Trigonometride toplama formülleri. En gerekli trigonometrik formüller


Temel trigonometrik fonksiyonlar (sinüs, kosinüs, teğet ve kotanjant) arasındaki ilişkiler verilmiştir. trigonometrik formüller. Trigonometrik fonksiyonlar arasında oldukça fazla bağlantı olduğu için bu, trigonometrik formüllerin bolluğunu açıklamaktadır. Bazı formüller aynı açının trigonometrik fonksiyonlarını birbirine bağlar, diğerleri - çok açılı fonksiyonlar, diğerleri - dereceyi azaltmanıza izin verir, dördüncü - tüm fonksiyonları yarım açının tanjantı ile ifade eder, vb.

Bu yazıda trigonometri problemlerinin büyük çoğunluğunu çözmeye yeterli olan tüm temel trigonometrik formülleri sırayla listeleyeceğiz. Ezberleme ve kullanım kolaylığı açısından bunları amaçlarına göre gruplandırıp tablolara koyacağız.

Sayfada gezinme.

Temel trigonometrik kimlikler

Temel trigonometrik kimlikler Bir açının sinüs, kosinüs, tanjant ve kotanjantı arasındaki ilişkiyi tanımlar. Bunlar sinüs, kosinüs, teğet ve kotanjant tanımlarının yanı sıra birim çember kavramından kaynaklanır. Bir trigonometrik fonksiyonu diğerine göre ifade etmenize izin verirler.

Bu trigonometri formüllerinin ayrıntılı bir açıklaması, bunların türetilmesi ve uygulama örnekleri için makaleye bakın.

Azaltma formülleri




Azaltma formülleri sinüs, kosinüs, teğet ve kotanjantın özelliklerinden kaynaklanır, yani trigonometrik fonksiyonların periyodiklik özelliğini, simetri özelliğini ve ayrıca belirli bir açıyla kayma özelliğini yansıtırlar. Bu trigonometrik formüller, rastgele açılarla çalışmaktan sıfır ila 90 derece arasındaki açılarla çalışmaya geçiş yapmanızı sağlar.

Bu formüllerin mantığı, bunları ezberlemek için anımsatıcı bir kural ve uygulama örnekleri makalede incelenebilir.

Toplama formülleri

Trigonometrik toplama formülleriİki açının toplamı veya farkının trigonometrik fonksiyonlarının bu açıların trigonometrik fonksiyonları cinsinden nasıl ifade edildiğini gösterin. Bu formüller aşağıdaki trigonometrik formüllerin türetilmesi için temel oluşturur.

İkili, üçlü vb. formüller. açı



İkili, üçlü vb. formüller. açı (bunlara çoklu açı formülleri de denir) ikili, üçlü vb. trigonometrik fonksiyonların nasıl olduğunu gösterir. açılar (), tek bir açının trigonometrik fonksiyonları cinsinden ifade edilir. Bunların türetilmesi toplama formüllerine dayanmaktadır.

Daha ayrıntılı bilgi ikili, üçlü vb. için makale formüllerinde toplanmıştır. açı

Yarım açı formülleri

Yarım açı formülleri yarım açının trigonometrik fonksiyonlarının tam açının kosinüsü cinsinden nasıl ifade edildiğini gösterin. Bu trigonometrik formüller çift açı formüllerinden kaynaklanmaktadır.

Sonuçları ve uygulama örnekleri makalede bulunabilir.

Derece azaltma formülleri


Dereceleri azaltmak için trigonometrik formüller trigonometrik fonksiyonların doğal kuvvetlerinden birinci dereceden ancak çok açılı sinüs ve kosinüslere geçişi kolaylaştırmak için tasarlanmıştır. Başka bir deyişle trigonometrik fonksiyonların kuvvetlerini birinciye düşürmenize olanak tanırlar.

Trigonometrik fonksiyonların toplamı ve farkı için formüller


Asıl amaç trigonometrik fonksiyonların toplamı ve farkı için formüller Trigonometrik ifadeleri basitleştirirken çok yararlı olan fonksiyonların çarpımına gitmektir. Bu formüller aynı zamanda sinüs ve kosinüslerin toplamını ve farkını çarpanlara ayırmanıza olanak tanıdığından trigonometrik denklemlerin çözümünde de yaygın olarak kullanılır.

