Logaritma nasıl hesaplanır? Karmaşık sayılar kullanan ifadeler

Bildiğiniz gibi ifadeleri kuvvetlerle çarparken üsleri daima toplanır (a b *a c = a b+c). Bu matematik kanunu Arşimet tarafından türetildi ve daha sonra 8. yüzyılda matematikçi Virasen tamsayı üslerinden oluşan bir tablo oluşturdu. Logaritmanın daha fazla keşfedilmesine hizmet edenler onlardı. Bu işlevin kullanımına ilişkin örnekler, zahmetli çarpma işlemini basit toplama yoluyla basitleştirmenin gerekli olduğu hemen hemen her yerde bulunabilir. Bu makaleyi okumaya 10 dakikanızı ayırırsanız size logaritmanın ne olduğunu ve onlarla nasıl çalışılacağını açıklayacağız. Basit ve erişilebilir bir dille.

Matematikte tanım

Logaritma aşağıdaki formun bir ifadesidir: log a b=c, yani negatif olmayan herhangi bir sayının (yani herhangi bir pozitif) “b”nin “a” tabanına göre logaritması, “c” kuvveti olarak kabul edilir. ” sonuçta "b" değerini elde etmek için "a" tabanını yükseltmek gerekir. Logaritmayı örneklerle inceleyelim, diyelim ki log 2 8 ifadesi var. Cevap nasıl bulunur? Çok basit, öyle bir güç bulmanız gerekiyor ki 2'den gerekli güce 8 ulaşacaksınız. Kafanızda bazı hesaplamalar yaptıktan sonra 3 sayısını elde ediyoruz! Ve bu doğru çünkü 2 üssü 3 cevabı 8 olarak veriyor.

Logaritma türleri

Birçok öğrenci ve öğrenci için bu konu karmaşık ve anlaşılmaz görünüyor, ancak aslında logaritmalar o kadar da korkutucu değil, asıl önemli olan genel anlamlarını anlamak ve özelliklerini ve bazı kurallarını hatırlamaktır. Üç ayrı logaritmik ifade türü vardır:

  1. Doğal logaritma ln a, burada taban Euler sayısıdır (e = 2,7).
  2. Tabanı 10 olan ondalık a.
  3. Herhangi bir b sayısının a>1 tabanına göre logaritması.

Bunların her biri, logaritmik teoremler kullanılarak basitleştirme, indirgeme ve ardından tek bir logaritmaya indirgeme dahil olmak üzere standart bir şekilde çözülür. Logaritmaların doğru değerlerini elde etmek için, bunları çözerken özelliklerini ve eylem sırasını hatırlamanız gerekir.

Kurallar ve bazı kısıtlamalar

Matematikte aksiyom olarak kabul edilen, yani tartışmaya konu olmayan ve gerçek olan birçok kural-kısıtlama vardır. Örneğin sayıları sıfıra bölmek mümkün olmadığı gibi negatif sayıların çift kökünü çıkarmak da imkansızdır. Logaritmaların da kendi kuralları vardır; bunları takip ederek uzun ve kapsamlı logaritmik ifadelerle bile çalışmayı kolayca öğrenebilirsiniz:

  • "a" tabanı her zaman sıfırdan büyük olmalı ve 1'e eşit olmamalıdır, aksi takdirde ifade anlamını kaybeder, çünkü "1" ve "0" herhangi bir dereceye kadar her zaman değerlerine eşittir;
  • a > 0 ise a b >0 ise "c"nin de sıfırdan büyük olması gerektiği ortaya çıkar.

Logaritmalar nasıl çözülür?

Örneğin 10 x = 100 denkleminin cevabını bulma görevi veriliyor. Bu çok kolay, on sayısını artırarak 100'e ulaşacağımız bir kuvvet seçmeniz gerekiyor. Bu elbette 10 2 = 100.

Şimdi bu ifadeyi logaritmik formda gösterelim. Log 10 100 = 2 elde ederiz. Logaritmaları çözerken, belirli bir sayıyı elde etmek için logaritmanın tabanına girmenin gerekli olduğu gücü bulmak için tüm eylemler pratik olarak birleşir.

Bilinmeyen bir derecenin değerini doğru bir şekilde belirlemek için derece tablosuyla nasıl çalışılacağını öğrenmeniz gerekir. Şuna benziyor:

Gördüğünüz gibi, eğer teknik bir aklınız ve çarpım tablosu bilginiz varsa, bazı üsler sezgisel olarak tahmin edilebilir. Ancak daha büyük değerler için güç tablosuna ihtiyacınız olacaktır. Karmaşık matematik konuları hakkında hiçbir şey bilmeyen kişiler tarafından bile kullanılabilir. Sol sütun sayıları içerir (a tabanı), sayıların üst satırı a sayısının yükseltildiği c kuvvetinin değeridir. Kesişme noktasında hücreler cevap olan sayı değerlerini içerir (a c =b). Mesela 10 rakamının olduğu ilk hücreyi alıp karesini alalım, iki hücremizin kesişiminde gösterilen 100 değerini elde ederiz. Her şey o kadar basit ve kolaydır ki en gerçek hümanist bile anlayacaktır!

Denklemler ve eşitsizlikler

Belirli koşullar altında üssün logaritma olduğu ortaya çıktı. Bu nedenle herhangi bir matematiksel sayısal ifade logaritmik eşitlik olarak yazılabilir. Örneğin 3 4 =81, 81'in 3 tabanlı logaritması dörde eşit (log 3 81 = 4) olarak yazılabilir. Negatif kuvvetler için kurallar aynıdır: 2 -5 = 1/32 logaritma olarak yazarsak log 2 (1/32) = -5 elde ederiz. Matematiğin en büyüleyici bölümlerinden biri “logaritmalar” konusudur. Özelliklerini inceledikten hemen sonra aşağıdaki denklem örneklerine ve çözümlerine bakacağız. Şimdi eşitsizliklerin neye benzediğine ve onları denklemlerden nasıl ayıracağımıza bakalım.

