Bir diskriminant kullanarak tamamlanmamış ikinci dereceden denklemleri çözme. İkinci dereceden denklemler

Tam ikinci dereceden bir denklemin tamamlanmamış bir denkleme dönüştürülmesi şuna benzer (\(b=0\ durumu için):

\(c=0\) veya her iki katsayının sıfıra eşit olduğu durumlarda her şey benzerdir.

Lütfen \(a\)'nın sıfıra eşit olmasının söz konusu olmadığını unutmayın; bu durumda şuna dönüşecektir:

Tamamlanmamış ikinci dereceden denklemlerin çözümü.

Her şeyden önce, tamamlanmamış bir ikinci dereceden denklemin hala bir olduğunu ve bu nedenle sıradan bir ikinci dereceden denklemle aynı şekilde (üzerinden) çözülebileceğini anlamalısınız. Bunu yapmak için denklemin eksik bileşenini sıfır katsayılı olarak ekleriz.

Örnek : \(3x^2-27=0\) denkleminin köklerini bulun
Çözüm :

\(b=0\) katsayılı tamamlanmamış ikinci dereceden bir denklemimiz var. Yani denklemi şu şekilde yazabiliriz:

\(3x^2+0\cdot x-27=0\)

Aslında bu başlangıçtaki denklemin aynısıdır, ancak artık sıradan ikinci dereceden denklem olarak çözülebilir. İlk önce katsayıları yazıyoruz.

\(a=3;\) \(b=0;\) \(c=-27;\)

Diskriminantı \(D=b^2-4ac\) formülünü kullanarak hesaplayalım.

\(D=0^2-4\cdot3\cdot(-27)=\)
\(=0+324=324\)

Formülleri kullanarak denklemin köklerini bulalım
\(x_(1)=\)\(\frac(-b+\sqrt(D))(2a)\) ve \(x_(2)=\)\(\frac(-b-\sqrt(D) )(2a)\)

\(x_(1)=\) \(\frac(-0+\sqrt(324))(2\cdot3)\)\(=\)\(\frac(18)(6)\) \(=3\)

\(x_(2)=\) \(\frac(-0-\sqrt(324))(2\cdot3)\)\(=\)\(\frac(-18)(6)\) \(=-3\)


Cevabı yaz

Cevap : \(x_(1)=3\); \(x_(2)=-3\)


Örnek : \(-x^2+x=0\) denkleminin köklerini bulun
Çözüm :

Yine tamamlanmamış bir ikinci dereceden denklem, ama şimdi \(c\) katsayısı sıfıra eşit. Denklemi tam olarak yazıyoruz.

İkinci dereceden denklemler. Ayrımcı. Çözüm, örnekler.

Dikkat!
Ek var
Özel Bölüm 555'teki materyaller.
Çok "pek değil..." olanlar için
Ve “çok…” diyenler için)

İkinci dereceden denklem türleri

İkinci dereceden denklem nedir? Neye benziyor? vadede ikinci dereceden denklem anahtar kelime "kare". Bu şu anlama gelir: denklemde mutlaka bir x kare olmalı. Buna ek olarak, denklem yalnızca X'i (birinci kuvvete göre) ve yalnızca bir sayıyı içerebilir (ya da içermeyebilir!) (ücretsiz üye). Ve ikiden büyük bir kuvvetin X'i olmamalıdır.

Matematiksel açıdan, ikinci dereceden bir denklem şu şekilde bir denklemdir:

Burada a, b ve c- bazı sayılar. b ve c- kesinlikle herhangi biri, ancak A– sıfırdan başka herhangi bir şey. Örneğin:

Burada A =1; B = 3; C = -4

Burada A =2; B = -0,5; C = 2,2

Burada A =-3; B = 6; C = -18

Peki, anlıyorsun...

Soldaki bu ikinci dereceden denklemlerde komple setüyeler. Katsayılı X'in karesi A, x üzeri katsayılı birinci kuvvet B Ve ücretsiz üye

Bu tür ikinci dereceden denklemlere denir tam dolu.

Farzedelim B= 0, ne elde ederiz? Sahibiz X'in birinci kuvveti kaybolacak. Bu, sıfırla çarpıldığında meydana gelir.) Örneğin şu şekilde ortaya çıkıyor:

5x2 -25 = 0,

2x2 -6x=0,

-x 2 +4x=0

Vesaire. Ve eğer her iki katsayı da B Ve C sıfıra eşitse, o zaman daha da basittir:

2x2 =0,

-0,3x2 =0

Bir şeyin eksik olduğu bu tür denklemlere denir tamamlanmamış ikinci dereceden denklemler. Bu oldukça mantıklı.) Lütfen x karenin tüm denklemlerde mevcut olduğunu unutmayın.

Bu arada neden A sıfıra eşit olamaz mı? Ve onun yerine sen geçiyorsun A sıfır.) X karemiz kaybolacak! Denklem doğrusal hale gelecektir. Ve çözüm tamamen farklı...

İkinci dereceden denklemlerin tüm ana türleri bunlardır. Tam ve eksik.