Sinüs, kosinüs ve sinüs-kosinüs çarpımı için formüller


Trigonometrik fonksiyonların çarpımından bir toplam veya farka geçiş, sinüs, kosinüs ve sinüs kosinüs çarpımı formülleri kullanılarak gerçekleştirilir.

Evrensel trigonometrik ikame

Trigonometrinin temel formüllerine ilişkin incelememizi, trigonometrik fonksiyonları yarım açının tanjantı cinsinden ifade eden formüllerle tamamlıyoruz. Bu değiştirme çağrıldı evrensel trigonometrik ikame. Kolaylığı, tüm trigonometrik fonksiyonların, kökleri olmadan rasyonel olarak yarım açının tanjantı cinsinden ifade edilmesi gerçeğinde yatmaktadır.

Kaynakça.

  • Cebir: Ders Kitabı 9. sınıf için. ortalama okul / Yu. N. Makarychev, N. G. Mindyuk, K. I. Neshkov, S. B. Suvorova; Ed. S. A. Telyakovsky. - M .: Eğitim, 1990. - 272 s.: - ISBN 5-09-002727-7.
  • Bashmakov M. I. Cebir ve analizin başlangıcı: Ders kitabı. 10-11 sınıflar için. ortalama okul - 3. baskı. - M.: Eğitim, 1993. - 351 s.: hasta. - ISBN 5-09-004617-4.
  • Cebir ve analizin başlangıcı: Proc. 10-11 sınıflar için. Genel Eğitim kurumlar / A.N. Kolmogorov, A.M. Abramov, Yu.P. Dudnitsyn ve diğerleri; Ed. A. N. Kolmogorov - 14. baskı - M.: Eğitim, 2004. - 384 s.: - ISBN 5-09-013651-3.
  • Gusev V.A., Mordkovich A.G. Matematik (teknik okullara başvuran adaylar için bir kılavuz): Proc. ödenek.- M.; Daha yüksek okul, 1984.-351 s., hasta.

Telif hakkı akıllı öğrencilere aittir

Her hakkı saklıdır.
Telif hakkı yasasıyla korunmaktadır. Sitenin hiçbir kısmı, iç materyaller ve görünüm de dahil olmak üzere, telif hakkı sahibinin önceden yazılı izni olmadan hiçbir şekilde çoğaltılamaz veya kullanılamaz.

Bir noktada ortalanmış A.
α - radyan cinsinden ifade edilen açı.

Tanım
Sinüs (sin α) hipotenüs ile bir dik üçgenin kenarı arasındaki α açısına bağlı olan ve karşı kenarın uzunluğunun oranına eşit olan |BC| hipotenüs uzunluğuna |AC|.

Kosinüs (cos α) hipotenüs ile bir dik üçgenin kenarı arasındaki α açısına bağlı olan ve bitişik kenarı |AB| uzunluğunun oranına eşit olan trigonometrik bir fonksiyondur. hipotenüs uzunluğuna |AC|.

Kabul edilen gösterimler

;
;
.

;
;
.

Sinüs fonksiyonunun grafiği, y = sin x

Kosinüs fonksiyonunun grafiği, y = cos x


Sinüs ve kosinüsün özellikleri

Periyodiklik

Fonksiyonlar y = günah x ve y = çünkü x dönemli periyodik .

Parite

Sinüs fonksiyonu tektir. Kosinüs fonksiyonu çifttir.