Aşağıdaki ifade verilmiştir: log 2 (x-1) > 3 - bilinmeyen “x” değeri logaritmik işaretin altında olduğundan bu logaritmik bir eşitsizliktir. Ayrıca ifadede iki nicelik karşılaştırılır: İstenilen sayının iki tabanına göre logaritması üç sayısından büyüktür.

Logaritmik denklemler ve eşitsizlikler arasındaki en önemli fark, logaritmalı denklemlerin (örneğin, logaritma 2 x = √9) cevapta bir veya daha fazla spesifik sayısal değeri ima etmesi, bir eşitsizliği çözerken ise her iki kabul edilebilir değer aralığının da belirtilmesidir. değerler ve noktalar bu fonksiyon kırılarak belirlenir. Sonuç olarak cevap, bir denklemin cevabında olduğu gibi basit bir bireysel sayılar dizisi değil, sürekli bir dizi veya sayı dizisidir.

Logaritmalarla ilgili temel teoremler

Logaritmanın değerlerini bulma gibi ilkel görevleri çözerken özellikleri bilinmeyebilir. Ancak konu logaritmik denklemler veya eşitsizlikler olduğunda öncelikle logaritmanın tüm temel özelliklerini net bir şekilde anlamak ve pratikte uygulamak gerekir. Daha sonra denklem örneklerine bakacağız; önce her özelliğe daha ayrıntılı olarak bakalım.

  1. Ana kimlik şuna benzer: a logaB =B. Bu yalnızca a'nın 0'dan büyük olması, bire eşit olmaması ve B'nin sıfırdan büyük olması durumunda geçerlidir.
  2. Çarpımın logaritması şu formülle temsil edilebilir: log d (s 1 * s 2) = log d s 1 + log d s 2. Bu durumda zorunlu koşul şudur: d, s 1 ve s 2 > 0; a≠1. Bu logaritmik formülün ispatını örneklerle ve çözümle yapabilirsiniz. Log a s 1 = f 1 ve log a s 2 = f 2 olsun, sonra a f1 = s 1, a f2 = s 2 olsun. s 1 * s 2 = a f1 *a f2 = a f1+f2 sonucunu elde ederiz (özellikleri derece ) ve ardından tanım gereği: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, bunun kanıtlanması gerekiyordu.
  3. Bölümün logaritması şuna benzer: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. Formül biçimindeki teorem şu biçimi alır: log a q b n = n/q log a b.

Bu formüle “logaritma derecesinin özelliği” denir. Sıradan derecelerin özelliklerine benzer ve bu şaşırtıcı değildir çünkü tüm matematik doğal önermelere dayanmaktadır. Kanıta bakalım.

Log a b = t olsun, a t =b olur. Her iki parçayı da m kuvvetine çıkarırsak: a tn = b n ;

ancak a tn = (a q) nt/q = b n olduğundan, log a q b n = (n*t)/t olduğundan, log a q b n = n/q log a b olur. Teorem kanıtlandı.

Sorun ve eşitsizlik örnekleri

Logaritmalarla ilgili en yaygın problem türleri denklem ve eşitsizlik örnekleridir. Neredeyse tüm problem kitaplarında bulunurlar ve aynı zamanda matematik sınavlarının da zorunlu bir parçasıdırlar. Bir üniversiteye girmek veya matematikte giriş sınavlarını geçmek için bu tür görevleri nasıl doğru bir şekilde çözeceğinizi bilmeniz gerekir.

Ne yazık ki, logaritmanın bilinmeyen değerini çözmek ve belirlemek için tek bir plan veya şema yoktur, ancak her matematiksel eşitsizliğe veya logaritmik denkleme belirli kurallar uygulanabilir. Öncelikle ifadenin basitleştirilip sadeleştirilemeyeceğini veya genel bir forma indirgenip indirgenemeyeceğini öğrenmelisiniz. Uzun logaritmik ifadeleri, özelliklerini doğru kullanırsanız basitleştirebilirsiniz. Onları hızlıca tanıyalım.

Logaritmik denklemleri çözerken, ne tür bir logaritmaya sahip olduğumuzu belirlememiz gerekir: örnek bir ifade, doğal bir logaritma veya ondalık bir logaritma içerebilir.

İşte ln100, ln1026 örnekleri. Çözümleri, 10 tabanının sırasıyla 100 ve 1026'ya eşit olacağı gücü belirlemeleri gerektiği gerçeğine dayanıyor. Doğal logaritmaları çözmek için logaritmik kimlikleri veya bunların özelliklerini uygulamanız gerekir. Çeşitli türlerdeki logaritmik problemleri çözme örneklerine bakalım.

Logaritma Formülleri Nasıl Kullanılır: Örnekler ve Çözümlerle

Logaritmalarla ilgili temel teoremlerin kullanımına ilişkin örneklere bakalım.

  1. Bir çarpımın logaritmasının özelliği, b sayısının büyük bir değerini daha basit faktörlere ayırmanın gerekli olduğu görevlerde kullanılabilir. Örneğin, log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Cevap 9'dur.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - görebileceğiniz gibi, logaritmanın kuvvetinin dördüncü özelliğini kullanarak, görünüşte karmaşık ve çözülemez bir ifadeyi çözmeyi başardık. Tabanı çarpanlara ayırmanız ve ardından üs değerlerini logaritmanın işaretinden çıkarmanız yeterlidir.

Birleşik Devlet Sınavından Ödevler

Logaritmalara genellikle giriş sınavlarında, özellikle de Birleşik Devlet Sınavında (tüm okul mezunları için devlet sınavı) birçok logaritmik problemle karşılaşılır. Genellikle bu görevler yalnızca A kısmında (sınavın en kolay test kısmı) değil, aynı zamanda C kısmında da (en karmaşık ve hacimli görevler) mevcuttur. Sınav, “Doğal logaritmalar” konusunda doğru ve mükemmel bilgi gerektirir.

Sorunlara örnekler ve çözümler Birleşik Devlet Sınavının resmi versiyonlarından alınmıştır. Bu tür görevlerin nasıl çözüldüğünü görelim.