İkinci dereceden denklemlerin çözümü.

Tam ikinci dereceden denklemlerin çözümü.

İkinci dereceden denklemlerin çözülmesi kolaydır. Formüllere ve açık, basit kurallara göre. İlk aşamada verilen denklemi standart bir forma getirmek gerekir; forma:

Eğer denklem size zaten bu formda verilmişse, ilk aşamayı yapmanıza gerek yoktur.) Önemli olan tüm katsayıları doğru belirlemek, A, B Ve C.

İkinci dereceden bir denklemin köklerini bulma formülü şuna benzer:

Kök işaretinin altındaki ifadeye denir ayrımcı. Ama onun hakkında daha fazla bilgiyi aşağıda bulabilirsiniz. Gördüğünüz gibi X'i bulmak için şunu kullanıyoruz: sadece a, b ve c. Onlar. ikinci dereceden bir denklemin katsayıları. Değerleri dikkatlice değiştirin a, b ve c Bu formüle göre hesaplıyoruz. Hadi değiştirelim kendi işaretlerinle! Örneğin denklemde:

A =1; B = 3; C= -4. İşte bunu yazıyoruz:

Örnek neredeyse çözüldü:

Cevap bu.

Çok basit. Peki hata yapmanın imkansız olduğunu mu düşünüyorsun? Evet, nasıl...

En yaygın hatalar işaret değerleriyle karışıklıktır a, b ve c. Daha doğrusu, işaretleriyle değil (nerede karıştırılmalı?), Kökleri hesaplama formülüne negatif değerlerin eklenmesiyle. Burada yardımcı olan, formülün belirli sayılarla ayrıntılı bir şekilde kaydedilmesidir. Hesaplamalarda sorun varsa, bunu yap!

Aşağıdaki örneği çözmemiz gerektiğini varsayalım:

Burada A = -6; B = -5; C = -1

Diyelim ki ilk seferde nadiren yanıt alabildiğinizi biliyorsunuz.

Tembel olmayın. Fazladan bir satır ve hata sayısı yazmak yaklaşık 30 saniye sürecektir. keskin bir şekilde azalacak. Bu yüzden tüm parantez ve işaretlerle birlikte ayrıntılı olarak yazıyoruz:

Bu kadar dikkatli yazmak inanılmaz derecede zor görünüyor. Ama sadece öyle görünüyor. Bir deneyin. Peki ya da seç. Hangisi daha iyi, hızlı mı yoksa doğru mu?

Üstelik seni mutlu edeceğim. Bir süre sonra her şeyi bu kadar dikkatli yazmaya gerek kalmayacak. Kendi kendine ortaya çıkacak. Özellikle aşağıda açıklanan pratik teknikleri kullanıyorsanız. Bir sürü eksisi olan bu kötü örnek, kolayca ve hatasız çözülebilir!

Ancak ikinci dereceden denklemler sıklıkla biraz farklı görünür. Örneğin şöyle: Tanıdın mı?) Evet! Bu.

Tamamlanmamış ikinci dereceden denklemlerin çözümü.

tamamlanmamış ikinci dereceden denklemler a, b ve c.

Genel bir formül kullanılarak da çözülebilirler. Sadece burada neye eşit olduklarını doğru anlamanız gerekiyor. Anladın mı? İlk örnekte bir = 1; b = -4; C A ? Hiç orada değil! Evet, doğru. Matematikte bu şu anlama gelir: c = 0 ! İşte bu. Bunun yerine formüle sıfır yazın C, ve başaracağız. İkinci örnekle aynı. Yalnız burada sıfır yokİle B !

, A

Ancak tamamlanmamış ikinci dereceden denklemler çok daha basit bir şekilde çözülebilir. Herhangi bir formül olmadan. İlk tamamlanmamış denklemi ele alalım. Sol tarafta ne yapabilirsiniz? X'i parantezlerden çıkarabilirsiniz! Hadi çıkaralım.
Peki bundan ne haber? Ve çarpımın sıfıra eşit olması ancak ve ancak faktörlerden herhangi birinin sıfıra eşit olması durumunda! Bana inanmıyor musun? Tamam, o zaman çarpıldığında sıfır verecek iki sıfır olmayan sayı bulun!
Çalışmıyor mu? İşte bu... Bu nedenle güvenle yazabiliriz:, x 1 = 0.

x 2 = 4 Tüm. Bunlar denklemimizin kökleri olacak. Her ikisi de uygundur. Bunlardan herhangi birini orijinal denklemde yerine koyduğumuzda doğru özdeşliği 0 = 0 elde ederiz. Gördüğünüz gibi çözüm, genel formülü kullanmaktan çok daha basittir. Bu arada, hangi X'in birinci, hangisinin ikinci olacağını kesinlikle kayıtsız bırakmama izin verin. Sırayla yazmakta fayda var x 1 - daha küçük olan ve x 2

- hangisi daha büyükse.