Tanım ve değerler alanı, ekstrema, artış, azalma

Sinüs ve kosinüs fonksiyonları kendi tanım alanlarında, yani tüm x'ler için süreklidir (bkz. süreklilik kanıtı). Ana özellikleri tabloda sunulmaktadır (n - tamsayı).

y = günah x y = çünkü x
Kapsam ve süreklilik - ∞ < x < + ∞ - ∞ < x < + ∞
Değer aralığı -1 ≤ y ≤ 1 -1 ≤ y ≤ 1
Artan
Azalan
Maksimum, y = 1
Minimum, y = - 1
Sıfırlar, y = 0
Ordinat ekseniyle kesişme noktaları, x = 0 y = 0 y = 1

Temel formüller

Sinüs ve kosinüs karelerinin toplamı

Toplam ve farktan sinüs ve kosinüs formülleri



;
;

Sinüs ve kosinüslerin çarpımı için formüller

Toplam ve fark formülleri

Sinüsün kosinüsle ifade edilmesi

;
;
;
.

Kosinüsün sinüs yoluyla ifade edilmesi

;
;
;
.

Teğet yoluyla ifade

; .

Ne zaman elimizde:
; .

Şurada:
; .

Sinüs ve kosinüs, teğet ve kotanjant tablosu

Bu tablo, argümanın belirli değerleri için sinüs ve kosinüs değerlerini gösterir.

Karmaşık değişkenler aracılığıyla ifadeler


;

Euler'in formülü

Hiperbolik fonksiyonlar aracılığıyla ifadeler

;
;

Türevler

; . Formüllerin türetilmesi > > >

N'inci dereceden türevler:
{ -∞ < x < +∞ }

Sekant, kosekant

Ters fonksiyonlar

Sinüs ve kosinüsün ters fonksiyonları sırasıyla arksinüs ve arkkosinüstür.

Arsin, arksin

Arccosin, arccos

Referanslar:
İÇİNDE. Bronstein, K.A. Semendyaev, Mühendisler ve üniversite öğrencileri için matematik el kitabı, “Lan”, 2009.

Bazı problemleri çözmek için, fonksiyonları dönüştürmeyi çok daha kolay hale getirecek bir trigonometrik kimlikler tablosu faydalı olacaktır:

En basit trigonometrik kimlikler

Bir alfa açısının sinüsünü aynı açının kosinüsüne bölme bölümü bu açının tanjantına eşittir (Formül 1). Ayrıca en basit trigonometrik özdeşliklerin dönüşümünün doğruluğunun kanıtına da bakın.
Bir alfa açısının kosinüsünü aynı açının sinüsüne bölme bölümü aynı açının kotanjantına eşittir (Formül 2)
Bir açının sekantı, aynı açının kosinüsüne bölünen sayıya eşittir (Formül 3)
Aynı açının sinüs ve kosinüsünün karelerinin toplamı bire eşittir (Formül 4). ayrıca kosinüs ve sinüsün karelerinin toplamının ispatına bakınız.
Bir açının tanjantı ile birinin toplamı, birin bu açının kosinüsünün karesine oranına eşittir (Formül 5)
Bir açının kotanjantı artı birin bu açının sinüs karesine bölünmesine eşittir (Formül 6)
Aynı açının teğet ve kotanjantının çarpımı bire eşittir (Formül 7).

Trigonometrik fonksiyonların negatif açılarını dönüştürme (çift ve tek)

Sinüs, kosinüs veya tanjant hesaplanırken bir açının derece ölçüsünün negatif değerinden kurtulmak için çift veya tek trigonometrik fonksiyonların ilkelerine dayalı olarak aşağıdaki trigonometrik dönüşümleri (özdeşlikleri) kullanabilirsiniz.


Görüldüğü gibi, kosinüs ve sekant eşit işlev, sinüs, tanjant ve kotanjant tek fonksiyonlardır.

Negatif bir açının sinüsü, aynı pozitif açının sinüsünün negatif değerine (eksi sinüs alfa) eşittir.
Kosinüs eksi alfa, alfa açısının kosinüsüyle aynı değeri verecektir.
Teğet eksi alfa, eksi teğet alfaya eşittir.