Log 2 (2x-1) = 4 verildiğinde. Çözüm:
ifadeyi biraz basitleştirerek yeniden yazalım log 2 (2x-1) = 2 2, logaritmanın tanımından 2x-1 = 2 4, dolayısıyla 2x = 17 elde ederiz; x = 8,5.

  • Çözümün hantal ve kafa karıştırıcı olmaması için tüm logaritmaların aynı tabana indirilmesi en iyisidir.
  • Logaritmanın işaretinin altındaki tüm ifadeler pozitif olarak gösterilir, dolayısıyla logaritmanın işaretinin altında olan bir ifadenin tabanı çarpan olarak üssü çıkarıldığında logaritmanın altında kalan ifadenin pozitif olması gerekir.

Logaritmik ifadeler, çözüm örnekleri. Bu yazıda logaritma çözümüyle ilgili problemlere bakacağız. Görevler bir ifadenin anlamını bulma sorusunu sorar. Logaritma kavramının birçok görevde kullanıldığını ve anlamını anlamanın son derece önemli olduğunu belirtmek gerekir. Birleşik Devlet Sınavına gelince, logaritma denklemleri çözerken, uygulamalı problemlerde ve ayrıca fonksiyonların incelenmesiyle ilgili görevlerde kullanılır.

Logaritmanın anlamını anlamak için örnekler verelim:


Temel logaritmik kimlik:

Logaritmanın her zaman hatırlanması gereken özellikleri:

*Çarpımın logaritması, faktörlerin logaritmasının toplamına eşittir.

* * *

*Bir bölümün (kesir) logaritması, faktörlerin logaritmaları arasındaki farka eşittir.

* * *

*Üssün logaritması üssün logaritması ile üssün çarpımına eşittir.

* * *

*Yeni bir temele geçiş

* * *

Daha fazla özellik:

* * *

Logaritmanın hesaplanması üslü sayıların özelliklerinin kullanımıyla yakından ilgilidir.

Bunlardan bazılarını listeleyelim:

Bu özelliğin özü, pay paydaya aktarıldığında ve tam tersi durumda üssün işaretinin tersine değişmesidir. Örneğin:

Bu özellikten bir sonuç:

* * *

Bir kuvveti bir kuvvete yükseltirken taban aynı kalır ancak üsler çarpılır.

* * *

Gördüğünüz gibi logaritma kavramının kendisi basittir. Önemli olan, size belirli bir beceri kazandıran iyi uygulamaya ihtiyacınız olmasıdır. Elbette formül bilgisi gereklidir. Temel logaritmaları dönüştürme becerisi geliştirilmediyse, basit görevleri çözerken kolayca hata yapabilirsiniz.

Pratik yapın, önce matematik dersindeki en basit örnekleri çözün, ardından daha karmaşık olanlara geçin. Gelecekte logaritmaların ne kadar “çirkin” çözüldüğünü mutlaka göstereceğim; bunlar Birleşik Devlet Sınavında görünmeyecek ama ilgi çekici, kaçırmayın!

Hepsi bu! Size iyi şanslar!

Saygılarımla, Alexander Krutitskikh

Not: Siteyi sosyal ağlarda anlatırsanız sevinirim.

Gizliliğinizin korunması bizim için önemlidir. Bu nedenle bilgilerinizi nasıl kullandığımızı ve sakladığımızı açıklayan bir Gizlilik Politikası geliştirdik. Lütfen gizlilik uygulamalarımızı inceleyin ve herhangi bir sorunuz varsa bize bildirin.

Kişisel bilgilerin toplanması ve kullanılması

Kişisel bilgiler, belirli bir kişiyi tanımlamak veya onunla iletişim kurmak için kullanılabilecek verileri ifade eder.

Bizimle iletişime geçtiğinizde istediğiniz zaman kişisel bilgilerinizi vermeniz istenebilir.

Aşağıda toplayabileceğimiz kişisel bilgi türlerine ve bu bilgileri nasıl kullanabileceğimize dair bazı örnekler verilmiştir.

Hangi kişisel bilgileri topluyoruz:

  • Siteye bir başvuru gönderdiğinizde adınız, telefon numaranız, e-posta adresiniz vb. dahil olmak üzere çeşitli bilgiler toplayabiliriz.

Kişisel bilgilerinizi nasıl kullanıyoruz:

  • Topladığımız kişisel bilgiler, benzersiz teklifler, promosyonlar, diğer etkinlikler ve gelecek etkinlikler konusunda sizinle iletişim kurmamıza olanak tanır.
  • Zaman zaman kişisel bilgilerinizi önemli bildirimler ve iletişimler göndermek için kullanabiliriz.
  • Kişisel bilgileri, sunduğumuz hizmetleri geliştirmek ve size hizmetlerimizle ilgili tavsiyeler sunmak amacıyla denetimler, veri analizi ve çeşitli araştırmalar yapmak gibi şirket içi amaçlarla da kullanabiliriz.
  • Bir ödül çekilişine, yarışmaya veya benzer bir promosyona katılırsanız, sağladığınız bilgileri bu tür programları yönetmek için kullanabiliriz.

Bilgilerin üçüncü şahıslara açıklanması

Sizden aldığımız bilgileri üçüncü şahıslara açıklamıyoruz.

İstisnalar:

  • Gerekirse - yasaya, adli prosedüre uygun olarak, yasal işlemlerde ve/veya kamunun talepleri veya Rusya Federasyonu topraklarındaki hükümet yetkililerinin talepleri temelinde - kişisel bilgilerinizi ifşa etmek. Ayrıca, bu tür bir açıklamanın güvenlik, kanun yaptırımı veya diğer kamu önemi amaçları açısından gerekli veya uygun olduğunu tespit edersek, hakkınızdaki bilgileri de açıklayabiliriz.
  • Yeniden yapılanma, birleşme veya satış durumunda topladığımız kişisel bilgileri ilgili halef üçüncü tarafa aktarabiliriz.

Kişisel bilgilerin korunması

Kişisel bilgilerinizi kayıp, hırsızlık ve kötüye kullanımın yanı sıra yetkisiz erişime, ifşa edilmeye, değiştirilmeye ve imhaya karşı korumak için idari, teknik ve fiziksel önlemler alıyoruz.