İkinci denklem de basit bir şekilde çözülebilir. 9'u sağ tarafa taşıyın. Şunu elde ederiz:

Geriye kalan tek şey 9'dan kökü çıkarmak, hepsi bu. Ortaya çıkacak: . Ayrıca iki kök, x1 = -3.

x 2 = 3
Tüm tamamlanmamış ikinci dereceden denklemler bu şekilde çözülür. Ya X'i parantezlerin dışına yerleştirerek ya da sayıyı sağa taşıyıp ardından kökü çıkartarak.

Bu teknikleri karıştırmak son derece zordur. Basitçe, çünkü ilk durumda X'in kökünü çıkarmak zorunda kalacaksınız ki bu bir şekilde anlaşılmazdır ve ikinci durumda parantez içinde çıkarılacak hiçbir şey yoktur...

Ayrımcı. Ayırıcı formül. ayrımcı ! Nadiren bir lise öğrencisi bu kelimeyi duymamıştır! “Ayrımcı aracılığıyla çözüyoruz” ifadesi güven ve güvence veriyor. Çünkü ayrımcıdan hile beklemeye gerek yok! Kullanımı basit ve sorunsuzdur.) Çözüm için en genel formülü hatırlatıyorum. herhangi ikinci dereceden denklemler:

Kök işaretinin altındaki ifadeye diskriminant denir. Tipik olarak ayrımcı harfle gösterilir D. Diskriminant formülü:

D = b 2 - 4ac

Peki bu ifadede bu kadar dikkat çekici olan ne? Neden özel bir ismi hak etti? Ne diskriminantın anlamı? Nihayet -B, veya 2a bu formülde ona özel olarak hiçbir şey demiyorlar... Harfler ve harfler.

İşte olay şu. Bu formülü kullanarak ikinci dereceden bir denklemi çözerken mümkündür sadece üç vaka.

1. Diskriminant pozitiftir. Bu, kökün ondan çıkarılabileceği anlamına gelir. Kökün iyi mi yoksa kötü mü çıkarıldığı farklı bir sorudur. Önemli olan prensipte neyin çıkarıldığıdır. O halde ikinci dereceden denkleminizin iki kökü vardır. İki farklı çözüm.

2. Diskriminant sıfırdır. O zaman tek bir çözümünüz olacak. Çünkü paya sıfır eklemek veya çıkarmak hiçbir şeyi değiştirmez. Aslına bakılırsa bu tek bir kök değil, iki özdeş. Ancak basitleştirilmiş bir versiyonda, hakkında konuşmak gelenekseldir. tek çözüm.

3. Diskriminant negatiftir. Negatif bir sayının karekökü alınamaz. Oh iyi. Bu, hiçbir çözümün olmadığı anlamına gelir.

Dürüst olmak gerekirse, ikinci dereceden denklemleri basit bir şekilde çözerken, diskriminant kavramına gerçekten ihtiyaç duyulmaz. Katsayıların değerlerini formülde yerine koyarız ve sayarız. Orada her şey kendi kendine oluyor, iki kök, bir ve yok. Ancak daha karmaşık görevleri bilgi olmadan çözerken diskriminantın anlamı ve formülü geçinemiyorum. Özellikle parametreli denklemlerde. Bu tür denklemler Devlet Sınavı ve Birleşik Devlet Sınavı için akrobasi niteliğindedir!)

Bu yüzden, ikinci dereceden denklemler nasıl çözülür hatırladığın ayrımcı aracılığıyla. Veya öğrendiniz ki bu da fena değil.) Nasıl doğru bir şekilde belirleyeceğinizi biliyorsunuz a, b ve c. Nasıl olduğunu biliyor musun? dikkatle bunları kök formülde değiştirin ve dikkatle sonucu sayın. Buradaki anahtar kelimenin şu olduğunu anlıyorsunuz: dikkatle mi?

Şimdi hata sayısını önemli ölçüde azaltan pratik teknikleri not edin. Dikkatsizlikten kaynaklananların aynısı... Daha sonra acı verici ve rencide edici hale gelenler...

İlk randevu . İkinci dereceden bir denklemi çözmeden ve onu standart forma getirmeden önce tembel olmayın. Bu ne anlama gelir?
Diyelim ki tüm dönüşümlerden sonra aşağıdaki denklemi elde ettiniz:

Kök formülünü yazmak için acele etmeyin! Neredeyse kesinlikle oranları karıştıracaksınız a, b ve c.Örneği doğru şekilde oluşturun. Önce X'in karesi, sonra karesiz, sonra da serbest terim. Bunun gibi:

Ve yine acele etmeyin! X karesinin önündeki eksi sizi gerçekten üzebilir. Unutmak kolaydır... Eksilerden kurtulun. Nasıl? Evet, önceki konuda öğretildiği gibi! Denklemin tamamını -1 ile çarpmamız gerekiyor. Şunu elde ederiz:

Ancak artık köklerin formülünü güvenle yazabilir, diskriminantı hesaplayabilir ve örneği çözmeyi tamamlayabilirsiniz. Kendiniz karar verin.

