Logaritmalarla işlem örnekleri. Çarpımın logaritması ve bölümün logaritması


Logaritmaları incelemeye devam ediyoruz. Bu yazıda bunun hakkında konuşacağız logaritmaların hesaplanması, bu işleme denir logaritma. Öncelikle logaritmanın hesaplanmasını tanım gereği anlayacağız. Daha sonra logaritma değerlerinin özellikleri kullanılarak nasıl bulunduğuna bakalım. Bundan sonra diğer logaritmaların başlangıçta belirtilen değerleri üzerinden logaritma hesaplamaya odaklanacağız. Son olarak logaritma tablolarının nasıl kullanılacağını öğrenelim. Teorinin tamamı ayrıntılı çözümlere sahip örneklerle sağlanmaktadır.

Sayfada gezinme.

Tanıma göre logaritmaları hesaplama

En basit durumlarda oldukça hızlı ve kolay bir şekilde gerçekleştirmek mümkündür tanım gereği logaritmayı bulma. Bu sürecin nasıl gerçekleştiğine daha yakından bakalım.

Bunun özü, b sayısını a c biçiminde temsil etmektir; buradan logaritmanın tanımına göre c sayısı logaritmanın değeridir. Yani, tanım gereği aşağıdaki eşitlik zinciri logaritmanın bulunmasına karşılık gelir: log a b=log a a c =c.

Dolayısıyla, tanım gereği bir logaritmanın hesaplanması, a c = b olacak şekilde bir c sayısının bulunmasına gelir ve c sayısının kendisi logaritmanın istenen değeridir.

Önceki paragraflardaki bilgileri dikkate alarak, logaritma işaretinin altındaki sayı, logaritma tabanının belirli bir kuvveti ile verildiğinde, logaritmanın neye eşit olduğunu hemen belirtebilirsiniz - üsse eşittir. Çözümleri örneklerle gösterelim.

Örnek.

Log 2 2 −3'ü bulun ve e 5,3 sayısının doğal logaritmasını da hesaplayın.

Çözüm.

Logaritmanın tanımı hemen log 2 2 −3 =−3 olduğunu söylememizi sağlar. Aslında logaritma işaretinin altındaki sayı 2 tabanının -3 üssüne eşittir.

Benzer şekilde ikinci logaritmayı da buluyoruz: lne 5,3 =5,3.

Cevap:

log 2 2 −3 =−3 ve lne 5,3 =5,3.

Logaritma işaretinin altındaki b sayısı, logaritmanın tabanının kuvveti olarak belirtilmemişse, b sayısının a c biçiminde bir temsilini bulmanın mümkün olup olmadığını dikkatlice incelemeniz gerekir. Çoğu zaman bu gösterim oldukça açıktır, özellikle logaritma işaretinin altındaki sayı 1, 2 veya 3'ün üssüne eşit olduğunda...

Örnek.

Logaritma log 5 25 ve'yi hesaplayın.

Çözüm.

25=5 2 olduğunu görmek kolaydır, bu ilk logaritmayı hesaplamanıza olanak tanır: log 5 25=log 5 5 2 =2.

İkinci logaritmayı hesaplamaya geçelim. Sayı 7'nin kuvvetleri olarak temsil edilebilir: (gerekirse bakın). Buradan, .

Üçüncü logaritmayı aşağıdaki formda yeniden yazalım. Artık bunu görebilirsin bundan şu sonuca varıyoruz . Bu nedenle logaritmanın tanımı gereği .

Kısaca çözüm şu şekilde yazılabilir: .

Cevap:

günlük 5 25=2 , Ve .

Logaritma işaretinin altında yeterince büyük bir doğal sayı olduğunda, bunu asal çarpanlara ayırmanın zararı olmaz. Çoğu zaman böyle bir sayıyı logaritmanın tabanının bir kuvveti olarak temsil etmeye ve dolayısıyla bu logaritmayı tanım gereği hesaplamaya yardımcı olur.

Örnek.

Logaritmanın değerini bulun.

Çözüm.

Logaritmanın bazı özellikleri, logaritmanın değerini hemen belirtmenize olanak tanır. Bu özellikler, birin logaritması özelliğini ve tabana eşit bir sayının logaritması özelliğini içerir: log 1 1=log a a 0 =0 ve log a a=log a 1 =1. Yani, logaritma işaretinin altında 1 sayısı veya logaritmanın tabanına eşit bir sayı olduğunda, bu durumlarda logaritmalar sırasıyla 0 ve 1'e eşittir.