Şirket düzeyinde gizliliğinize saygı duymak

Kişisel bilgilerinizin güvende olduğundan emin olmak için gizlilik ve güvenlik standartlarını çalışanlarımıza aktarıyor ve gizlilik uygulamalarını sıkı bir şekilde uyguluyoruz.

Talimatlar

Verilen logaritmik ifadeyi yazınız. İfade 10'un logaritmasını kullanıyorsa gösterimi kısaltılır ve şu şekilde görünür: lg b ondalık logaritmadır. Logaritmanın temelinde e sayısı varsa, şu ifadeyi yazın: ln b – doğal logaritma. Herhangi birinin sonucunun, b sayısını elde etmek için temel sayının yükseltilmesi gereken kuvvet olduğu anlaşılmaktadır.

İki fonksiyonun toplamını bulurken, tek tek türevlerini alıp sonuçları eklemeniz yeterlidir: (u+v)" = u"+v";

İki fonksiyonun çarpımının türevini bulurken, birinci fonksiyonun türevini ikinciyle çarpmak ve ikinci fonksiyonun türevinin birinci fonksiyonla çarpımını eklemek gerekir: (u*v)" = u"*v +v"*u;

İki fonksiyonun bölümünün türevini bulmak için, bölen fonksiyonu ile bölünen türevinin çarpımından bölen türevinin çarpımı ile bölünen fonksiyonun çarpımını çıkarmak ve bölmek gerekir. tüm bunlar bölen fonksiyonunun karesine göre. (u/v)" = (u"*v-v"*u)/v^2;

Karmaşık bir fonksiyon verilirse, iç fonksiyonun türevi ile dış fonksiyonun türevinin çarpılması gerekir. y=u(v(x)) olsun, sonra y"(x)=y"(u)*v"(x) olsun.

Yukarıda elde edilen sonuçları kullanarak hemen hemen her işlevi ayırt edebilirsiniz. O halde birkaç örneğe bakalım:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2) *X));
Bir noktadaki türevin hesaplanmasıyla ilgili problemler de vardır. y=e^(x^2+6x+5) fonksiyonu verilsin, x=1 noktasında fonksiyonun değerini bulmanız gerekiyor.
1) Fonksiyonun türevini bulun: y"=e^(x^2-6x+5)*(2*x +6).

2) Belirli bir y"(1)=8*e^0=8 noktasında fonksiyonun değerini hesaplayın

Konuyla ilgili video

Faydalı tavsiyeler

Temel türevler tablosunu öğrenin. Bu önemli ölçüde zaman kazandıracaktır.

Kaynaklar:

  • bir sabitin türevi

Peki irrasyonel bir denklem ile rasyonel bir denklem arasındaki fark nedir? Bilinmeyen değişken karekök işaretinin altındaysa denklemin irrasyonel olduğu kabul edilir.

Talimatlar

Bu tür denklemleri çözmenin ana yöntemi her iki tarafı da oluşturma yöntemidir. denklemler bir kareye. Fakat. bu doğaldır, yapmanız gereken ilk şey tabeladan kurtulmaktır. Bu yöntem teknik olarak zor değildir ancak bazen sıkıntılara yol açabilmektedir. Örneğin denklem v(2x-5)=v(4x-7) şeklindedir. Her iki tarafın karesini alarak 2x-5=4x-7 elde edersiniz. Böyle bir denklemi çözmek zor değil; x=1. Ama 1 rakamı verilmeyecek denklemler. Neden? Denklemde x'in değeri yerine bir koyarsak sağ ve sol taraflarda anlamsız ifadeler yer alır. Bu değer karekök için geçerli değildir. Bu nedenle 1 yabancı bir köktür ve bu nedenle bu denklemin kökleri yoktur.

Yani irrasyonel bir denklem her iki tarafının karesi alma yöntemi kullanılarak çözülür. Denklemi çözdükten sonra yabancı kökleri kesmek gerekir. Bunu yapmak için bulunan kökleri orijinal denklemde değiştirin.

Başka bir tane düşünün.
2х+vх-3=0
Elbette bu denklem bir önceki denklemin aynısı kullanılarak çözülebilir. Bileşikleri Taşı denklemler Karekökü olmayan , sağ tarafa ve ardından kare alma yöntemini kullanın. Ortaya çıkan rasyonel denklemi ve köklerini çözer. Ama aynı zamanda daha zarif bir tane daha. Yeni bir değişken girin; vх=y. Buna göre 2y2+y-3=0 formunda bir denklem elde edeceksiniz. Yani sıradan bir ikinci dereceden denklem. Köklerini bulun; y1=1 ve y2=-3/2. Sonra iki tanesini çöz denklemler vх=1; vх=-3/2. İkinci denklemin kökleri yoktur; birinciden x=1 olduğunu buluruz. Kökleri kontrol etmeyi unutmayın.

Kimlikleri çözmek oldukça basittir. Bunu yapmak için, belirlenen hedefe ulaşılıncaya kadar aynı dönüşümlerin gerçekleştirilmesi gerekir. Böylece basit aritmetik işlemler yardımıyla ortaya çıkan problem çözülecektir.

İhtiyacın olacak

  • - kağıt;
  • - dolma kalem.

Talimatlar

Bu tür dönüşümlerin en basiti cebirsel kısaltılmış çarpmalardır (toplamın karesi (fark), kareler farkı, toplam (fark), toplamın küpü (fark) gibi). Ayrıca aslında aynı özdeşliğe sahip birçok trigonometrik formül vardır.

Nitekim iki terimin toplamının karesi, birincinin karesi artı birincinin ikinciyle çarpımının iki katı ve artı ikincinin karesine eşittir, yani (a+b)^2= (a+) b)(a+b)=a^2+ab +ba+b ^2=a^2+2ab+b^2.