Artık 2 ve -1 köklerine sahip olmalısınız. Resepsiyon ikinci. Kökleri kontrol edin! Vieta teoremine göre. Korkma, her şeyi açıklayacağım! Kontrol ediliyor son denklem. Onlar. kök formülü yazarken kullandığımız formül. Eğer (bu örnekte olduğu gibi) katsayı bir = 1 , kökleri kontrol etmek kolaydır. Bunları çoğaltmak yeterlidir. Sonuç ücretsiz bir üye olmalıdır, yani. bizim durumumuzda -2. Lütfen dikkat, 2 değil, -2! Ücretsiz üye senin burcunla

. Eğer işe yaramazsa, zaten bir yerlerde hata yapmışsınız demektir. Hatayı arayın. Bİşe yararsa kökleri eklemeniz gerekir. Son ve son kontrol. Katsayı şu şekilde olmalıdır: İle zıt B aşina. Bizim durumumuzda -1+2 = +1. bir katsayı
X'ten önce gelen -1'e eşittir. Yani her şey doğru! Bunun yalnızca x karenin saf olduğu ve katsayılı olduğu örnekler için bu kadar basit olması üzücü bir = 1.

Ama en azından bu tür denklemleri kontrol edin! Gittikçe daha az hata olacak. Üçüncü resepsiyon

. Denkleminizin kesirli katsayıları varsa kesirlerden kurtulun! "Denklemler nasıl çözülür? Kimlik dönüşümleri" dersinde anlatıldığı gibi denklemi ortak bir paydayla çarpın. Kesirlerle çalışırken bazı nedenlerden dolayı hatalar ortaya çıkmaya devam ediyor...

Bu arada, kötü örneği bir sürü eksiyle basitleştireceğime söz verdim. Lütfen! İşte burada.

Eksilerle karıştırılmamak için denklemi -1 ile çarpıyoruz. Şunu elde ederiz:

İşte bu! Çözmek bir zevktir!

O halde konuyu özetleyelim.

Pratik ipuçları: 1. Çözmeden önce ikinci dereceden denklemi standart forma getirip oluşturuyoruz.

Sağ

2. X karenin önünde negatif bir katsayı varsa denklemin tamamını -1 ile çarparak onu ortadan kaldırırız.

3. Katsayılar kesirli ise denklemin tamamını karşılık gelen faktörle çarparak kesirleri ortadan kaldırırız. 4. Eğer x kare safsa katsayısı bire eşitse çözüm Vieta teoremi kullanılarak kolayca doğrulanabilir.

Yap!

Artık karar verebiliriz.)

Denklemleri çözün:

8x2 - 6x + 1 = 0

x 2 + 3x + 8 = 0

x 2 - 4x + 4 = 0

(x+1) 2 + x + 1 = (x+1)(x+2)

Bu nedenle güvenle yazabiliriz:
Cevaplar (karışıklık içinde):

x 2 = 52

x 1,2 =
x 1 = 2

x2 = -0,5

Ayrıca iki kök
x1 = -3

x - herhangi bir sayı

çözüm yok
x 1 = 0,25

Her şey uyuyor mu? Harika! İkinci dereceden denklemler başınızı ağrıtmaz. İlk üçü işe yaradı ama geri kalanı işe yaramadı mı? O zaman sorun ikinci dereceden denklemlerde değil. Sorun denklemlerin özdeş dönüşümlerindedir. Linke bir göz atın, işinize yarar.

Pek işe yaramıyor mu? Yoksa hiç mi işe yaramıyor? O zaman Bölüm 555 size yardımcı olacaktır. Tüm bu örnekler burada ayrıntılı olarak açıklanmıştır. Gösterilen anaÇözümdeki hatalar. Elbette çeşitli denklemlerin çözümünde aynı dönüşümlerin kullanılmasından da bahsediyoruz. Çok yardımcı oluyor!

Bu siteyi beğendiyseniz...

Bu arada, sizin için birkaç ilginç sitem daha var.)

Örnek çözerek pratik yapabilir ve seviyenizi öğrenebilirsiniz. Anında doğrulama ile test etme. Hadi öğrenelim - ilgiyle!)

Fonksiyonlar ve türevler hakkında bilgi sahibi olabilirsiniz.

5x(x-4) = 0

5 x = 0 veya x - 4 = 0

x = ± √ 25/4

Birinci dereceden denklemleri çözmeyi öğrendikten sonra, elbette başkalarıyla, özellikle ikinci dereceden denklemlerle, aksi takdirde ikinci dereceden olarak adlandırılanlarla çalışmak istersiniz.

İkinci dereceden denklemler ax² + bx + c = 0 gibi değişkenin x olduğu, sayıların a, b, c olduğu, a'nın sıfıra eşit olmadığı denklemlerdir.

İkinci dereceden bir denklemde katsayılardan biri veya diğeri (c veya b) sıfıra eşitse, bu denklem tamamlanmamış ikinci dereceden denklem olarak sınıflandırılacaktır.