Örnek.

Logaritmalar ve log10 neye eşittir?

Çözüm.

O zamandan beri logaritmanın tanımından şu çıkıyor .

İkinci örnekte logaritma işaretinin altındaki 10 sayısı tabanına denk geliyor yani on'un ondalık logaritması bire eşit yani lg10=lg10 1 =1.

Cevap:

VE lg10=1 .

Tanım gereği logaritmanın hesaplanmasının (önceki paragrafta tartıştığımız), logaritmanın özelliklerinden biri olan log a a p =p eşitliğinin kullanımını ima ettiğine dikkat edin.

Pratikte logaritmanın işareti altındaki bir sayı ve logaritmanın tabanı belirli bir sayının kuvveti olarak kolaylıkla temsil edildiğinde formülü kullanmak çok uygundur. logaritmanın özelliklerinden birine karşılık gelir. Bu formülün kullanımını gösteren logaritmayı bulma örneğini ele alalım.

Örnek.

Logaritmayı hesaplayın.

Çözüm.

Cevap:

.

Logaritmanın yukarıda belirtilmeyen özellikleri de hesaplamalarda kullanılır ancak bundan sonraki paragraflarda bahsedeceğiz.

Bilinen diğer logaritmalar aracılığıyla logaritma bulma

Bu paragraftaki bilgiler logaritmanın özelliklerinin hesaplanmasında kullanılması konusunun devamıdır. Ancak buradaki temel fark, logaritmanın özelliklerinin, orijinal logaritmayı değeri bilinen başka bir logaritmaya göre ifade etmek için kullanılmasıdır. Açıklığa kavuşturmak için bir örnek verelim. Diyelim ki log 2 3≈1,584963'ü bildiğimizi varsayalım, o zaman logaritmanın özelliklerini kullanarak küçük bir dönüşüm yaparak örneğin log 2 6'yı bulabiliriz: günlük 2 6=log 2 (2 3)=log 2 2+log 2 3≈ 1+1,584963=2,584963 .

Yukarıdaki örnekte bir çarpımın logaritması özelliğini kullanmamız yeterliydi. Bununla birlikte, orijinal logaritmayı verilenler aracılığıyla hesaplamak için çok daha sık olarak logaritmanın özelliklerinin daha geniş bir cephaneliğini kullanmak gerekir.

Örnek.

Log 60 2=a ve log 60 5=b olduğunu biliyorsanız, 27'nin 60 tabanına göre logaritmasını hesaplayın.

Çözüm.

Bu yüzden log 60 27'yi bulmamız gerekiyor. 27 = 3 3'ün ve kuvvetin logaritmasının özelliği nedeniyle orijinal logaritmanın 3·log 60 3 olarak yeniden yazılabileceğini görmek kolaydır.

Şimdi log 60 3'ün bilinen logaritmalarla nasıl ifade edileceğini görelim. Tabana eşit bir sayının logaritması özelliği, log 60 60=1 eşitliğini yazmamızı sağlar. Öte yandan, log 60 60=log60(2 2 3 5)= günlük 60 2 2 +günlük 60 3+günlük 60 5= 2·log 60 2+log 60 3+log 60 5 . Böylece, 2 log 60 2+log 60 3+log 60 5=1. Buradan, log 60 3=1−2·log 60 2−log 60 5=1−2·a−b.

Son olarak orijinal logaritmayı hesaplıyoruz: log 60 27=3 log 60 3= 3·(1−2·a−b)=3−6·a−3·b.

Cevap:

log 60 27=3·(1−2·a−b)=3−6·a−3·b.

Ayrı olarak, formun logaritmasının yeni bir tabanına geçiş formülünün anlamından bahsetmeye değer. . Herhangi bir tabanlı logaritmalardan, değerleri bilinen veya bulunması mümkün olan belirli bir tabanlı logaritmalara geçmenizi sağlar. Genellikle, orijinal logaritmadan, geçiş formülünü kullanarak, 2, e veya 10 tabanlarından birinde logaritmalara geçerler, çünkü bu tabanlar için değerlerinin belirli bir dereceyle hesaplanmasına izin veren logaritma tabloları vardır. kesinlik. Bir sonraki paragrafta bunun nasıl yapıldığını göstereceğiz.

