 $; $ S_ (n) = -4095 $.

Рішення.
$b_(n)=(-3)*q^(n-1)=-3072$.
$ q ^ (n-1) = 1024 $.
$q^(n)=1024q$.

$S_(n)=\frac(-3*(q^(n)-1))(q-1)=-4095$.
$-4095(q-1)=-3*(q^(n)-1)$.
$-4095 (q-1) = -3 * (1024q-1) $.
$1365q-1365=1024q-1$.
$ 341q = 1364 $.
$ q = 4 $.
$b_5=b_1*q^4=-3*4^4=-3*256=-768$.

Характеристична властивість геометричної прогресії

Хлопці, дано геометрична прогресія. Давайте розглянемо три послідовні її члени: $b_(n-1),b_(n),b_(n+1)$.
Ми знаємо, що:
$ \ frac (b_ (n)) (q) = b_ (n-1) $.
$b_(n)*q=b_(n+1)$.
Тоді:
$\frac(b_(n))(q)*b_(n)*q=b_(n)^(2)=b_(n-1)*b_(n+1)$.
$b_(n)^(2)=b_(n-1)*b_(n+1)$.
Якщо прогресія кінцева, це рівність виконується всім членів, крім першого і останнього.
Якщо заздалегідь невідомо, який вид у послідовності, але відомо що $b_(n)^(2)=b_(n-1)*b_(n+1)$.
Тоді можна сміливо казати, що це геометрична прогресія.

Числова послідовність є геометричною прогресією, коли квадрат кожного її члена дорівнює добутку двох сусідніх із нею членів прогресії. Не забуваймо, що для кінцевої прогресії ця умова не виконується для першого та останнього члена.


Давайте подивимося на це тотожність: $\sqrt(b_(n)^(2))=\sqrt(b_(n-1)*b_(n+1))$.
$|b_(n)|=\sqrt(b_(n-1)*b_(n+1))$.
$\sqrt(a*b)$ називається середнім геометричним чисел a та b.

Модуль будь-якого члена геометричної прогресії дорівнює середньому геометричному двох сусідніх із ним членів.


приклад.
Знайти такі х, щоб $х+2; 2x+2; 3x+3$ були трьома послідовними членами геометричної прогресії.

Рішення.
Скористаємося характеристичною властивістю:
$(2x+2)^2=(x+2)(3x+3)$.
$4x^2+8x+4=3x^2+3x+6x+6$.
$x^2-x-2=0$.
$x_(1)=2$ і $x_(2)=-1$.
Підставимо послідовно у вихідні вирази, наші рішення:
При $x=2$, отримали послідовність: 4;6;9 – геометрична прогресія, яка $q=1,5$.
При $х=-1$ отримали послідовність: 1;0;0.
Відповідь: $х=2.$

Завдання для самостійного вирішення

1. Знайдіть восьмий перший член геометричної прогресії 16; -8; 4; -2 ... .
2. Знайдіть десятий член геометричної прогресії 11,22,44….
3. Відомо, що $b_(1)=5, q=3$. Знайти $b_(7)$.
4. Відомо, що $b_(1)=8, q=-2, b_(n)=512$. Знайти n.
5. Знайдіть суму перших 11 членів геометричної прогресії 3; 12; 48 ... .
6. Знайти такі х, що $3х+4; 2x+4; x+5$ є трьома послідовними членами геометричної прогресії.

Математика – це те, за допомогою чоголюди керують природою та собою.

Радянський математик, академік О.М. Колмогоров

Геометрична прогресія.

Поряд із завданнями на арифметичні прогресії також поширеними на вступних випробуваннях з математики є завдання, пов'язані з поняттям геометричної прогресії. Для успішного вирішення таких завдань необхідно знати властивості геометричної прогресії та мати гарні навички їх використання.

Ця стаття присвячена викладу основних властивостей геометричної прогресії. Тут також наводяться приклади вирішення типових завдань, запозичених із завдань вступних випробувань з математики.

Попередньо відзначимо основні властивості геометричної прогресії та нагадаємо найбільш важливі формули та затвердження, пов'язані з цим поняттям.

Визначення.Числова послідовність називається геометричною прогресією, якщо кожне її число, починаючи з другого, дорівнює попередньому, помноженому на те саме число . Число називається знаменником геометричної прогресії.

Для геометричної прогресіїсправедливі формули

, (1)

де. Формула (1) називається формулою загального члена геометричної прогресії, а формула (2) є основною властивістю геометричної прогресії: кожен член прогресії збігається із середнім геометричним своїх сусідніх членів і .

Зазначимо, що саме через цю властивість розглянута прогресія називається «геометричною».

Наведені вище формули (1) та (2) узагальнюються наступним чином:

, (3)

Для обчислення сумиперших членів геометричної прогресіїзастосовується формула

Якщо позначити, то

де. Оскільки формула (6) є узагальненням формули (5).

У тому випадку , коли і , геометрична прогресіяє нескінченно спадаючою. Для обчислення сумивсіх членів нескінченно спадної геометричної прогресії використовується формула

. (7)

Наприклад, за допомогою формули (7) можна показати, що

де. Дані рівності отримані з формули (7) за умови, що , (перша рівність) і , (друга рівність).

Теорема.Якщо то

Доведення. Якщо то ,

Теорему доведено.

Перейдемо до розгляду прикладів розв'язання задач на тему «Геометрична прогресія».

приклад 1.Дано: , і . Знайти.

Рішення.Якщо застосувати формулу (5), то

Відповідь: .

приклад 2.Нехай і. Знайти.

Рішення.Так як і , то скористаємося формулами (5), (6) і отримаємо систему рівнянь

Якщо друге рівняння системи (9) поділити на перше, або . Звідси випливає і . Розглянемо два випадки.

1. Якщо , то з першого рівняння системи (9) маємо.

2. Якщо, то.

приклад 3.Нехай, і. Знайти.

Рішення.З формули (2) випливає, що або . Так як , то чи .

За умовою . Однак, тому. Оскільки і , то тут маємо систему рівнянь

Якщо друге рівняння системи поділити на перше, то або .

Так як, то рівняння має єдиний відповідний корінь. У такому разі з першого рівняння системи випливає.

Зважаючи на формулу (7), отримуємо.

Відповідь: .

приклад 4.Дано: і . Знайти.

Рішення.Так як, то.

Оскільки , то чи

Відповідно до формули (2) маємо . У цьому зв'язку з рівності (10) отримуємо або .

Однак за умовою, тому.

Приклад 5.Відомо що . Знайти.

Рішення. Відповідно до теореми маємо дві рівності

Так як , то чи . Оскільки, то.

Відповідь: .

Приклад 6.Дано: і . Знайти.

Рішення.Беручи до уваги формулу (5), отримуємо

Так як, то. Оскільки, і, то.

Приклад 7.Нехай і. Знайти.

Рішення.Згідно з формулою (1) можна записати

Отже, маємо або . Відомо, що , тому і .

Відповідь: .

Приклад 8.Знайти знаменник нескінченної спадної геометричної прогресії, якщо

та .

Рішення. З формули (7) випливаєі . Звідси і з умови завдання отримуємо систему рівнянь

Якщо перше рівняння системи звести у квадрат, а потім отримане рівняння розділити на друге рівняння, то отримаємо

Або.