Öğrenciler şimdiye kadar yalnızca birinci dereceden denklemleri çözebildiyse, tamamlanmamış ikinci dereceden bir denklem nasıl çözülür? Farklı türlerdeki tamamlanmamış ikinci dereceden denklemleri ve bunları çözmenin basit yollarını ele alalım.

a) Eğer c katsayısı 0'a eşitse ve b katsayısı sıfıra eşit değilse, ax ² + bx + 0 = 0, ax ² + bx = 0 formundaki bir denkleme indirgenir.

Böyle bir denklemi çözmek için, eksik ikinci dereceden bir denklemi çözme formülünü bilmeniz gerekir; bu, sol tarafının çarpanlara ayrılmasından ve daha sonra ürünün sıfıra eşit olması koşulunun kullanılmasından oluşur.

Örneğin, 5x² - 20x = 0. Her zamanki matematik işlemini gerçekleştirirken denklemin sol tarafını çarpanlara ayırıyoruz: ortak çarpanı parantezlerden çıkarıyoruz

5x(x-4) = 0

Çarpımların sıfıra eşit olması koşulunu kullanıyoruz.

5 x = 0 veya x - 4 = 0

Cevap şu olacaktır: ilk kök 0'dır; ikinci kök 4'tür.

b) Eğer b = 0 ve serbest terim sıfıra eşit değilse, ax ² + 0x + c = 0 denklemi ax ² + c = 0 formundaki bir denkleme indirgenir. Denklemler iki şekilde çözülür. : a) Denklemin sol tarafındaki polinomunu çarpanlara ayırarak; b) aritmetik karekökün özelliklerini kullanmak. Böyle bir denklem aşağıdaki yöntemlerden biri kullanılarak çözülebilir:

x = ± √ 25/4

x = ± 5/2. Cevap şu olacak: ilk kök 5/2; ikinci kök - 5/2'ye eşittir.

c) Eğer b 0'a ve c 0'a eşitse, ax ² + 0 + 0 = 0, ax ² = 0 formundaki bir denkleme indirgenir. Böyle bir denklemde x, 0'a eşit olacaktır.

Gördüğünüz gibi, tamamlanmamış ikinci dereceden denklemlerin ikiden fazla kökü olamaz.

İkinci dereceden denklem - çözülmesi kolay! *Bundan sonra “KU” olarak anılacaktır. Arkadaşlar öyle görünüyor ki matematikte böyle bir denklemi çözmekten daha basit bir şey olamaz. Ama içimden bir ses birçok insanın onunla sorunları olduğunu söyledi. Yandex'in ayda kaç tane isteğe bağlı gösterim verdiğini görmeye karar verdim. İşte ne oldu, bakın:


Bu ne anlama geliyor? Bu, ayda yaklaşık 70.000 kişinin bu bilgiyi aradığı anlamına geliyor ve bu yaz ve okul yılı boyunca ne olacak - iki kat daha fazla talep olacak. Bu şaşırtıcı değil, çünkü okuldan uzun zaman önce mezun olan ve Birleşik Devlet Sınavına hazırlanan kız ve erkekler bu bilgiyi arıyorlar ve okul çocukları da hafızalarını tazelemeye çalışıyorlar.

Bu denklemin nasıl çözüleceğini anlatan birçok site olmasına rağmen ben de katkıda bulunup materyali yayınlamaya karar verdim. Öncelikle bu isteğe istinaden ziyaretçilerin siteme gelmesini istiyorum; ikinci olarak diğer yazılarımda “KU” konusu açıldığında bu yazının linkini vereceğim; üçüncü olarak, size çözümü hakkında diğer sitelerde genellikle belirtilenden biraz daha fazlasını anlatacağım. Hadi başlayalım! Makalenin içeriği:

İkinci dereceden bir denklem şu şekilde bir denklemdir:

burada katsayılar a,Bve c, a≠0 olan keyfi sayılardır.

Okul kursunda materyal aşağıdaki biçimde verilmektedir - denklemler üç sınıfa ayrılmıştır:

1. İki kökleri vardır.

2. *Tek bir kökü vardır.

3. Kökleri yoktur. Burada gerçek köklerinin olmadığını özellikle belirtmekte fayda var.

Kökler nasıl hesaplanır? Sadece!

Diskriminant'ı hesaplıyoruz. Bu “korkunç” kelimenin altında çok basit bir formül yatıyor:

Kök formülleri aşağıdaki gibidir:

*Bu formülleri ezbere bilmeniz gerekiyor.

Hemen yazıp çözebilirsiniz:

Örnek:


1. Eğer D > 0 ise denklemin iki kökü vardır.

2. Eğer D = 0 ise denklemin bir kökü vardır.

3. Eğer D< 0, то уравнение не имеет действительных корней.

Denkleme bakalım:


Bu bakımdan diskriminant sıfıra eşit olduğunda okul dersi bir kökün elde edildiğini söylüyor, burada dokuza eşit oluyor. Her şey doğru, öyle ama...