Çift açıları azaltmak için formüller (çift açıların sinüs, kosinüs, tanjant ve kotanjantı)

Bir açıyı ikiye bölmeniz veya tam tersi, çift açıdan tek açıya geçmeniz gerekiyorsa aşağıdaki trigonometrik özdeşlikleri kullanabilirsiniz:


Çift Açılı Dönüşüm (bir çift açının sinüsü, bir çift açının kosinüsü ve bir çift açının tanjantı) tekli olarak aşağıdaki kurallara göre gerçekleşir:

Çift açının sinüsü bir açının sinüsü ile kosinüsünün çarpımının iki katına eşittir

Çift açının kosinüsü tek bir açının kosinüsünün karesi ile bu açının sinüsünün karesi arasındaki farka eşittir

Çift açının kosinüsü tek bir açı eksi birin kosinüsünün karesinin iki katına eşittir

Çift açının kosinüsü eşittir bir eksi çift sinüs kare tek açı

Çift açının tanjantı payı tek bir açının tanjantının iki katı olan bir kesire eşittir ve payda bir eksi tek bir açının tanjantının karesine eşittir.

Çift açının kotanjantı payı tek bir açının kotanjantının karesi eksi bir olan ve paydası tek bir açının kotanjantının iki katına eşit olan bir kesire eşittir

Evrensel trigonometrik ikame formülleri

Aşağıdaki dönüşüm formülleri, bir trigonometrik fonksiyonun argümanını (sin α, cos α, tan α) ikiye bölmeniz ve ifadeyi yarım açı değerine indirmeniz gerektiğinde yararlı olabilir. α değerinden α/2 elde ederiz.

Bu formüllere denir evrensel trigonometrik ikame formülleri. Değerleri, ifadede orijinal olarak hangi trigonometrik fonksiyonların (sin cos tan ctg) olduğuna bakılmaksızın, onların yardımıyla bir trigonometrik ifadenin yarım açının tanjantını ifade etmeye indirgenmesi gerçeğinde yatmaktadır. Bundan sonra yarım açının teğetini içeren denklemi çözmek çok daha kolaydır.

Yarım açı dönüşümleri için trigonometrik kimlikler

Yarım açının tam değerine trigonometrik dönüşüm formülleri aşağıdadır.
Trigonometrik fonksiyon α/2'nin argümanının değeri, trigonometrik fonksiyon α'nın argümanının değerine indirgenir.

Açı eklemek için trigonometrik formüller

cos (α - β) = cos α cos β + sin α sin β

günah (α + β) = sin α cos β + sin β cos α

günah (α - β) = sin α cos β - sin β cos α
cos (α + β) = cos α cos β - sin α sin β

Açıların toplamının teğet ve kotanjantı alfa ve beta, trigonometrik fonksiyonları dönüştürmek için aşağıdaki kurallar kullanılarak dönüştürülebilir:

Açıların toplamının tanjantı payı birinci açının tanjantı ile ikinci açının tanjantının toplamı olan ve paydası bir eksi birinci açının tanjantı ile ikinci açının tanjantının çarpımı olan bir kesire eşittir.

Açı farkının tanjantı payı azaltılan açının tanjantı ile çıkarılan açının tanjantı arasındaki farka eşit olan ve paydası bir artı bu açıların tanjantlarının çarpımı olan bir kesire eşittir.

Açıların toplamının kotanjantı payı bu açıların kotanjantları artı bire eşit olan bir kesire eşittir ve payda, ikinci açının kotanjantı ile birinci açının kotanjantı arasındaki farka eşittir.

Açı farkının kotanjantı payı bu açıların kotanjantlarının eksi bir çarpımı olan bir kesire eşittir ve payda bu açıların kotanjantlarının toplamına eşittir.

Bu trigonometrik kimlikler, örneğin 105 derecenin (tg 105) tanjantını hesaplamanız gerektiğinde kullanıma uygundur. Bunu tg (45 + 60) olarak hayal ederseniz, açıların toplamının teğetinin verilen aynı dönüşümlerini kullanabilir ve ardından tablodaki teğet 45 ve teğet 60 derecenin değerlerini değiştirebilirsiniz.