Відповідь: .

Приклад 9.Знайти всі значення , у яких послідовність , , є геометричної прогресією.

Рішення.Нехай, і. Згідно з формулою (2), яка задає основну властивість геометричній прогресії, можна записати або .

Звідси отримуємо квадратне рівняння, корінням якого єта .

Виконаємо перевірку: якщо, то , та ; якщо, то, і.

У першому випадку маємоі , а в другому - і .

Відповідь: , .

Приклад 10Вирішити рівняння

, (11)

де і .

Рішення. Ліва частина рівняння (11) є сумою нескінченної спадної геометричної прогресії, в якій і , за умови: і .

З формули (7) випливає, що . У зв'язку з цим рівняння (11) набуває виглядуабо . Відповідним коренем квадратного рівняння є

Відповідь: .

Приклад 11.П послідовність позитивних чиселутворює арифметичну прогресію, а – геометричну прогресію, причому тут . Знайти.

Рішення.Так як арифметична послідовність, то (Основна властивість арифметичної прогресії). Оскільки, або . Звідси випливає , що геометрична прогресія має вигляд. Згідно з формулою (2)далі запишемо, що.

Так як і , то . У такому разі виразнабуває вигляду або . За умовою , тому з рівнянняотримуємо єдине рішення розглянутої задачі, тобто. .

Відповідь: .

Приклад 12Обчислити суму

. (12)

Рішення. Помножимо на 5 обидві частини рівності (12) та отримаємо

Якщо від отриманого виразу відняти (12), то

або .

Для обчислення підставимо у формулу (7) значення і отримаємо . Так як, то.

Відповідь: .

Наведені тут приклади вирішення завдань будуть корисні абітурієнтам під час підготовки до вступних випробувань. Для більш глибокого вивчення методів розв'язання задач, пов'язаних з геометричною прогресією, можна використовувати навчальні посібники зі списку літератури, що рекомендується.

1. Збірник завдань з математики для вступників у втузи / За ред. М.І. Сканаві. - М.: Світ та Освіта, 2013. - 608 с.

2. Супрун В.П. Математика для старшокласників: додаткові розділи шкільної програми. - М.: Ленанд / URSS, 2014. - 216 с.

3. Мединський М.М. Повний курс елементарної математики у завданнях та вправах. Книга 2: Числові послідовності та прогресії. - М.: Едітус, 2015. - 208 с.

Залишились питання?

Щоб отримати допомогу репетитора – зареєструйтесь.

сайт, при повному або частковому копіюванні матеріалу посилання на першоджерело обов'язкове.

Розглянемо певний ряд.

7 28 112 448 1792...

Цілком ясно видно, що значення будь-якого його елемента більше попереднього рівно вчетверо. Отже, цей ряд є прогресією.

Геометричною прогресією називається нескінченна послідовність чисел, головною особливістю якої є те, що наступне число виходить з попереднього за допомогою множення на якесь певне число. Це виражається такою формулою.

a z +1 = a z ·q, де z – номер обраного елемента.

Відповідно, z ∈ N.

Період, коли у школі вивчається геометрична прогресія – 9 клас. Приклади допоможуть розібратися у понятті:

0.25 0.125 0.0625...

Виходячи з цієї формули, знаменник прогресії можна знайти таким чином:

Ні q, ні b z не можуть дорівнювати нулю. Так само кожен з елементів прогресії не повинен дорівнювати нулю.

Відповідно, щоб дізнатися таку кількість ряду, потрібно помножити останнє на q.

Щоб задати цю прогресію, необхідно вказати її перший елемент і знаменник. Після цього можливе перебування будь-якого з наступних членів та їх суми.

Різновиди

Залежно від q і a 1 дана прогресія поділяється на кілька видів:

  • Якщо і a 1 і q більше одиниці, то така послідовність - зростаюча з кожним наступним елементом геометрична прогресія. Приклад такий представлений далі.

Приклад: a 1 =3, q=2 - обидва параметри більше одиниці.

Тоді числова послідовність може бути записана так:

3 6 12 24 48 ...

  • Якщо |q| менше одиниці, тобто, множення на нього еквівалентне поділу, то прогресія з подібними умовами - спадна геометрична прогресія. Приклад такий представлений далі.

Приклад: a 1 =6, q=1/3 - a 1 більше одиниці, q - менше.

Тоді числову послідовність можна записати так:

6 2 2/3 ... - будь-який елемент більший за елемент, що йде за ним, у 3 рази.

  • Знакозмінна. Якщо q<0, то знаки у чисел последовательности постоянно чередуются вне зависимости от a 1 , а элементы ни возрастают, ни убывают.

Приклад: a 1 = -3 , q = -2 - обидва параметри менше нуля.

Тоді числову послідовність можна записати так:

3, 6, -12, 24,...

Формули

Для зручного використання геометричних прогресій існує безліч формул:

  • Формула z-го члена. Дозволяє розрахувати елемент, що стоїть під конкретним номером, без розрахунку попередніх чисел.

Приклад:q = 3, a 1 = 4. Потрібно порахувати четвертий елемент прогресії.

Рішення:a 4 = 4 · 3 4-1 = 4 · 3 3 = 4 · 27 = 108.

  • Сума перших елементів, чия кількість дорівнює z. Дозволяє розрахувати суму всіх елементів послідовності доa zвключно.

Оскільки (1-q) стоїть у знаменнику, то (1 - q)≠ 0, отже, q не дорівнює 1.

Зауваження: якби q=1, то прогресія являла собою ряд з нескінченно повторюваного числа.

Сума геометричної прогресії, приклади:a 1 = 2, q= -2. Порахувати S 5 .

Рішення:S 5 = 22 – розрахунок за формулою.

  • сума, якщо |q| < 1 и если z стремится к бесконечности.

Приклад:a 1 = 2 , q= 0.5. Знайти суму.

Рішення:S z = 2 · = 4

S z = 2 + 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 3.9375 4

Деякі властивості:

  • Характеристична властивість. Якщо наступна умова виконується для будь-когоz, то заданий числовий ряд - геометрична прогресія:

a z 2 = a z -1 · az+1

  • Так само квадрат будь-якого числа геометричної прогресії знаходиться за допомогою додавання квадратів двох інших будь-яких чисел у заданому ряду, якщо вони рівновіддалені від цього елемента.

a z 2 = a z - t 2 + a z + t 2 , деt- Відстань між цими числами.

  • Елементирізняться в qразів.
  • Логарифми елементів прогресії так само утворюють прогресію, але вже арифметичну, тобто кожен з них більший за попередній на певне число.

Приклади деяких класичних завдань

Щоб краще зрозуміти, що таке геометрична прогресія, приклади із рішенням для 9 класу можуть допомогти.

  • Умови:a 1 = 3, a 3 = 48. Знайтиq.

Рішення: кожен наступний елемент більший за попередній вq разів.Необхідно виразити одні елементи через інші за допомогою знаменника.

Отже,a 3 = q 2 · a 1

При підстановціq= 4

  • Умови:a 2 = 6, a 3 = 12. Розрахувати S6.

Рішення:Для цього достатньо знайти q перший елемент і підставити в формулу.

a 3 = q· a 2 , отже,q= 2

a 2 = q · a 1 ,тому a 1 = 3

S 6 = 189

  • · a 1 = 10, q= -2. Знайти четвертий елемент прогресії.