Her ikisini de basitleştirin

Çözümün genel ilkeleri

Belirli bir integralin ne olduğunu matematiksel analiz veya yüksek matematikle ilgili bir ders kitabından tekrarlayın. Bilindiği gibi belirli bir integralin çözümü, türevi bir integral verecek olan bir fonksiyondur. Bu fonksiyona antiderivatif denir. Bu prensibe dayanarak ana integraller inşa edilir.
Bu durumda tablo integrallerinden hangisinin uygun olduğunu integralin türüne göre belirleyin. Bunu hemen belirlemek her zaman mümkün olmuyor. Çoğu zaman tablo biçimi ancak integrandın basitleştirilmesi için yapılan birkaç dönüşümden sonra fark edilebilir hale gelir.

Değişken Değiştirme Yöntemi

İntegral, argümanı bir polinom olan trigonometrik bir fonksiyonsa, değişkenlerin değişimi yöntemini kullanmayı deneyin. Bunu yapmak için integralin argümanındaki polinomu yeni bir değişkenle değiştirin. Yeni ve eski değişkenler arasındaki ilişkiye dayanarak entegrasyonun yeni sınırlarını belirleyin. Bu ifadenin türevini alarak yeni diferansiyeli bulun. Böylece, önceki integralin yeni bir formunu elde edeceksiniz, tablo halindeki bir integrale yakın veya hatta ona karşılık gelecek.

İkinci Tür İntegrallerin Çözülmesi

İntegral ikinci türden bir integral ise, integralin vektör biçimi ise, o zaman bu integrallerden skaler olanlara geçiş için kuralları kullanmanız gerekecektir. Böyle bir kural Ostrogradsky-Gauss ilişkisidir. Bu yasa, belirli bir vektör fonksiyonunun rotor akısından, belirli bir vektör alanının diverjansı üzerinden üçlü integrale geçmemize izin verir.

Entegrasyon sınırlarının değiştirilmesi

Antiderivatifi bulduktan sonra integralin limitlerini yerine koymak gerekir. İlk olarak, üst limitin değerini ters türev ifadesinde değiştirin. Bir numara alacaksınız. Daha sonra, elde edilen sayıdan alt limitten elde edilen başka bir sayıyı antiderivatife çıkarın. İntegralin limitlerinden biri sonsuzluk ise, bunu antiderivatif fonksiyona yerleştirirken limite gitmek ve ifadenin neye yöneldiğini bulmak gerekir.
İntegral iki boyutlu veya üç boyutlu ise, integralin nasıl değerlendirileceğini anlamak için integralin sınırlarını geometrik olarak temsil etmeniz gerekecektir. Aslında, örneğin üç boyutlu bir integral durumunda, integralin sınırları, entegre edilen hacmi sınırlayan tüm düzlemler olabilir.

ana özellikler.

  1. logax + logay = loga(x y);
  2. logax – logay = loga (x: y).

aynı gerekçeler

Log6 4 + log6 9.

Şimdi görevi biraz karmaşıklaştıralım.

Logaritma çözme örnekleri

Ya bir logaritmanın tabanı veya argümanı bir kuvvet ise? Daha sonra bu derecenin üssü aşağıdaki kurallara göre logaritmanın işaretinden çıkarılabilir:

Elbette tüm bu kurallar, logaritmanın ODZ'sine uyulduğu takdirde anlamlıdır: a > 0, a ≠ 1, x >

Görev. İfadenin anlamını bulun:

Yeni bir temele geçiş

Logaritmanın logax'ı verilsin. O halde c > 0 ve c ≠ 1 olacak şekilde herhangi bir c sayısı için eşitlik doğrudur:

Görev. İfadenin anlamını bulun:

Ayrıca bakınız:


Logaritmanın temel özellikleri

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Üs 2,718281828…. Üssü hatırlamak için kuralı inceleyebilirsiniz: üs 2,7'ye eşittir ve Leo Nikolaevich Tolstoy'un doğum yılının iki katıdır.

Logaritmanın temel özellikleri

Bu kuralı bildiğinizde hem üssün tam değerini hem de Leo Tolstoy'un doğum tarihini bileceksiniz.


Logaritma örnekleri

Logaritma ifadeleri

Örnek 1.
A). x=10ac^2 (a>0,c>0).

3.5 özelliklerini kullanarak hesaplıyoruz

2.

3.

4. Nerede .



Örnek 2. Eğer x'i bulun


Örnek 3. Logaritmanın değeri verilsin

Log(x)'i hesaplayın, eğer




Logaritmanın temel özellikleri

Logaritmalar da diğer sayılar gibi her şekilde toplanabilir, çıkarılabilir ve dönüştürülebilir. Ancak logaritmalar tam olarak sıradan sayılar olmadığından burada kurallar vardır. ana özellikler.

Bu kuralları kesinlikle bilmeniz gerekir - onlar olmadan tek bir ciddi logaritmik problem çözülemez. Ayrıca bunlardan çok azı var - her şeyi bir günde öğrenebilirsiniz. Öyleyse başlayalım.

Logaritmaların toplanması ve çıkarılması

Aynı tabanlara sahip iki logaritmayı düşünün: logax ve logay. Daha sonra bunlar eklenebilir ve çıkarılabilir ve:

  1. logax + logay = loga(x y);
  2. logax – logay = loga (x: y).

Yani logaritmaların toplamı çarpımın logaritmasına, fark ise bölümün logaritmasına eşittir. Lütfen dikkat: buradaki kilit nokta aynı gerekçeler. Sebepler farklıysa bu kurallar işe yaramaz!

Bu formüller, tek tek parçaları dikkate alınmasa bile logaritmik bir ifadeyi hesaplamanıza yardımcı olacaktır (“Logaritma nedir” dersine bakın). Örneklere bir göz atın ve şunu görün:

Logaritmaların tabanları aynı olduğundan toplam formülünü kullanırız:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Görev. İfadenin değerini bulun: log2 48 − log2 3.

Bazlar aynı, fark formülünü kullanıyoruz:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Görev. İfadenin değerini bulun: log3 135 − log3 5.

Tabanlar yine aynı olduğundan elimizde:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Gördüğünüz gibi orijinal ifadeler ayrı olarak hesaplanmayan “kötü” logaritmalardan oluşuyor. Ancak dönüşümlerden sonra tamamen normal sayılar elde edilir. Birçok test bu gerçeğe dayanmaktadır. Evet, Birleşik Devlet Sınavında test benzeri ifadeler tüm ciddiyetiyle (bazen neredeyse hiç değişiklik yapılmadan) sunulmaktadır.