Bu fikir biraz yanlıştır. Aslında iki kök var. Evet, evet, şaşırmayın, iki eşit kök elde edersiniz ve matematiksel olarak kesin olmak gerekirse, cevabın iki kök yazması gerekir:

x 1 = 3 x 2 = 3

Ama bu böyle - küçük bir ara söz. Okulda bunu yazıp tek bir kök olduğunu söyleyebilirsin.

Şimdi bir sonraki örnek:


Bildiğimiz gibi negatif bir sayının kökü alınamadığından bu durumda bir çözüm yoktur.

Bütün karar süreci bundan ibaret.

İkinci dereceden fonksiyon.

Bu, çözümün geometrik olarak neye benzediğini gösterir. Bunu anlamak son derece önemlidir (gelecekte makalelerden birinde ikinci dereceden eşitsizliğin çözümünü ayrıntılı olarak analiz edeceğiz).

Bu formun bir fonksiyonudur:

burada x ve y değişkenlerdir

a, b, c – a ≠ 0 ile verilen sayılar

Grafik bir paraboldür:

Yani, “y” sıfıra eşit olan ikinci dereceden bir denklemi çözerek parabolün x ekseni ile kesişme noktalarını bulduğumuz ortaya çıkıyor. Bu noktalardan ikisi (ayırıcı pozitiftir), biri (ayırıcı sıfırdır) ve hiçbiri (ayırıcı negatiftir) olabilir. İkinci dereceden fonksiyonla ilgili ayrıntılar bakabilirsin Inna Feldman'ın makalesi.

Örneklere bakalım:

Örnek 1: Çöz 2x 2 +8 X–192=0

a=2 b=8 c= –192

D=b 2 –4ac = 8 2 –4∙2∙(–192) = 64+1536 = 1600

Cevap: x 1 = 8 x 2 = –12

*Denklemin sol ve sağ taraflarını hemen 2'ye bölmek, yani basitleştirmek mümkündü. Hesaplamalar daha kolay olacaktır.

Örnek 2: Karar vermek x 2–22 x+121 = 0

a=1 b=–22 c=121

D = b 2 –4ac =(–22) 2 –4∙1∙121 = 484–484 = 0

x 1 = 11 ve x 2 = 11 olduğunu bulduk

Cevapta x=11 yazmak caizdir.

Cevap: x = 11

Örnek 3: Karar vermek x 2 –8x+72 = 0

a=1 b= –8 c=72

D = b 2 –4ac =(–8) 2 –4∙1∙72 = 64–288 = –224

Diskriminant negatiftir, gerçek sayılarda çözüm yoktur.

Cevap: çözüm yok

Diskriminant negatiftir. Bir çözüm var!

Burada negatif bir diskriminantın elde edilmesi durumunda denklemin çözümünden bahsedeceğiz. Karmaşık sayılar hakkında bir şey biliyor musun? Bunların neden ve nerede ortaya çıktıklarını ve matematikteki spesifik rollerinin ve gerekliliklerinin ne olduğunu burada ayrıntıya girmeyeceğim; bu ayrı bir makalenin konusu.

Karmaşık sayı kavramı.

Küçük bir teori.

Karmaşık sayı z, formdaki bir sayıdır

z = a + bi

a ve b'nin gerçel sayılar olduğu durumlarda, i sanal birim olarak adlandırılır.

a+bi – bu TEK BİR NUMARAdır, toplama değildir.

Sanal birim eksi birin köküne eşittir:

Şimdi denklemi düşünün:


İki eşlenik kök elde ediyoruz.

Tamamlanmamış ikinci dereceden denklem.

Özel durumları ele alalım; bu, “b” veya “c” katsayısının sıfıra eşit olduğu (veya her ikisinin de sıfıra eşit olduğu) durumdur. Herhangi bir ayrımcılığa uğramadan kolayca çözülebilirler.

Durum 1. Katsayı b = 0.

Denklem şöyle olur:

Haydi dönüştürelim:

Örnek:

4x 2 –16 = 0 => 4x 2 =16 => x 2 = 4 => x 1 = 2 x 2 = –2

Durum 2. Katsayı c = 0.

Denklem şöyle olur:

Dönüştürüp çarpanlara ayıralım:

*Faktörlerden en az biri sıfıra eşit olduğunda ürün sıfıra eşittir.

Örnek:

9x 2 –45x = 0 => 9x (x–5) =0 => x = 0 veya x–5 =0

x 1 = 0 x 2 = 5

Durum 3. Katsayılar b = 0 ve c = 0.

Burada denklemin çözümünün her zaman x = 0 olacağı açıktır.

Faydalı özellikler ve katsayı kalıpları.

Büyük katsayılı denklemleri çözmenizi sağlayan özellikler vardır.

AX 2 + bx+ C=0 eşitlik geçerlidir

A + B+ c = 0, O

- denklemin katsayıları için ise AX 2 + bx+ C=0 eşitlik geçerlidir

A+ s =B, O

Bu özellikler belirli bir denklem türünün çözülmesine yardımcı olur.