Trigonometrik fonksiyonların toplamını veya farkını dönüştürmek için formüller

sin α + sin β formunun toplamını temsil eden ifadeler aşağıdaki formüller kullanılarak dönüştürülebilir:

Üçlü açı formülleri - sin3α cos3α tan3α'yı sinα cosα tanα'ya dönüştürme

Bazen bir açının üçlü değerini dönüştürmek gerekir, böylece trigonometrik fonksiyonun argümanı 3a yerine α açısı olur.
Bu durumda üçlü açı dönüşüm formüllerini (kimliklerini) kullanabilirsiniz:

Trigonometrik fonksiyonların çarpımlarını dönüştürmek için formüller

Farklı açılardaki sinüslerin çarpımını, farklı açılardaki kosinüsleri ve hatta sinüs ve kosinüs çarpımını dönüştürmeye ihtiyaç varsa, aşağıdaki trigonometrik kimlikleri kullanabilirsiniz:


Bu durumda farklı açıların sinüs, kosinüs veya tanjant fonksiyonlarının çarpımı toplama veya farka dönüştürülecektir.

Trigonometrik fonksiyonları azaltmak için formüller

İndirgeme tablosunu aşağıdaki gibi kullanmanız gerekir. Satırda bizi ilgilendiren işlevi seçiyoruz. Sütunda bir açı var. Örneğin, birinci satır ile birinci sütunun kesişimindeki açının sinüsü (α+90), sin (α+90) = cos α olduğunu buluruz.

Sorununuza detaylı çözüm siparişi verebilirsiniz!!!

Trigonometrik bir fonksiyonun ("sin x, cos x, tan x" veya "ctg x") işareti altında bilinmeyen içeren bir eşitliğe trigonometrik denklem denir ve daha sonra bunların formüllerini ele alacağız.

En basit denklemler "sin x=a, cos x=a, tg x=a, ctg x=a"dır; burada "x" bulunacak açıdır, "a" ise herhangi bir sayıdır. Her birinin kök formüllerini yazalım.

1. Denklem 'sin x=a'.

`|a|>1` için çözümü yoktur.

Ne zaman `|a| \leq 1`'in sonsuz sayıda çözümü vardır.

Kök formülü: `x=(-1)^n arcsin a + \pi n, n \in Z`

2. Denklem 'çünkü x=a'

`|a|>1` için - sinüs durumunda olduğu gibi, gerçek sayılar arasında çözümü yoktur.

Ne zaman `|a| \leq 1`'in sonsuz sayıda çözümü vardır.

Kök formülü: `x=\pm arccos a + 2\pi n, n \in Z`

Grafiklerde sinüs ve kosinüs için özel durumlar.

3. Denklem 'tg x=a'

'a'nın herhangi bir değeri için sonsuz sayıda çözüme sahiptir.

Kök formülü: 'x=arctg a + \pi n, n \in Z'

4. Denklem 'ctg x=a'

Ayrıca 'a'nın herhangi bir değeri için sonsuz sayıda çözüm vardır.

Kök formülü: `x=arcctg a + \pi n, n \in Z`

Tablodaki trigonometrik denklemlerin kökleri için formüller

Sinüs için:
Kosinüs için:
Teğet ve kotanjant için:
Ters trigonometrik fonksiyonlar içeren denklemleri çözmek için formüller:

Trigonometrik denklemleri çözme yöntemleri

Herhangi bir trigonometrik denklemin çözümü iki aşamadan oluşur:

  • en basitine dönüştürmenin yardımıyla;
  • Yukarıda yazılan kök formülleri ve tabloları kullanarak elde edilen en basit denklemi çözer.

Örnekler kullanarak ana çözüm yöntemlerine bakalım.

Cebirsel yöntem.

Bu yöntem, bir değişkeni değiştirmeyi ve onu bir eşitlikle değiştirmeyi içerir.

Örnek. Denklemi çözün: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 - x)+1=0`

`2cos^2(x+\frac \pi 6)-3cos(x+\frac \pi 6)+1=0`,

değiştirmeyi yapın: `cos(x+\frac \pi 6)=y`, ardından `2y^2-3y+1=0`,

kökleri buluyoruz: `y_1=1, y_2=1/2`, bundan iki durum çıkıyor:

1. `cos(x+\frac \pi 6)=1`, `x+\frac \pi 6=2\pi n`, `x_1=-\frac \pi 6+2\pi n`.