Üslü logaritmadan çıkarma

Son kuralın ilk ikisini takip ettiğini görmek kolaydır. Ancak yine de hatırlamak daha iyidir - bazı durumlarda hesaplama miktarını önemli ölçüde azaltacaktır.

Elbette, logaritmanın ODZ'sine uyulursa tüm bu kurallar anlamlıdır: a > 0, a ≠ 1, x > 0. Ve bir şey daha: tüm formülleri yalnızca soldan sağa değil, aynı zamanda tam tersi şekilde uygulamayı öğrenin. yani Logaritma işaretinden önceki sayıları logaritmanın kendisine girebilirsiniz. En sık ihtiyaç duyulan şey budur.

Görev. İfadenin değerini bulun: log7 496.

İlk formülü kullanarak argümandaki dereceden kurtulalım:
log7 496 = 6 log7 49 = 6 2 = 12

Görev. İfadenin anlamını bulun:

Paydanın, tabanı ve argümanının tam kuvvetleri olan bir logaritma içerdiğine dikkat edin: 16 = 24; 49 = 72. Elimizde:

Son örneğin biraz açıklama gerektirdiğini düşünüyorum. Logaritmalar nereye gitti? Son ana kadar sadece paydayla çalışıyoruz.

Logaritma formülleri. Logaritma örnek çözümleri.

Orada duran logaritmanın temelini ve argümanını kuvvetler şeklinde sunduk ve üsleri çıkardık - “üç katlı” bir kesir elde ettik.

Şimdi ana kesirlere bakalım. Pay ve payda aynı sayıyı içerir: log2 7. log2 7 ≠ 0 olduğundan kesri azaltabiliriz - 2/4 paydada kalacaktır. Aritmetik kurallarına göre dörtlü paya aktarılabilir ki yapılan da budur. Sonuç şuydu: 2.

Yeni bir temele geçiş

Logaritma toplama ve çıkarma kurallarından bahsederken bunların sadece aynı tabanlarla çalıştığını özellikle vurguladım. Peki ya sebepler farklıysa? Ya aynı sayının tam kuvvetleri değilse?

Yeni bir vakfa geçiş formülleri kurtarmaya geliyor. Bunları bir teorem şeklinde formüle edelim:

Logaritmanın logax'ı verilsin. O halde c > 0 ve c ≠ 1 olacak şekilde herhangi bir c sayısı için eşitlik doğrudur:

Özellikle c = x değerini ayarlarsak şunu elde ederiz:

İkinci formülden, logaritmanın tabanı ve argümanının değiştirilebileceği anlaşılmaktadır, ancak bu durumda ifadenin tamamı "tersine çevrilmiştir", yani. logaritma paydada görünür.

Bu formüllere sıradan sayısal ifadelerde nadiren rastlanır. Ne kadar kullanışlı olduklarını ancak logaritmik denklem ve eşitsizlikleri çözerken değerlendirmek mümkündür.

Ancak yeni bir temele taşınmak dışında hiçbir şekilde çözülemeyen sorunlar var. Bunlardan birkaçına bakalım:

Görev. İfadenin değerini bulun: log5 16 log2 25.

Her iki logaritmanın argümanlarının tam güçler içerdiğini unutmayın. Göstergeleri çıkaralım: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Şimdi ikinci logaritmayı “tersine çevirelim”:

Faktörleri yeniden düzenlerken çarpım değişmediğinden, sakince dört ve ikiyi çarptık ve ardından logaritmalarla uğraştık.

Görev. İfadenin değerini bulun: log9 100 lg 3.

Birinci logaritmanın tabanı ve argümanı tam kuvvetlerdir. Bunu bir kenara yazalım ve göstergelerden kurtulalım:

Şimdi yeni bir tabana geçerek ondalık logaritmadan kurtulalım:

Temel logaritmik kimlik

Çoğu zaman çözüm sürecinde bir sayının belirli bir tabana göre logaritması olarak gösterilmesi gerekir. Bu durumda aşağıdaki formüller bize yardımcı olacaktır:

İlk durumda, n sayısı argümandaki üs haline gelir. N sayısı kesinlikle herhangi bir şey olabilir çünkü bu yalnızca bir logaritma değeridir.

İkinci formül aslında başka kelimelerle ifade edilmiş bir tanımdır. Buna şöyle denir: .

Aslında b sayısı, b sayısının bu kuvveti a sayısını verecek şekilde yükseltilirse ne olur? Doğru: sonuç aynı a sayısıdır. Bu paragrafı dikkatlice tekrar okuyun; birçok kişi buna takılıp kalıyor.

Yeni bir tabana geçiş formülleri gibi, temel logaritmik özdeşlik de bazen mümkün olan tek çözümdür.

Görev. İfadenin anlamını bulun:

log25 64 = log5 8 - basitçe tabandan ve logaritmanın argümanından kareyi aldığını unutmayın. Aynı tabanla kuvvetleri çarpma kurallarını hesaba katarsak şunu elde ederiz:

Bilmeyen varsa, bu Birleşik Devlet Sınavından gerçek bir görevdi :)

Logaritmik birim ve logaritmik sıfır

Sonuç olarak, özellik olarak adlandırılması pek mümkün olmayan iki kimlik vereceğim - bunlar daha ziyade logaritmanın tanımının sonuçlarıdır. Sürekli problemlerle karşı karşıya kalırlar ve şaşırtıcı bir şekilde “ileri düzey” öğrenciler için bile problem yaratırlar.

  1. logaa = 1'dir. Bir kere şunu unutmayın: o tabanın herhangi bir a tabanının logaritması bire eşittir.
  2. loga 1 = 0'dır. A tabanı herhangi bir şey olabilir, ancak argüman bir içeriyorsa logaritma sıfıra eşittir! Çünkü a0 = 1 tanımın doğrudan sonucudur.