Рішення: для цього достатньо виразити четвертий елемент через перший і знаменник.

a 4 = q 3· a 1 = -80

Приклад застосування:

  • Клієнт банку зробив внесок на суму 10000 рублів, за умовами якого щороку клієнту до основної суми додаватимуться 6% від неї. Скільки коштів буде на рахунку за 4 роки?

Рішення: Початкова сума дорівнює 10 тисяч рублів. Отже, через рік після вкладення на рахунку буде сума 10000 + 10000 · 0.06 = 10000 · 1.06

Відповідно, сума на рахунку ще через один рік виражатиметься таким чином:

(10000 · 1.06) · 0.06 + 10000 · 1.06 = 1.06 · 1.06 · 10000

Тобто з кожним роком сума збільшується у 1.06 разів. Отже, щоб знайти кількість коштів на рахунку через 4 роки, достатньо знайти четвертий елемент прогресії, яка задана першим елементом, що дорівнює 10 тисячам, і знаменником, що дорівнює 1.06.

S = 1.06 · 1.06 · 1.06 · 1.06 · 10000 = 12625

Приклади завдань на обчислення суми:

У різних завданнях використається геометрична прогресія. Приклад перебування суми може бути заданий так:

a 1 = 4, q= 2, розрахуватиS 5.

Рішення: всі необхідні для розрахунку дані відомі, потрібно просто підставити їх у формулу.

S 5 = 124

  • a 2 = 6, a 3 = 18. Розрахувати суму перших шести елементів.

Рішення:

У геом. прогресії кожен наступний елемент більший за попередній у q разів, тобто для обчислення суми необхідно знати елементa 1 і знаменникq.

a 2 · q = a 3

q = 3

Аналогічно потрібно знайтиa 1 знаючиa 2 іq.

a 1 · q = a 2

a 1 =2

S 6 = 728.

22.09.2018 22:00

Геометрична прогресія, поряд з арифметичною, є важливим числовим рядом, який вивчається у шкільному алгебри курсі в 9 класі. У статті розглянемо знаменник геометричної прогресії, і те, як його значення впливає її властивості.

Визначення прогресії геометричної

Для початку наведемо визначення цього числового ряду. Прогресією геометричної називають такий ряд раціональних чисел, який формується шляхом послідовного множення першого елемента на постійне число, що носить назву знаменника.

Наприклад, числа у рядку 3, 6, 12, 24, ... - це прогресія геометрична, оскільки якщо помножити 3 (перший елемент) на 2, то отримаємо 6. Якщо 6 помножити на 2, то отримаємо 12 і так далі.

Члени послідовності прийнято позначати символом ai, де i - це ціле число, що вказує на номер елемента в ряду.

Наведене вище визначення прогресії можна записати мовою математики так: an = bn-1 * a1, де b - знаменник. Перевірити цю формулу легко: якщо n = 1, b1-1 = 1, і ми отримуємо a1 = a1. Якщо n = 2, тоді an = b * a1, і ми знову приходимо до визначення ряду чисел, що розглядається. Аналогічні міркування можна продовжити великих значень n.

Знаменник прогресії геометричної


Число b повністю визначає, який характер матиме весь числовий ряд. Знаменник b може бути позитивним, негативним, а також мати значення більше одиниці або менше. Усі перелічені варіанти призводять до різних послідовностей:

  • b > 1. Наявний зростаючий ряд раціональних чисел. Наприклад, 1, 2, 4, 8, ... Якщо елемент a1 буде негативним, тоді вся послідовність зростатиме лише за модулем, але зменшуватиметься з урахуванням знака чисел.
  • b = 1. Часто такий випадок не називають прогресією, оскільки має місце звичайний ряд однакових раціональних чисел. Наприклад, -4, -4, -4.

Формула для суми

Перед тим як перейти до розгляду конкретних завдань з використанням знаменника виду прогресії, що розглядається, слід навести важливу формулу для суми її перших n елементів. Формула має вигляд: Sn = (bn – 1) * a1 / (b – 1).

Отримати цей вислів можна самостійно, якщо розглянути рекурсивну послідовність членів прогресії. Також зауважимо, що у наведеній формулі достатньо знати лише перший елемент та знаменник, щоб знайти суму довільного числа членів.

Нескінченна спадна послідовність


Вище було дано пояснення, що вона є. Тепер, знаючи формулу для Sn, застосуємо її до цього числового ряду. Оскільки будь-яке число, модуль якого не перевищує 1, при зведенні більшою мірою прагне нуля, тобто b∞ => 0, якщо -1

Оскільки різниця (1 - b) завжди буде позитивною, незалежно від значення знаменника, то знак суми прогресу, що нескінченно прогресує, геометричної S∞ однозначно визначається знаком її першого елемента a1.

Тепер розглянемо кілька завдань, де покажемо, як застосовувати набуті знання на конкретних числах.

Завдання № 1. Обчислення невідомих елементів прогресії та суми

Дана прогресія геометрична, знаменник прогресії 2, а її перший елемент 3. Чому дорівнюватимуть її 7-й і 10-й члени, і яка сума її семи початкових елементів?

Умова завдання складена досить просто і передбачає безпосереднє використання вищезгаданих формул. Отже, обчислення елемента з номером n використовуємо вираз an = bn-1 * a1. Для 7-го елемента маємо: a7 = b6 * a1, підставляючи відомі дані, отримуємо: a7 = 26 * 3 = 192. Аналогічним чином чинимо для 10-го члена: a10 = 29 * 3 = 1536.

Скористаємося відомою формулою для суми та визначимо цю величину для 7 перших елементів ряду. Маємо: S7 = (27 – 1) * 3 / (2 – 1) = 381.

Завдання № 2. Визначення суми довільних елементів прогресії

Нехай -2 дорівнює знаменник прогресії в геометричній прогресії bn-1 * 4 де n - ціле число. Необхідно визначити суму з 5 по 10 елемент цього ряду включно.

Ця проблема не може бути вирішена безпосередньо з використанням відомих формул. Вирішити її можна двома різними способами. Для повноти викладу теми наведемо обидва.

Метод 1. Ідея його проста: необхідно розрахувати дві відповідні суми перших членів, а потім відняти від однієї іншу. Обчислюємо меншу суму: S10 = ((-2)10 - 1) * 4 / (-2 - 1) = -1364. Тепер обчислюємо велику суму: S4 = ((-2)4 - 1) * 4 / (-2 - 1) = -20. Зазначимо, що у останньому виразі підсумовувалися лише 4 доданків, оскільки 5-те вже входить у суму, яку потрібно обчислити за умовою завдання. Нарешті беремо різницю: S510 = S10 - S4 = -1364 - (-20) = -1344.

Метод 2. Перед тим, як підставляти цифри і рахувати, можна отримати формулу для суми між членами m і n ряду, що розглядається. Поступаємо так само, як у методі 1, тільки працюємо спочатку з символьним поданням суми. Маємо: Snm = (bn - 1) * a1 / (b - 1) - (bm-1 - 1) * a1 / (b - 1) = a1 * (bn - bm-1) / (b - 1). В отриманий вираз можна підставляти відомі числа та обчислювати кінцевий результат: S105 = 4 * ((-2)10 - (-2)4) / (-2 - 1) = -1344.