Örnek 1: 5001 X 2 –4995 X – 6=0

Oranların toplamı 5001+( 4995)+( 6) = 0, bunun anlamı

Örnek 2: 2501 X 2 +2507 X+6=0

Eşitlik geçerlidir A+ s =B, Araç

Katsayıların düzenlilikleri.

1. Eğer ax 2 + bx + c = 0 denkleminde “b” katsayısı (a 2 +1)'e eşitse ve “c” katsayısı sayısal olarak “a” katsayısına eşitse, kökleri eşittir

ax 2 + (a 2 +1)∙x+ a= 0 = > x 1 = –a x 2 = –1/a.

Örnek. 6x 2 + 37x + 6 = 0 denklemini düşünün.

x 1 = –6 x 2 = –1/6.

2. ax 2 – bx + c = 0 denkleminde “b” katsayısı (a 2 +1)'e eşitse ve “c” katsayısı sayısal olarak “a” katsayısına eşitse kökleri eşittir

ax 2 – (a 2 +1)∙x+ a= 0 = > x 1 = a x 2 = 1/a.

Örnek. 15x 2 –226x +15 = 0 denklemini düşünün.

x 1 = 15 x 2 = 1/15.

3. Denklemde ise. ax 2 + bx – c = 0 katsayısı “b” eşittir (a 2 – 1) ve katsayısı “c” sayısal olarak “a” katsayısına eşittir, o zaman kökleri eşittir

ax 2 + (a 2 –1)∙x – a= 0 = > x 1 = – a x 2 = 1/a.

Örnek. 17x 2 +288x – 17 = 0 denklemini düşünün.

x 1 = – 17 x 2 = 1/17.

4. Eğer ax 2 - bx - c = 0 denkleminde "b" katsayısı (a 2 - 1)'e eşitse ve c katsayısı sayısal olarak "a" katsayısına eşitse kökleri eşittir

ax 2 – (a 2 –1)∙x – a= 0 = > x 1 = a x 2 = – 1/a.

Örnek. 10x 2 – 99x –10 = 0 denklemini düşünün.

x 1 = 10 x 2 = – 1/10

Vieta'nın teoremi.

Vieta'nın teoremi, adını ünlü Fransız matematikçi Francois Vieta'dan almıştır. Vieta teoremini kullanarak, rastgele bir KU'nun köklerinin toplamını ve çarpımını katsayıları cinsinden ifade edebiliriz.

45 = 1∙45 45 = 3∙15 45 = 5∙9.

Toplamda 14 sayısı sadece 5 ve 9'u verir. Bunlar köklerdir. Belirli bir beceriyle, sunulan teoremi kullanarak birçok ikinci dereceden denklemi sözlü olarak anında çözebilirsiniz.

Ayrıca Vieta teoremi. ikinci dereceden bir denklemin olağan şekilde (bir diskriminant aracılığıyla) çözülmesinden sonra ortaya çıkan köklerin kontrol edilebilmesi açısından uygundur. Bunu her zaman yapmanızı öneririm.

ULAŞIM ŞEKLİ

Bu yöntemle “a” katsayısı serbest terimle sanki kendisine “atılmış” gibi çarpılır, bu yüzden buna denir. "aktarma" yöntemi. Bu yöntem, denklemin kökleri Vieta teoremi kullanılarak kolayca bulunabildiğinde ve en önemlisi diskriminantın tam kare olduğu durumlarda kullanılır.

Eğer A± b+c≠ 0 ise transfer tekniği kullanılır, örneğin:

2X 2 – 11x+ 5 = 0 (1) => X 2 – 11x+ 10 = 0 (2)

Denklem (2)'deki Vieta teoremini kullanarak x 1 = 10 x 2 = 1 olduğunu belirlemek kolaydır.

Denklemin ortaya çıkan kökleri 2'ye bölünmelidir (çünkü ikisi x 2'den "atılmıştır"), şunu elde ederiz:

x 1 = 5 x 2 = 0,5.

Gerekçesi nedir? Bakın neler oluyor.

Denklem (1) ve (2)'nin ayırıcıları eşittir:

Denklemlerin köklerine bakarsanız yalnızca farklı paydalar elde edersiniz ve sonuç tam olarak x 2 katsayısına bağlıdır:


İkincisi (değiştirilmiş) 2 kat daha büyük köklere sahiptir.

Bu nedenle sonucu 2'ye bölüyoruz.

*Üçünü tekrar atarsak sonucu 3'e vb. böleriz.

Cevap: x 1 = 5 x 2 = 0,5

meydan ur-ie ve Birleşik Devlet Sınavı.

Önemini kısaca anlatacağım - Çabuk ve düşünmeden KARAR VERMELİSİNİZ, köklerin ve ayırıcıların formüllerini ezbere bilmeniz gerekiyor. Birleşik Devlet Sınavı görevlerinde yer alan birçok problem, ikinci dereceden bir denklemin (geometrik olanlar dahil) çözülmesiyle ilgilidir.

Dikkate değer bir şey!

1. Bir denklemin yazım şekli “örtük” olabilir. Örneğin aşağıdaki giriş mümkündür:

15+ 9x 2 - 45x = 0 veya 15x+42+9x 2 - 45x=0 veya 15 -5x+10x 2 = 0.