2. `cos(x+\frac \pi 6)=1/2`, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3- \frac \pi 6+2\pi n`.

Cevap: `x_1=-\frac \pi 6+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Faktorizasyon.

Örnek. Denklemi çözün: 'sin x+cos x=1'.

Çözüm. Eşitliğin tüm terimlerini sola taşıyalım: `sin x+cos x-1=0`. kullanarak sol tarafı dönüştürür ve çarpanlara ayırırız:

'sin x — 2sin^2 x/2=0',

'2sin x/2 cos x/2-2sin^2 x/2=0',

'2sin x/2 (cos x/2-sin x/2)=0',

  1. "sin x/2 =0", "x/2 =\pi n", "x_1=2\pi n".
  2. `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ \pi n`, `x/2=\pi/4+ \pi n` , 'x_2=\pi/2+ 2\pi n'.

Cevap: `x_1=2\pi n`, `x_2=\pi/2+ 2\pi n`.

Homojen bir denkleme indirgeme

Öncelikle bu trigonometrik denklemi iki biçimden birine indirgemeniz gerekir:

'a sin x+b cos x=0' (birinci derecenin homojen denklemi) veya 'a sin^2 x + b sin x cos x +c cos^2 x=0' (ikinci derecenin homojen denklemi).

Daha sonra her iki parçayı da ilk durum için "cos x \ne 0"a, ikinci durum için "cos^2 x \ne 0"a bölün. Bilinen yöntemler kullanılarak çözülmesi gereken "tg x": "a tg x+b=0" ve "a tg^2 x + b tg x +c =0" denklemlerini elde ederiz.

Örnek. Denklemi çözün: "2 sin^2 x+sin x cos x - cos^2 x=1".

Çözüm. Sağ tarafı `1=sin^2 x+cos^2 x` olarak yazalım:

`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,

`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`

"sin^2 x+sin x cos x — 2 cos^2 x=0".

Bu ikinci dereceden homojen bir trigonometrik denklemdir, sol ve sağ taraflarını 'cos^2 x \ne 0'a bölersek şunu elde ederiz:

`\frac (sin^2 x)(cos^2 x)+\frac(sin x cos x)(cos^2 x) — \frac(2 cos^2 x)(cos^2 x)=0`

"tg^2 x+tg x — 2=0". Şimdi "t^2 + t - 2=0" sonucunu veren "tg x=t" yerine geçen ifadeyi tanıtalım. Bu denklemin kökleri "t_1=-2" ve "t_2=1"dir. Daha sonra:

  1. `tg x=-2`, `x_1=arctg (-2)+\pi n`, `n \in Z'
  2. `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, ` n \in Z`.

Cevap. `x_1=arctg (-2)+\pi n`, `Z'de n \', `x_2=\pi/4+\pi n`, `Z'de n \'.

Yarım Açıya Geçiş

Örnek. Denklemi çözün: '11 sin x - 2 cos x = 10'.

Çözüm. Çift açı formüllerini uygulayalım ve şunu elde edelim: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x /2 +10 çünkü^2 x/2`

`4 tg^2 x/2 — 11 tg x/2 +6=0`

Yukarıda açıklanan cebirsel yöntemi uygulayarak şunları elde ederiz:

  1. `tg x/2=2`, `x_1=2 arctg 2+2\pi n`, `n \in Z`,
  2. `tg x/2=3/4`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Cevap. `x_1=2 arctg 2+2\pi n, n \in Z`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Yardımcı açının tanıtılması

a,b,c'nin katsayılar ve x'in bir değişken olduğu "a sin x + b cos x =c" trigonometrik denkleminde, her iki tarafı da "sqrt (a^2+b^2)"'ye bölün:

`\frac a(sqrt (a^2+b^2)) sin x +` `\frac b(sqrt (a^2+b^2)) çünkü x =` `\frac c(sqrt (a^2) ) +b^2))'.