Завдання № 3. Чому дорівнює знаменник?


Нехай a1 = 2, знайдіть знаменник прогресії геометричної, за умови, що її нескінченна сума становить 3, і відомо, що це менший ряд чисел.

За умовою завдання неважко здогадатися, якою формулою слід скористатися для її вирішення. Звичайно ж, для суми прогресії нескінченно спадаючою. Маємо: S∞ = a1/(1 - b). Звідки виражаємо знаменник: b = 1 - a1/S∞. Залишилося підставити відомі значення та отримати необхідне число: b = 1 - 2 / 3 = -1 / 3 або -0,333 (3). Можна якісно перевірити цей результат, якщо згадати, що для цього типу послідовності модуль b не повинен виходити за межі 1. Як бачимо, |-1/3|

Завдання № 4. Відновлення ряду чисел

Нехай дані 2 елементи числового ряду, наприклад, 5-й дорівнює 30 і 10-й дорівнює 60. Необхідно за цими даними відновити весь ряд, знаючи, що він задовольняє властивості прогресії геометричної.

Щоб вирішити завдання, необхідно спочатку записати для кожного відомого члена відповідний вираз. Маємо: a5 = b4 * a1 та a10 = b9 * a1. Тепер розділимо другий вираз на перше, отримаємо: a10/a5 = b9 * a1 / (b4 * a1) = b5. Звідси визначаємо знаменник, взявши корінь п'ятого ступеня від відношення відомих із умови завдання членів, b = 1,148698. Отримане число підставляємо в один із виразів для відомого елемента, отримуємо: a1 = a5 / b4 = 30 / (1,148698)4 = 17,2304966.

Отже, ми виявили, чому дорівнює знаменник прогресії bn, і геометричну прогресію bn-1 * 17,2304966 = an, де b = 1,148698.

Де застосовуються прогресії геометричні?


Якби не існувало застосування цього числового ряду на практиці, його вивчення зводилося б до суто теоретичного інтересу. Але таке застосування існує.


Нижче наведено 3 найвідоміші приклади:

  • Парадокс Зенона, в якому спритний Ахіллес не може наздогнати повільну черепаху, вирішується з використанням поняття спадної нескінченно послідовності чисел.
  • Якщо на кожну клітину шахової дошки класти зерна пшениці так, що на 1-у клітинку покласти 1 зерно, на 2-у - 2, на 3-ю - 3 і так далі, то щоб заповнити всі клітини дошки знадобиться 18446744073709551615
  • У грі "Вежа Ханоя", щоб переставити диски з одного стрижня на інший, необхідно виконати 2n - 1 операцій, тобто їх число зростає в геометричній прогресії від кількості дисків, що використовуються n.

Вулиця Київян, 16 0016 Вірменія, Єреван Сервіс +374 11 233 255

Геометрична прогресія – це новий вид числової послідовності, з яким ми маємо познайомитися. Для успішного знайомства не завадить хоча б знати і розуміти. Тоді і з геометричною прогресією проблем не буде.)

Що таке геометрична прогресія? Концепція геометричної прогресії.

Починаємо екскурсію, як завжди, з елементарщини. Пишу незакінчену послідовність чисел:

1, 10, 100, 1000, 10000, …

Чи зможете вловити закономірність і сказати, які числа підуть далі? Ясен перець, далі підуть числа 100 000, 1 000 000 і так далі. Навіть без особливого розумового напруження все ясно, правда ж?)

Гаразд. Ще приклад. Пишу таку послідовність:

1, 2, 4, 8, 16, …

Можете сказати, які числа підуть далі, за числом 16 і назвати восьмийчлен послідовності? Якщо ви зрозуміли, що це буде число 128, то дуже добре. Значить, півсправи в розумінні сенсуі ключових моментівгеометричної прогресії вже зроблено. Можна рости далі.)

А тепер знову переходимо від відчуттів до суворої математики.

Ключові моменти геометричної прогресії.

Ключовий момент №1

Геометрична прогресія – це послідовність чисел.Як і прогрес. Нічого хитрого. Тільки влаштовано цю послідовність по іншому.Звідси, звісно, ​​й іншу назву носить, так…

Ключовий момент №2

З другим ключовим моментом питання хитрішим буде. Повернемося трохи назад і згадаємо ключову властивість арифметичної прогресії. Ось воно: кожен член відрізняється від попереднього на одну й ту саму величину.

А чи можна подібну ключову властивість сформулювати для геометричної прогресії? Подумайте трохи… Придивіться до наведених прикладів. Здогадалися? Так! У геометричній прогресії (будь-який!) кожен її член відрізняється від попереднього в те саме число разів.Завжди!

У першому прикладі це число – десяток. Який член послідовності не візьми, він більший за попередній удесятеро.

У другому прикладі це – двійка: кожен член більший за попередній в два рази.

Саме цим ключовим моментом геометрична прогресія і відрізняється від арифметичної. В арифметичній прогресії кожен наступний член виходить додаткомоднієї й тієї величини до попередньому члену. А тут - множеннямпопереднього члена на одну й ту саму величину. Ось і вся різниця.)

Ключовий момент №3

Цей ключовий момент є повністю ідентичним такому для арифметичної прогресії. А саме: кожен член геометричної прогресії стоїть своєму місці.Все точнісінько як і в арифметичній прогресії та коментарі, я думаю, зайві. Є перший член, є сто перший і т.д. Переставимо місцями хоча б два члени – закономірність (а разом із нею і геометрична прогресія) зникнуть. Залишиться просто послідовність чисел без жодної логіки.

От і все. Ось і весь сенс геометричної прогресії.

Терміни та позначення.

А ось тепер, розібравшись із змістом та ключовими моментами геометричної прогресії, можна й до теорії переходити. А інакше яка теорія без розуміння сенсу, правда?

Як позначати геометричну прогресію?

Як записується геометрична прогресія у загальному вигляді? Ніяких проблем! Кожен член прогресії також записується як букви. Тільки для арифметичної прогресії, як правило, використовується буква "а", для геометричної – буква "b". Номер члена, як завжди, вказується індексом праворуч унизу. Самі члени прогресії просто перераховуємо через кому або крапку з комою.

Ось так:

b 1 ,b 2 , b 3 , b 4 , b 5 , b 6 , …

Коротко таку прогресію записують так: (b n) .

Або ось так, для кінцевих прогресій:

b 1 , b 2 , b 3 , b 4 , b 5 , b 6 .

b 1 , b 2 , …, b 29 , b 30 .

Або, у короткому записі:

(b n), n=30 .

Ось, власне, і всі позначення. Все те саме, тільки літера інша, так.) А тепер переходимо безпосередньо до визначення.

Визначення геометричної прогресії.

Геометрична прогресія – це числова послідовність, перший член якої відмінний від нуля, а кожен наступний член дорівнює попередньому члену, помноженому на те саме ненульове число.

Ось і все визначення. Більшість слів та фраз вам зрозумілі та добре знайомі. Якщо, звичайно, розумієте сенс геометричної прогресії "на пальцях" і загалом. Але є кілька нових фраз, на які я хотів би звернути особливу увагу.

По-перше, слова: "перший член якої відмінний від нуля".