Bunu standart bir forma getirmeniz gerekiyor (çözerken kafanızın karışmaması için).

2. X'in bilinmeyen bir miktar olduğunu ve herhangi bir harfle (t, q, p, h ve diğerleri) gösterilebileceğini unutmayın.

Bu yazıda tamamlanmamış ikinci dereceden denklemlerin çözümüne bakacağız.

Ama önce hangi denklemlere ikinci dereceden denir tekrarlayalım. x'in bir değişken olduğu ve a, b ve c katsayılarının bazı sayılar olduğu ve a ≠ 0 olduğu ax 2 + bx + c = 0 formundaki bir denklem denir. kare. Gördüğümüz gibi, x 2'nin katsayısı sıfıra eşit değildir ve bu nedenle x'in veya serbest terimin katsayıları sıfıra eşit olabilir, bu durumda tamamlanmamış ikinci dereceden bir denklem elde ederiz.

Üç tür tamamlanmamış ikinci dereceden denklem vardır:

1) Eğer b = 0, c ≠ 0 ise ax 2 + c = 0;

2) Eğer b ≠ 0, c = 0 ise ax 2 + bx = 0;

3) Eğer b = 0, c = 0 ise ax 2 = 0 olur.

  • Nasıl çözeceğimizi bulalım ax 2 + c = 0 formundaki denklemler.

Denklemi çözmek için serbest c terimini denklemin sağ tarafına taşırız, şunu elde ederiz:

balta 2 = ‒s. a ≠ 0 olduğundan denklemin her iki tarafını da a'ya böleriz, o zaman x 2 = ‒c/a olur.

‒с/а > 0 ise denklemin iki kökü vardır

x = ±√(–c/a) .

Eğer -c/a< 0, то это уравнение решений не имеет. Более наглядно решение данных уравнений представлено на схеме.

Bu tür denklemlerin nasıl çözüleceğini örneklerle anlamaya çalışalım.

Örnek 1. 2x 2 ‒ 32 = 0 denklemini çözün.

Cevap: x 1 = - 4, x 2 = 4.

Örnek 2. 2x 2 + 8 = 0 denklemini çözün.

Cevap: Denklemin çözümü yoktur.

  • Hadi bunu nasıl çözeceğimizi bulalım ax 2 + bx = 0 formundaki denklemler.

ax 2 + bx = 0 denklemini çözmek için çarpanlara ayıralım yani x'i parantezden çıkaralım, x(ax + b) = 0 elde ederiz. Faktörlerden en az biri eşitse çarpım sıfıra eşittir. sıfıra. O zaman ya x = 0 ya da ax + b = 0. ax + b = 0 denklemini çözerek ax = - b elde ederiz, dolayısıyla x = - b/a olur. ax 2 + bx = 0 formundaki bir denklemin her zaman iki kökü x 1 = 0 ve x 2 = ‒ b/a'dır. Bu tür denklemlerin çözümünün şemada nasıl göründüğüne bakın.

Bilgimizi belirli bir örnekle pekiştirelim.

Örnek 3. 3x 2 ‒ 12x = 0 denklemini çözün.

x(3x ‒ 12) = 0

x= 0 veya 3x – 12 = 0

Cevap: x 1 = 0, x 2 = 4.

  • Üçüncü tip denklemler ax 2 = 0çok basit bir şekilde çözüldü.

Eğer ax 2 = 0 ise x 2 = 0 olur. Denklemin iki eşit kökü vardır: x 1 = 0, x 2 = 0.

Açıklık sağlamak için şemaya bakalım.

Örnek 4'ü çözerken bu tür denklemlerin çok basit bir şekilde çözülebileceğinden emin olalım.

Örnek 4. 7x 2 = 0 denklemini çözün.

Cevap: x 1, 2 = 0.

Ne tür tamamlanmamış ikinci dereceden denklemi çözmemiz gerektiği her zaman hemen belli olmaz. Aşağıdaki örneği düşünün.

Örnek 5. Denklemi çöz

Denklemin her iki tarafını da ortak bir paydayla yani 30 ile çarpalım.

Hadi keselim

5(5x2 + 9) – 6(4x2 – 9) = 90.

Parantezleri açalım

25x2 + 45 – 24x2 + 54 = 90.

Benzerini verelim

99'u denklemin sol tarafından sağa taşıyalım, işaretini ters çevirelim

Cevap: Kök yok.

Tamamlanmamış ikinci dereceden denklemlerin nasıl çözüldüğüne baktık. Umarım artık bu tür görevlerde herhangi bir zorluk yaşamazsınız. Tamamlanmamış ikinci dereceden denklemin türünü belirlerken dikkatli olun, o zaman başarılı olursunuz.

Bu konuyla ilgili sorularınız varsa derslerime kaydolun, ortaya çıkan sorunları birlikte çözelim.

web sitesi, materyalin tamamını veya bir kısmını kopyalarken kaynağa bir bağlantı gereklidir.