Tüm özellikler bu kadar. Bunları uygulamaya koymayı unutmayın! Dersin başındaki kopya kağıdını indirin, yazdırın ve problemleri çözün.

Ayrıca bakınız:

b'nin a tabanına göre logaritması ifadeyi belirtir. Logaritmayı hesaplamak, eşitliğin sağlandığı x () kuvvetini bulmak anlamına gelir

Logaritmanın temel özellikleri

Logaritmalarla ilgili hemen hemen tüm problemler ve örnekler temel alınarak çözüldüğü için yukarıdaki özellikleri bilmek gerekir. Egzotik özelliklerin geri kalanı bu formüllerle matematiksel manipülasyonlar yoluyla elde edilebilir.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Logaritmaların toplamı ve farkı formülünü (3.4) hesaplarken oldukça sık karşılaşırsınız. Geri kalanı biraz karmaşıktır ancak bazı görevlerde karmaşık ifadeleri basitleştirmek ve değerlerini hesaplamak için vazgeçilmezdirler.

Yaygın logaritma durumları

En yaygın logaritmalardan bazıları, tabanın on, üstel veya ikiye eşit olduğu logaritmalardır.
On tabanına göre logaritmaya genellikle ondalık logaritma denir ve basitçe lg(x) ile gösterilir.

Kayıtta esasların yazılmadığı kayıttan anlaşılıyor. Örneğin

Doğal logaritma, tabanı bir üs olan (ln(x) ile gösterilir) bir logaritmadır.

Üs 2,718281828…. Üssü hatırlamak için kuralı inceleyebilirsiniz: üs 2,7'ye eşittir ve Leo Nikolaevich Tolstoy'un doğum yılının iki katıdır. Bu kuralı bildiğinizde hem üssün tam değerini hem de Leo Tolstoy'un doğum tarihini bileceksiniz.

Ve iki tabanının bir diğer önemli logaritması şu şekilde gösterilir:

Bir fonksiyonun logaritmasının türevi, birin değişkene bölünmesine eşittir

İntegral veya ters türev logaritması ilişkiyle belirlenir.

Verilen materyal, logaritma ve logaritmalarla ilgili çok çeşitli problemleri çözmeniz için yeterlidir. Materyali anlamanıza yardımcı olmak için okul müfredatından ve üniversitelerden yalnızca birkaç yaygın örnek vereceğim.

Logaritma örnekleri

Logaritma ifadeleri

Örnek 1.
A). x=10ac^2 (a>0,c>0).

3.5 özelliklerini kullanarak hesaplıyoruz

2.
Logaritma farkının özelliği ile elimizdeki

3.
Bulduğumuz özellikler 3.5'i kullanarak

4. Nerede .

Görünüşte karmaşık bir ifade, bir dizi kural kullanılarak basitleştirilerek oluşturulur

Logaritma değerlerini bulma

Örnek 2. Eğer x'i bulun

Çözüm. Hesaplama için son terim 5 ve 13'ün özelliklerine başvuruyoruz.

Bunu kayda geçirdik ve yas tuttuk

Tabanlar eşit olduğundan ifadeleri eşitliyoruz

Logaritmalar. Giriş seviyesi.

Logaritmanın değeri verilsin

Log(x)'i hesaplayın, eğer

Çözüm: Değişkenin logaritmasını alarak terimlerinin toplamı üzerinden logaritmasını yazalım.


Bu, logaritmalar ve özellikleriyle tanışmamızın sadece başlangıcıdır. Hesaplamalar yapın, pratik becerilerinizi zenginleştirin; yakında logaritmik denklemleri çözmek için edindiğiniz bilgilere ihtiyacınız olacak. Bu tür denklemleri çözmenin temel yöntemlerini inceledikten sonra, bilginizi eşit derecede önemli başka bir konuya, logaritmik eşitsizliklere genişleteceğiz...

Logaritmanın temel özellikleri

Logaritmalar da diğer sayılar gibi her şekilde toplanabilir, çıkarılabilir ve dönüştürülebilir. Ancak logaritmalar tam olarak sıradan sayılar olmadığından burada kurallar vardır. ana özellikler.

Bu kuralları kesinlikle bilmeniz gerekir - onlar olmadan tek bir ciddi logaritmik problem çözülemez. Ayrıca bunlardan çok azı var - her şeyi bir günde öğrenebilirsiniz. Öyleyse başlayalım.

Logaritmaların toplanması ve çıkarılması

Aynı tabanlara sahip iki logaritmayı düşünün: logax ve logay. Daha sonra bunlar eklenebilir ve çıkarılabilir ve:

  1. logax + logay = loga(x y);
  2. logax – logay = loga (x: y).

Yani logaritmaların toplamı çarpımın logaritmasına, fark ise bölümün logaritmasına eşittir. Lütfen dikkat: buradaki kilit nokta aynı gerekçeler. Sebepler farklıysa bu kurallar işe yaramaz!

Bu formüller, tek tek parçaları dikkate alınmasa bile logaritmik bir ifadeyi hesaplamanıza yardımcı olacaktır (“Logaritma nedir” dersine bakın). Örneklere bir göz atın ve şunu görün:

Görev. İfadenin değerini bulun: log6 4 + log6 9.

Logaritmaların tabanları aynı olduğundan toplam formülünü kullanırız:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Görev. İfadenin değerini bulun: log2 48 − log2 3.

Bazlar aynı, fark formülünü kullanıyoruz:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Görev. İfadenin değerini bulun: log3 135 − log3 5.

Tabanlar yine aynı olduğundan elimizde:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Gördüğünüz gibi orijinal ifadeler ayrı olarak hesaplanmayan “kötü” logaritmalardan oluşuyor. Ancak dönüşümlerden sonra tamamen normal sayılar elde edilir. Birçok test bu gerçeğe dayanmaktadır. Evet, Birleşik Devlet Sınavında test benzeri ifadeler tüm ciddiyetiyle (bazen neredeyse hiç değişiklik yapılmadan) sunulmaktadır.