Це обмеження на перший член запроваджено не випадково. Як ви вважаєте, що станеться, якщо перший член b 1 виявиться рівним нулю? Чому дорівнюватиме другий член, якщо кожен член більший за попередній в те саме число разів?Допустимо, втричі? Подивимося… Помножуємо перший член (тобто 0) на 3 і отримуємо… нуль! А третій член? Теж нуль! І четвертий член – теж нуль! І так далі…

Отримуємо просто мішок бубликів послідовність нулів:

0, 0, 0, 0, …

Звичайно, така послідовність має право на життя, але жодного практичного інтересу вона не становить. Все й так зрозуміло. Будь-який її член - нуль. Сума будь-якої кількості членів - теж нуль ... Що з нею цікавого можна робити? Нічого…

Наступні ключові слова: "помноженому на те саме ненульове число".

Це число теж носить свою спеціальну назву - знаменник геометричної прогресії. Починаємо знайомство.)

Знаменник геометричної прогресії.

Все простіше простого.

Знаменник геометричної прогресії – це ненульове число (або величина), що показує,у скільки разівкожен член прогресії більше за попередній.

Знову ж таки, за аналогією до арифметичної прогресії, ключовим словом, на яке слід звернути увагу в цьому визначенні, є слово "більше". Воно означає, що кожен член геометричної прогресії виходить множеннямна цей самий знаменник попереднього члена.

Пояснюю.

Для розрахунку, скажімо, другогочлена, треба взяти першийчлен та помножитийого на знаменник. Для розрахунку десятогочлена, треба взяти дев'ятийчлен та помножитийого на знаменник.

Сам знаменник геометричної прогресії може бути будь-яким. Абсолютно будь-яким! Цілим, дробовим, позитивним, негативним, ірраціональним – всяким. Окрім нуля. Про це і говорить нам слово "ненульове" у визначенні. Навіщо це слово тут потрібне – про це далі.

Знаменник геометричної прогресіїпозначається, найчастіше, літерою q.

Як знайти це саме q? Не питання! Треба взяти будь-який член прогресії та поділити на попередній член. Поділ – це дріб. Звідси і назва – "знаменник прогресії". Знаменник, він зазвичай у дробі сидить, так ...) Хоча, за логікою, величину qслід було б називати приватнимгеометричній прогресії, за аналогією з різницеюдля прогресії арифметичної. Але домовилися називати знаменником. І ми теж не винаходитимемо велосипед.)

Визначимо, наприклад, величину qдля такої геометричної прогресії:

2, 6, 18, 54, …

Все просто. Беремо будь-якечисло послідовності. Яке хочемо, таке й беремо. Крім найпершого. Наприклад, 18. І ділимо на попереднє число. Тобто на 6.

Отримуємо:

q = 18/6 = 3

От і все. Це вірна відповідь. Для цієї геометричної прогресії знаменник дорівнює трьом.

Знайдемо тепер знаменник qдля іншої геометричної прогресії. Наприклад, ось такий:

1, -2, 4, -8, 16, …

Все теж саме. Які б знаки не були у самих членів, все одно беремо будь-якечисло послідовності (наприклад, 16) і ділимо на попереднє число(Тобто -8).

Отримаємо:

d = 16/(-8) = -2

І всі справи.) На цей раз знаменник прогресії виявився негативним. Мінус два. Буває.)

Візьмемо тепер таку прогресію:

1, 1/3, 1/9, 1/27, …

І знову, незалежно від виду чисел, що стоять у послідовності (хоч цілі, хоч дробові, хоч негативні, хоч ірраціональні), беремо будь-яке число (наприклад, 1/9) і ділимо на попереднє число (1/3). За правилами дій з дробами, звісно.

Отримаємо:

І все.) Тут знаменник виявився дрібним: q = 1/3.

А ось така "прогресія" як вам?

3, 3, 3, 3, 3, …

Очевидно, тут q = 1 . Формально це теж геометрична прогресія, тільки з однаковими членами.) Але такі прогресії для вивчення та практичного застосування не цікаві. Так само, як і прогресії із суцільними нулями. Тому ми їх розглядатимемо і не будемо.

Як ви бачите, знаменник прогресії може бути будь-яким – цілим, дробовим, позитивним, негативним – всяким! Не може бути лише нулем. Чи не здогадалися, чому?

Ну, давайте на якомусь конкретному прикладі подивимося, що буде, якщо взяти як знаменник qнулик.) Нехай у нас, припустимо, буде b 1 = 2 , а q = 0 . Чому тоді дорівнюватиме другий член?

Вважаємо:

b 2 = b 1 · q= 2 · 0 = 0

А третій член?

b 3 = b 2 · q= 0 · 0 = 0

Види та поведінка геометричних прогресій.

З усе було більш-менш ясно: якщо різниця прогресії dпозитивна, то прогресія зростає. Якщо ж різниця негативна, то прогресія зменшується. Усього два варіанти. Третього не дано.)

А ось з поведінкою геометричної прогресії все буде вже набагато цікавіше та різноманітніше!)

Як тільки себе тут члени не поводяться: і зростають, і спадають, і необмежено наближаються до нуля, і навіть змінюють знаки, поперемінно кидаючись то в плюс, то мінус! І у всьому цьому різноманітті треба вміти добре розумітися, так…

Розбираємось?) Починаємо з найпростішого випадку.

Знаменник позитивний ( q >0)

При позитивному знаменнику, по-перше, члени геометричної прогресії можуть йти в плюс нескінченність(тобто необмежено зростати) і можуть йти в мінус нескінченність(Тобто необмежено спадати). До такої поведінки прогресій ми вже звикли.

Наприклад:

(b n): 1, 2, 4, 8, 16, …

Тут все просто. Кожен член прогресії виходить більше попереднього. Причому кожен член виходить множеннямпопереднього члена на позитивнечисло +2 (тобто. q = 2 ). Поведінка такої прогресії очевидна: всі члени прогресії необмежено зростають, йдучи до космосу. У плюс нескінченність.

А тепер ось така прогресія:

(b n): -1, -2, -4, -8, -16, …

Тут також кожен член прогресії виходить множеннямпопереднього члена на позитивнечисло +2. А ось поведінка такої прогресії вже прямо протилежна: кожен член прогресії виходить менше попереднього, і всі її члени необмежено зменшуються, йдучи в мінус нескінченність.

А тепер подумаємо: що спільного у цих двох прогресій? Правильно, знаменнику! І там і там q = +2 . Додатне число.Двійка. А от поведінкацих двох прогресій – принципово різне! Чи не здогадалися, чому? Так! Вся справа в першому члені!Саме він, як-то кажуть, і замовляє музику.) Дивіться самі.

У першому випадку перший член прогресії позитивний(+1) і, отже, всі наступні члени, одержувані множенням на позитивнийзнаменник q = +2 , також будуть позитивними.

А ось у другому випадку перший член негативний(-1). Тому і всі наступні члени прогресії, які отримують множенням на позитивне q = +2 , також виходитимуть негативними.Бо "мінус" на "плюс" завжди дає "мінус", так.

Як ви бачите, на відміну від арифметичної прогресії, геометрична прогресія може поводитися по-різному не тільки в залежності від знаменникаq, але ще й залежно від першого члена, так.)

Запам'ятовуємо: поведінка геометричної прогресії однозначно визначається її першим членом b 1 та знаменникомq .