Sol taraftaki katsayılar sinüs ve kosinüs özelliğindedir yani karelerinin toplamı 1'e eşit ve modülleri 1'den büyük değildir. Bunları şu şekilde gösterelim: `\frac a(sqrt (a^2) +b^2))=cos \varphi` , ` \frac b(sqrt (a^2+b^2)) =sin \varphi`, `\frac c(sqrt (a^2+b^2)) =C`, o zaman:

`çünkü \varphi sin x + sin \varphi çünkü x =C`.

Aşağıdaki örneğe daha yakından bakalım:

Örnek. Denklemi çözün: '3 sin x+4 cos x=2'.

Çözüm. Eşitliğin her iki tarafını da 'sqrt (3^2+4^2)'ye bölersek şunu elde ederiz:

`\frac (3 sin x) (sqrt (3^2+4^2))+` `\frac(4 cos x)(sqrt (3^2+4^2))=` `\frac 2(sqrt (3^2+4^2))'

'3/5 günah x+4/5 çünkü x=2/5'.

`3/5 = cos \varphi`, `4/5=sin \varphi` olsun. `sin \varphi>0`, `cos \varphi>0` olduğundan, yardımcı açı olarak `\varphi=arcsin 4/5` alıyoruz. Daha sonra eşitliğimizi şu şekilde yazıyoruz:

`çünkü \varphi sin x+sin \varphi çünkü x=2/5`

Sinüs açılarının toplamı formülünü uygulayarak eşitliğimizi aşağıdaki biçimde yazıyoruz:

'sin (x+\varphi)=2/5',

`x+\varphi=(-1)^n arcsin 2/5+ \pi n`, `n \in Z`,

`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Cevap. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Kesirli rasyonel trigonometrik denklemler

Bunlar pay ve paydaları trigonometrik fonksiyonlar içeren kesirli eşitliklerdir.

Örnek. Denklemi çözün. `\frac (sin x)(1+cos x)=1-cos x`.

Çözüm. Eşitliğin sağ tarafını '(1+cos x)' ile çarpın ve bölün. Sonuç olarak şunu elde ederiz:

`\frac (sin x)(1+cos x)=` `\frac ((1-cos x)(1+cos x))(1+cos x)`

`\frac (sin x)(1+cos x)=` `\frac (1-cos^2 x)(1+cos x)`

`\frac (sin x)(1+cos x)=` `\frac (sin^2 x)(1+cos x)`

`\frac (sin x)(1+cos x)-` `\frac (sin^2 x)(1+cos x)=0`

`\frac (sin x-sin^2 x)(1+cos x)=0`

Paydanın sıfıra eşit olamayacağını düşünürsek, `1+cos x \ne 0`, `cos x \ne -1`, ` x \ne \pi+2\pi n, n \in Z` elde ederiz.

Kesrin payını sıfıra eşitleyelim: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Daha sonra "sin x=0" veya "1-sin x=0".

  1. `sin x=0`, `x=\pi n`, `Z'de n \`
  2. "1-sin x=0", "sin x=-1", "x=\pi /2+2\pi n, n \in Z".

` x \ne \pi+2\pi n, n \in Z` olduğu göz önüne alındığında, çözümler `x=2\pi n, n \in Z` ve `x=\pi /2+2\pi n` olur , 'n \ Z'de'.

Cevap. `x=2\pi n`, `Z'de n \`, `x=\pi /2+2\pi n`, `Z'de n \`.

Trigonometri ve özellikle trigonometrik denklemler geometri, fizik ve mühendisliğin hemen hemen tüm alanlarında kullanılmaktadır. Eğitim 10. sınıfta başlıyor, Birleşik Devlet Sınavı için her zaman görevler vardır, bu nedenle trigonometrik denklemlerin tüm formüllerini hatırlamaya çalışın - bunlar kesinlikle sizin için yararlı olacaktır!

Ancak bunları ezberlemenize bile gerek yok, asıl önemli olan özü anlamak ve onu çıkarabilmektir. Göründüğü kadar zor değil. Videoyu izleyerek kendiniz görün.