Üslü logaritmadan çıkarma

Şimdi görevi biraz karmaşıklaştıralım. Ya bir logaritmanın tabanı veya argümanı bir kuvvet ise? Daha sonra bu derecenin üssü aşağıdaki kurallara göre logaritmanın işaretinden çıkarılabilir:

Son kuralın ilk ikisini takip ettiğini görmek kolaydır. Ancak yine de hatırlamak daha iyidir - bazı durumlarda hesaplama miktarını önemli ölçüde azaltacaktır.

Elbette, logaritmanın ODZ'sine uyulursa tüm bu kurallar anlamlıdır: a > 0, a ≠ 1, x > 0. Ve bir şey daha: tüm formülleri yalnızca soldan sağa değil, aynı zamanda tam tersi şekilde uygulamayı öğrenin. yani Logaritma işaretinden önceki sayıları logaritmanın kendisine girebilirsiniz.

Logaritmalar nasıl çözülür?

En sık ihtiyaç duyulan şey budur.

Görev. İfadenin değerini bulun: log7 496.

İlk formülü kullanarak argümandaki dereceden kurtulalım:
log7 496 = 6 log7 49 = 6 2 = 12

Görev. İfadenin anlamını bulun:

Paydanın, tabanı ve argümanının tam kuvvetleri olan bir logaritma içerdiğine dikkat edin: 16 = 24; 49 = 72. Elimizde:

Son örneğin biraz açıklama gerektirdiğini düşünüyorum. Logaritmalar nereye gitti? Son ana kadar sadece paydayla çalışıyoruz. Orada duran logaritmanın temelini ve argümanını kuvvetler şeklinde sunduk ve üsleri çıkardık - “üç katlı” bir kesir elde ettik.

Şimdi ana kesirlere bakalım. Pay ve payda aynı sayıyı içerir: log2 7. log2 7 ≠ 0 olduğundan kesri azaltabiliriz - 2/4 paydada kalacaktır. Aritmetik kurallarına göre dörtlü paya aktarılabilir ki yapılan da budur. Sonuç şuydu: 2.

Yeni bir temele geçiş

Logaritma toplama ve çıkarma kurallarından bahsederken bunların sadece aynı tabanlarla çalıştığını özellikle vurguladım. Peki ya sebepler farklıysa? Ya aynı sayının tam kuvvetleri değilse?

Yeni bir vakfa geçiş formülleri kurtarmaya geliyor. Bunları bir teorem şeklinde formüle edelim:

Logaritmanın logax'ı verilsin. O halde c > 0 ve c ≠ 1 olacak şekilde herhangi bir c sayısı için eşitlik doğrudur:

Özellikle c = x değerini ayarlarsak şunu elde ederiz:

İkinci formülden, logaritmanın tabanı ve argümanının değiştirilebileceği anlaşılmaktadır, ancak bu durumda ifadenin tamamı "tersine çevrilmiştir", yani. logaritma paydada görünür.

Bu formüllere sıradan sayısal ifadelerde nadiren rastlanır. Ne kadar kullanışlı olduklarını ancak logaritmik denklem ve eşitsizlikleri çözerken değerlendirmek mümkündür.

Ancak yeni bir temele taşınmak dışında hiçbir şekilde çözülemeyen sorunlar var. Bunlardan birkaçına bakalım:

Görev. İfadenin değerini bulun: log5 16 log2 25.

Her iki logaritmanın argümanlarının tam güçler içerdiğini unutmayın. Göstergeleri çıkaralım: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Şimdi ikinci logaritmayı “tersine çevirelim”:

Faktörleri yeniden düzenlerken çarpım değişmediğinden, sakince dört ve ikiyi çarptık ve ardından logaritmalarla uğraştık.

Görev. İfadenin değerini bulun: log9 100 lg 3.

Birinci logaritmanın tabanı ve argümanı tam kuvvetlerdir. Bunu bir kenara yazalım ve göstergelerden kurtulalım:

Şimdi yeni bir tabana geçerek ondalık logaritmadan kurtulalım:

Temel logaritmik kimlik

Çoğu zaman çözüm sürecinde bir sayının belirli bir tabana göre logaritması olarak gösterilmesi gerekir. Bu durumda aşağıdaki formüller bize yardımcı olacaktır:

İlk durumda, n sayısı argümandaki üs haline gelir. N sayısı kesinlikle herhangi bir şey olabilir çünkü bu yalnızca bir logaritma değeridir.

İkinci formül aslında başka kelimelerle ifade edilmiş bir tanımdır. Buna şöyle denir: .

Aslında b sayısı, b sayısının bu kuvveti a sayısını verecek şekilde yükseltilirse ne olur? Doğru: sonuç aynı a sayısıdır. Bu paragrafı dikkatlice tekrar okuyun; birçok kişi buna takılıp kalıyor.

Yeni bir tabana geçiş formülleri gibi, temel logaritmik özdeşlik de bazen mümkün olan tek çözümdür.

Görev. İfadenin anlamını bulun:

log25 64 = log5 8 - basitçe tabandan ve logaritmanın argümanından kareyi aldığını unutmayın. Aynı tabanla kuvvetleri çarpma kurallarını hesaba katarsak şunu elde ederiz:

Bilmeyen varsa, bu Birleşik Devlet Sınavından gerçek bir görevdi :)

Logaritmik birim ve logaritmik sıfır

Sonuç olarak, özellik olarak adlandırılması pek mümkün olmayan iki kimlik vereceğim - bunlar daha ziyade logaritmanın tanımının sonuçlarıdır. Sürekli problemlerle karşı karşıya kalırlar ve şaşırtıcı bir şekilde “ileri düzey” öğrenciler için bile problem yaratırlar.

  1. logaa = 1'dir. Bir kere şunu unutmayın: o tabanın herhangi bir a tabanının logaritması bire eşittir.
  2. loga 1 = 0'dır. A tabanı herhangi bir şey olabilir, ancak argüman bir içeriyorsa logaritma sıfıra eşittir! Çünkü a0 = 1 tanımın doğrudan sonucudur.

Tüm özellikler bu kadar. Bunları uygulamaya koymayı unutmayın! Dersin başındaki kopya kağıdını indirin, yazdırın ve problemleri çözün.