А тепер починаємо розбір менш звичних, але набагато цікавіших випадків!

Візьмемо, наприклад, ось таку послідовність:

(b n): 1, 1/2, 1/4, 1/8, 1/16, …

Ця послідовність – теж геометрична прогресія! Кожен член цієї прогресії теж виходить множеннямпопереднього члена, на те саме число. Тільки число це – дробове: q = +1/2 . Або +0,5 . До того ж (важливо!) число, менше одиниці:q = 1/2<1.

Чим цікава ця геометрична прогресія? Куди прагнуть її члени? Давайте подивимося:

1/2 = 0,5;

1/4 = 0,25;

1/8 = 0,125;

1/16 = 0,0625;

…….

Що цікавого тут можна побачити? По-перше, відразу впадає у вічі спадання членів прогресії: кожен її член меншепопереднього рівно в 2 рази.Або, відповідно до визначення геометричної прогресії, кожен член більшепопереднього в 1/2 рази, т.к. знаменник прогресії q = 1/2 . А від множення на позитивне число, менше одиниці, результат зазвичай зменшується, так ...

Що щеможна помітити у поведінці цієї прогресії? Чи спадають її члени необмежено, йдучи в мінус нескінченність? Ні! Вони зменшуються по-особливому. Спочатку досить швидко зменшуються, а потім все повільніше і повільніше. Причому весь час залишаючись позитивними. Нехай і дуже маленькими. А чого вони самі при цьому прагнуть? Чи не здогадалися? Так! До нуля вони прагнуть!) Причому, зверніть увагу, самого нуля члени нашої прогресії ніколи не досягають!Лише нескінченно близько до нього наближаються. Це дуже важливо.)

Схожа ситуація буде й у такій прогресії:

(b n): -1, -1/2, -1/4, -1/8, -1/16, …

Тут b 1 = -1 , а q = 1/2 . Все те саме, тільки до нуля тепер члени наближатимуться вже з іншого боку, знизу. Весь час залишаючись негативними.)

Така геометрична прогресія, члени якої необмежено наближаються до нуля(неважливо, з позитивного або негативного боку), в математиці носить особливу назву – нескінченно спадна геометрична прогресія.Прогресія ця настільки цікава та незвичайна, що про неї навіть буде окремий урок .)

Отже, ми розглянули всі можливі позитивнізнаменники - і великі одиниці і менші одиниці. Саму одиницю як знаменник ми не розглядаємо з причин, викладених вище (згадайте приклад із послідовністю трійок…)

Підсумуємо:

позитивнийі більше одиниці (q>1), то члени прогресії:

a) необмежено зростають (якщоb 1 >0);

б) необмежено спадають (якщоb 1 <0).

Якщо знаменник геометричної прогресії позитивний і менше одиниці (0< q<1), то члены прогрессии:

а) нескінченно близько наближаються до нуля зверху(якщоb 1 >0);

б) нескінченно близько наближаються до нуля знизу(якщоb 1 <0).

Залишилося тепер розглянути випадок негативного знаменника.

Знаменник негативний ( q <0)

За прикладом далеко не ходитимемо. Чого, власне, кудлатити бабусю?!) Нехай, наприклад, перший член прогресії буде b 1 = 1 , а знаменник візьмемо q = -2.

Отримаємо таку послідовність:

(b n): 1, -2, 4, -8, 16, …

І так далі.) Кожен член прогресії виходить множеннямпопереднього члена на від'ємне число-2. При цьому всі члени, які стоять на непарних місцях (перший, третій, п'ятий тощо), будуть позитивними, а на парних місцях (другий, четвертий і т.д.) - негативними.Знаки строго чергуються. Плюс-мінус-плюс-мінус… Така геометрична прогресія так і називається – зростаючою знакочередною.

Куди прагнуть її члени? А нікуди.) Так, по абсолютній величині (тобто за модулем)члени нашої прогресії необмежено зростають (звідси і назва "зростаюча"). Але при цьому кожен член прогресії по черзі кидає то в жар, то в холод. То в "плюс", то в "мінус". Коливається наша прогресія ... Причому розмах коливань з кожним кроком стрімко зростає, так.) Отже, прагнення членів прогресії кудись конкретнотут ні.Ні до плюс нескінченності, ні до мінус нескінченності, ні до нуля – нікуди.

Розглянемо тепер якийсь дрібний знаменник між нулем і мінус одиничкою.

Наприклад, нехай буде b 1 = 1 , а q = -1/2.

Тоді отримаємо прогресію:

(b n): 1, -1/2, 1/4, -1/8, 1/16, …

І знову маємо чергування знаків! Але, на відміну від попереднього прикладу, тут вже простежується чітка тенденція наближення членів до нуля.) Тільки на цей раз наші члени наближаються до нуля не строго зверху чи знизу, а знову вагаючись. Поперемінно приймаючи то позитивні, негативні значення. Але при цьому їх модулістають все ближче і ближче до заповітного нулика.)

Така геометрична прогресія називається нескінченно спадаючою знак чергою.

Чим цікаві ці два приклади? А тим, що в обох випадках має місце чергування знаків!Така фішка характерна тільки для прогресій з негативним знаменником, так.) Отже, якщо в якомусь завданні ви побачите геометричну прогресію з членами, що знаходять черги, то вже твердо будете знати, що її знаменник на 100% негативний і не помилитеся в знаку.

До речі, у разі негативного знаменника знак першого члена не впливає на поведінку самої прогресії. З яким би знаком перший член прогресії не був, у будь-якому випадку спостерігатиметься знак чергування членів. Все питання лише в тому, на яких місцях(парні або непарні) стоятимуть члени з конкретними знаками.

Запам'ятовуємо:

Якщо знаменник геометричної прогресії негативний , то знаки членів прогресії завжди чергуються.

При цьому самі члени:

а) необмежено зростаютьза модулем, якщоq<-1;

б) нескінченно наближаються до нуля, якщо -1< q<0 (прогрессия бесконечно убывающая).

От і все. Усі типові випадки розібрані.)

У процесі розбору різних прикладів геометричних прогресій, я періодично вживав слова: "прагне до нуля", "прагне до плюс нескінченності", "прагне мінус нескінченності"… Нічого страшного.) Ці мовні звороти (і конкретні приклади) – лише початкове знайомство з поведінкоюнайрізноманітніших числових послідовностей. На прикладі геометричної прогресії.

Навіщо нам взагалі потрібно знати поведінку прогресії? Яка різниця, куди вона там прагне? Чи до нуля, до плюс нескінченності, до мінус нескінченності… Що нам від цього?

Справа все в тому, що вже у ВНЗ, в курсі вищої математики, вам знадобиться вміння працювати з різними числовими послідовностями (з будь-якими, а не тільки прогресіями!) і вміння уявляти, як саме поводиться та чи інша послідовність - чи зростає вона необмежено, чи зменшується, чи прагне конкретного числа (причому не обов'язково до нуля) або навіть взагалі ні до чого не прагне… Цій темі в курсі матаналізу присвячений цілий розділ – теорія меж.А трохи конкретніше – поняття межі числової послідовності.Дуже цікава тема! Має сенс вступити до інституту та розібратися.)

Деякі приклади цього розділу (послідовності, що мають межу) і зокрема, нескінченно спадна геометрична прогресіяпочинають освоюватися ще у школі. Звикаємо.)

Більш того, вміння добре дослідити поведінку послідовностей надалі здорово зіграє на руку і дуже знадобиться в Дослідженні функцій.Найрізноманітніших. А ось уміння грамотно працювати з функціями (обчислювати похідні, досліджувати їх за повною програмою, будувати їхні графіки) вже різко підвищує ваш математичний рівень! Сумніваєтесь? Не треба. Ще згадайте мої слова.)

Подивимося на геометричну прогресію у житті?

У навколишньому житті з геометричною прогресією ми стикаємося дуже і дуже часто. Навіть самі того не підозрюючи.)

Наприклад, різні мікроорганізми, які оточують нас усюди у величезних кількостях і яких ми навіть не бачимо без мікроскопа, розмножуються саме у геометричній прогресії.

Скажімо, одна бактерія розмножується розподілом навпіл, даючи потомство в 2 бактерії. У свою чергу, кожна з них, розмножуючись, теж ділиться навпіл, даючи спільне потомство у 4 бактерії. Наступне покоління дасть вже 8 бактерій, потім 16 бактерій, 32, 64 тощо. З кожним наступним поколінням кількість бактерій подвоюється. Типовий приклад геометричної прогресії.)

Також у геометричній прогресії розмножуються і деякі комахи – попелиця, мухи. І кролики іноді, до речі, теж.)

Інший приклад геометричної прогресії, вже ближче до повсякденного життя, – це так звані складні відсотки.Таке цікаве явище часто зустрічається у банківських вкладах та називається капіталізацією відсотків.Що це таке?

Самі ви поки що, звичайно, юні. У школі навчаєтесь, у банки не звертаєтесь. А от батьки ваші – люди вже дорослі та самостійні. На роботу ходять, грошики на хліб насущний заробляють, а частину грошей кладуть у банк, роблячи заощадження.

Скажімо, ваш тато хоче накопичити певну грошову суму на сімейний відпочинок у Туреччині і поклав у банк 50000 рублів під 10% річних терміном на три роки із щорічною капіталізацією відсотків.Причому, протягом усього цього терміну робити з вкладом нічого не можна. Не можна поповнювати внесок, ні знімати гроші з рахунку. Який прибуток він отримає за ці три роки?

Ну, по-перше, треба розібратися, що таке 10% річних. Це означає що через рікдо початкової суми вкладу банком буде нараховано 10%. Від чого? Звичайно ж, від первісної суми вкладу.

Вважаємо розмір рахунку через рік. Якщо початкова сума вкладу становила 50000 рублів (тобто 100%), то за рік на рахунку буде скільки відсотків? Правильно, 110%! Від 50 000 рублів.

Ось і вважаємо 110% від 50000 рублів:

50000 · 1,1 = 55000 рублів.

Сподіваюся, ви знаєте, що знайти 110% від величини означає помножити цю величину на число 1,1? Якщо не розумієте, чому це саме так, згадуйте п'ятий та шостий класи. А саме – зв'язок відсотків з дробами та частинами.)

Таким чином, збільшення за перший рік складе 5000 рублів.

А скільки грошей буде на рахунку за два роки? 60 000 рублів? На жаль (а точніше, на щастя), все не так просто. Весь фокус капіталізації відсотків полягає в тому, що при кожному новому нарахуванні відсотків ці самі відсотки будуть вважатися вже від нової суми!Від тієї, що вжележить на рахунку в даний момент.А нараховані за попередній строк відсотки додаються до початкової суми вкладу і таким чином самі беруть участь у нарахуванні нових відсотків! Тобто вони стають повноправною частиною загального рахунку. Або спільного капіталу.Звідси і назва капіталізація відсотків.

Це в економіці. А в математиці такі відсотки називаються складними відсотками.Або відсотками від відсотків.) Їх фішка полягає в тому, що при послідовному обчисленні відсотки щоразу вважаються від нової величини.А не від початкової...

Отже, для підрахунку суми через два рокинам треба порахувати 110% від тієї суми, яка буде на рахунку через рік.Тобто вже від 55000 рублів.

Вважаємо 110% від 55000 рублів:

55000 · 1,1 = 60500 рублів.

Значить, процентна надбавка за другий рік становитиме вже 5500 рублів, а за два роки - 10500 рублів.

Тепер уже можна здогадатися, що через три роки сума на рахунку становитиме 110% від 60 500 рублів. Тобто знову 110% від попередньої (торішньої)суми.

Ось і вважаємо:

60500 · 1,1 = 66550 рублів.

А тепер вибудовуємо наші грошові суми за роками у послідовність:

50000;

55000 = 50000 · 1,1;

60500 = 55000 · 1,1 = (50000 · 1,1) · 1,1;

66550 = 60500 · 1,1 = ((50000 · 1,1) · 1,1) · 1,1

Ну і як? Чим не геометрична прогресія? Перший член b 1 = 50000 , а знаменник q = 1,1 . Кожен член більший за попередній строго в 1,1 рази. Все в суворій відповідності до визначення.)

І скільки ж додаткових процентних бонусів "накапає" вашому татові, поки його 50000 рублів три роки лежали на банківському рахунку?

Вважаємо:

66550 - 50000 = 16550 рублів

Негусто, звісно. Але якщо початкова сума вкладу – маленька. А якщо більше? Скажімо, не 50, а 200 тисяч карбованців? Тоді збільшення за три роки складе вже 66200 рублів (якщо порахувати). Що вже дуже непогано.) А якщо внесок ще більший? Ось те й воно…

Висновок: що вищий початковий внесок, то вигіднішим стає капіталізація відсотків. Саме тому вклади із капіталізацією відсотків надаються банками на тривалі терміни. Скажімо, п'ять років.

Також у геометричній прогресії люблять поширюватися всілякі погані хвороби типу грипу, кору і навіть страшніших захворювань (тієї ж атипової пневмонії на початку 2000-х або чуми в Середньовіччі). Звідси й такі масштаби епідемій, так…) А все через те, що геометрична прогресія з цілим позитивним знаменником (q>1) - Штука, що зростає дуже швидко! Згадайте розмноження бактерій: з однієї бактерії виходять дві, з двох – чотири, з чотирьох – вісім тощо… З поширенням будь-якої зарази все те саме.)

Найпростіші завдання щодо геометричної прогресії.

Почнемо, як завжди, з простого завдання. Чисто на розуміння сенсу.

1. Відомо, що другий член геометричної прогресії дорівнює 6 а знаменник дорівнює -0,5. Знайдіть перший, третій та четвертий її члени.

Отже, нам дано нескінченнагеометрична прогресія, а відомий другий членцієї прогресії:

b 2 = 6

Крім того, нам ще відомий знаменник прогресії:

q = -0,5

А знайти треба перший, третійі четвертийчлени цієї прогресії.

Ось і діємо. Записуємо послідовність за умовою завдання. Прямо у загальному вигляді, де другий член – шістка:

b 1 , 6,b 3 , b 4 , …

А тепер приступаємо до пошуків. Починаємо, як завжди, із найпростішого. Можна порахувати, наприклад, третій член b 3? Можна, можливо! Ми ж з вами вже знаємо (прямо за змістом геометричної прогресії), що третій член (b 3)більше за друге (b 2 ) в "q"разів!

Так і пишемо:

b 3 =b 2 · q

Підставляємо в цей вираз шістку замість b 2і -0,5 замість qі рахуємо. І мінус теж не ігноруємо, зрозуміло.

b 3 = 6 · (-0,5) = -3

Ось так. Третій член виявився з мінусом. Не дивно: наш знаменник q- Негативний. А плюс помножити на мінус, буде, звичайно, мінус.)

Вважаємо тепер наступний, четвертий член прогресії:

b 4 =b 3 · q

b 4 = -3 · (-0,5) = 1,5

Четвертий член – знову із плюсом. П'ятий член знову буде з мінусом, шостий - з плюсом і так далі. Знаки – чергуються!

Так, третій та четвертий члени знайшли. Вийшла ось така послідовність:

b 1; 6; -3; 1,5; …

Залишилось тепер знайти перший член b 1за відомим другим. Для цього крокуємо вже в інший бік, ліворуч. Це означає, що в цьому випадку другий член прогресії нам треба не помножити на знаменник, а поділити.

Ділимо і отримуємо:

Ось і все.) Відповідь до завдання буде такою:

-12; 6; -3; 1,5; …

Як ви бачите, принцип рішення той самий, що і в . Знаємо будь-якийчлен та знаменникгеометричній прогресії - можемо знайти і будь-який інший її член. Який хочемо, такий і знайдемо.) З тією лише різницею, що додавання/віднімання замінюється на множення/розподіл.

Запам'ятовуємо: якщо нам відомий хоча б один член і знаменник геометричної прогресії, то завжди можемо знайти будь-який інший член цієї прогресії.

Наступне завдання, за традицією, з реального варіанта ОДЕ:

2.

…; 150; х; 6; 1,2; …

Ну і як? На цей раз ні першого члена немає, ні знаменника q, Задана просто послідовність чисел ... Щось знайоме вже, правда? Так! Схоже завдання вже розбиралася в арифметичній прогресії!

От і не лякаємось. Все теж саме. Включаємо голову та згадуємо елементарний сенс геометричної прогресії. Дивимося уважно нашу послідовність і розуміємо, які параметри геометричної прогресії з трьох головних (перший член, знаменник, номер члена) у ній заховані.

Номери членів? Номерів членів немає, так… Але є чотири послідовнихчисла. Що означає це слово, пояснювати на цьому етапі сенсу не бачу.) Чи є в цій послідовності два сусідніх відомих чисел?Є! Це 6 та 1,2. Отже, ми можемо знайти знаменник прогресії.Ось і беремо число 1,2 і ділимо на попереднє число.На шістку.

Отримуємо:

Отримаємо:

x= 150 · 0,2 = 30

Відповідь: x = 30 .

Як бачите, все досить просто. Основна складність полягає лише у обчисленнях. Особливо буває у разі негативних і дробових знаменників. Тож ті, хто має проблеми, повторіть арифметику! Як працювати з дробами, як працювати з негативними числами і так далі… Інакше тут гальмуватимете нещадно.

А тепер трохи видозмінимо завдання. Нині цікаво стане! Приберемо у ній останнє число 1,2. Ось таке завдання тепер вирішимо:

3. Виписано кілька послідовних членів геометричної прогресії:

…; 150; х; 6; …

Знайдіть член прогресії, позначений літерою х.

Все те саме, тільки двох сусідніх відомихЧленів прогресії у нас тепер не стало. У цьому полягає основна проблема. Тому що величину qчерез два сусідні члени ми так просто визначити вже не зможемо.Чи є у нас шанс впоратися із завданням? Звичайно!

Розпишемо невідомий член xпрямо за змістом геометричної прогресії! У загальному вигляді.

Так Так! Прямо з невідомим знаменником!

З одного боку, для ікса ми можемо записати таке співвідношення:

x= 150 ·q

З іншого боку, цей же ікс ми маємо повне право розписати і через наступнийчлен, через шістку! Поділивши шістку на знаменник.

Ось так:

x = 6/ q

Очевидно, тепер можна прирівняти обидва ці співвідношення. Якщо вже ми висловлюємо одну й ту самувеличину (ікс), але двома різними способами.

Отримаємо рівняння:

Помножуючи все на q, спрощуючи, скорочуючи, отримаємо рівняння:

q 2 = 1/25

Вирішуємо та отримуємо:

q = ±1/5 = ±0,2

Опаньки! Знаменник подвійний вийшов! +0,2 та -0,2. І який із них вибрати? Глухий кут?

Спокій! Так, завдання дійсно має два рішення!Нічого страшного у цьому немає. Буває.) Ви ж не дивуєтесь, коли, наприклад, отримуєте два корені, вирішуючи звичайне? Ось і тут та сама історія.)

Для q = +0,2ми отримаємо:

X = 150 · 0,2 = 30

А для q = -0,2 буде:

X = 150 · (-0,2) = -30

Отримуємо подвійну відповідь: x = 30; x = -30.

Що означає цей цікавий факт? А те, що існує дві прогресії, Що задовольняють умові завдання!

Ось такі:

…; 150; 30; 6; …

…; 150; -30; 6; …

Обидві – підходять.) Як ви думаєте, через що в нас відбулося роздвоєння відповідей? Саме через ліквідацію конкретного члена прогресії (1,2), що йде після шістки. А знаючи лише попередній (n-1)-й та наступний (n+1)-й члени геометричної прогресії, ми вже нічого не можемо однозначно сказати про n-й член, що стоїть між ними. Можливі два варіанти – з плюсом та мінусом.

Але не біда. Як правило, у завданнях на геометричну прогресію є додаткова інформація, що дає однозначну відповідь. Скажімо, слова: "знакочергова прогресія"або "прогресія з позитивним знаменником"і таке інше… Саме ці слова і повинні бути зачіпкою, який знак, плюс або мінус, слід вибрати при оформленні остаточної відповіді. Якщо ж такої інформації немає, тоді – так, завдання матиме два рішення.)

А тепер вирішуємо самостійно.

4. Визначте, чи буде число 20 членом геометричної прогресії:

4 ; 6; 9; …

5. Задано знакочередуючу геометричну прогресію:

…; 5; x ; 45; …

Знайдіть член прогресії, позначений буквою x .

6. Знайдіть четвертий позитивний член геометричної прогресії:

625; -250; 100; …

7. Другий член геометричної прогресії дорівнює -360, а п'ятий її член дорівнює 23,04. Знайдіть перший член цієї прогресії.

Відповіді (безладно): -15; 900; ні; 2,56.

Вітаю, якщо все вийшло!

Щось не стикується? Десь відповідь подвійна вийшла? Читаємо уважну умову завдання!

Останнє завдання не виходить? Там нічого складного.) Працюємо прямо за змістом геометричної прогресії. Та й картинку можна намалювати. Це допомагає.)

Як ви бачите, все просто. Якщо прогресія – коротенька. А якщо довга? Чи номер потрібного члена дуже великий? Хотілося б, за аналогією з арифметичною прогресією, отримати зручну формулу, що дозволяє легко знаходити будь-якийчлен будь-якої геометричної прогресії за його номером.Не помножуючи багато разів на q. І така формула є!) Подробиці – у наступному уроці.