Logaritma tabloları ve kullanımları

Logaritma değerlerinin yaklaşık hesaplanması için kullanılabilir logaritma tabloları. En sık kullanılan 2 tabanlı logaritma tablosu, doğal logaritma tablosu ve ondalık logaritma tablosu. Ondalık sayı sisteminde çalışırken, on tabanına dayalı bir logaritma tablosu kullanmak uygundur. Onun yardımıyla logaritmanın değerlerini bulmayı öğreneceğiz.










Sunulan tablo, 1.000'den 9.999'a kadar (üç ondalık basamakla) sayıların ondalık logaritmasının değerlerini on binde bir doğrulukla bulmanızı sağlar. Belirli bir örnek kullanarak bir ondalık logaritma tablosu kullanarak bir logaritmanın değerini bulma ilkesini analiz edeceğiz - bu şekilde daha açıktır. Log1.256'yı bulalım.

Ondalık logaritma tablosunun sol sütununda 1,256 sayısının ilk iki rakamını buluyoruz, yani 1,2'yi buluyoruz (bu sayı netlik açısından mavi daire içine alınmıştır). 1.256 sayısının üçüncü rakamı (5 rakamı) çift satırın solundaki ilk veya son satırda bulunur (bu rakam kırmızı daire içine alınmıştır). Orijinal sayı olan 1.256'nın dördüncü rakamı (6 rakamı), çift satırın sağındaki ilk veya son satırda bulunur (bu sayı yeşil çizgiyle daire içine alınmıştır). Şimdi logaritma tablosunun hücrelerinde işaretli satır ve işaretli sütunların kesişimindeki sayıları buluyoruz (bu sayılar turuncu renkle vurgulanmıştır). İşaretlenen sayıların toplamı, dördüncü ondalık basamağa kadar doğru olan ondalık logaritmanın istenen değerini verir; log1,236≈0,0969+0,0021=0,0990.

Yukarıdaki tabloyu kullanarak, ondalık noktadan sonra üç basamaktan fazla olan sayıların yanı sıra 1 ile 9,999 aralığının ötesine geçen sayıların ondalık logaritma değerlerini bulmak mümkün müdür? Evet yapabilirsin. Bunun nasıl yapıldığını bir örnekle gösterelim.

lg102.76332'yi hesaplayalım. İlk önce yazmanız gerekiyor standart formdaki sayı: 102,76332=1,0276332·10 2. Bundan sonra mantis üçüncü ondalık basamağa yuvarlanmalıdır. 1,0276332 10 2 ≈1,028 10 2 orijinal ondalık logaritması yaklaşık olarak ortaya çıkan sayının logaritmasına eşitken, yani log102.76332≈lg1.028·10 2 alıyoruz. Şimdi logaritmanın özelliklerini uyguluyoruz: lg1,028·10 2 =lg1,028+lg10 2 =lg1,028+2. Son olarak, lg1.028 logaritmasının değerini ondalık logaritmalar tablosundan lg1.028≈0.0086+0.0034=0.012 buluyoruz. Sonuç olarak, logaritmayı hesaplama sürecinin tamamı şöyle görünür: log102.76332=log1.0276332 10 2 ≈lg1.028 10 2 = log1,028+lg10 2 =log1,028+2≈0,012+2=2,012.

Sonuç olarak, ondalık logaritma tablosunu kullanarak herhangi bir logaritmanın yaklaşık değerini hesaplayabileceğinizi belirtmekte fayda var. Bunu yapmak için geçiş formülünü kullanarak ondalık logaritmalara gitmeniz, değerlerini tabloda bulmanız ve kalan hesaplamaları yapmanız yeterlidir.

Örneğin log 2 3'ü hesaplayalım. Logaritmanın yeni tabanına geçiş formülüne göre elimizde . Ondalık logaritma tablosundan log3≈0,4771 ve log2≈0,3010'u buluyoruz. Böylece, .

Referanslar.

  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. ve diğerleri. Cebir ve analizin başlangıcı: Genel eğitim kurumlarının 10 - 11. sınıfları için ders kitabı.
  • Gusev V.A., Mordkovich A.G. Matematik (teknik okullara girenler için bir el kitabı).

\(a^(b)=c\) \(\Leftrightarrow\) \(\log_(a)(c)=b\)

Daha basit bir şekilde açıklayalım. Örneğin, \(\log_(2)(8)\), \(8\) elde etmek için \(2\)'nin yükseltilmesi gereken kuvvete eşittir. Bundan \(\log_(2)(8)=3\) olduğu açıktır.

Örnekler:

\(\log_(5)(25)=2\)

Çünkü \(5^(2)=25\)

\(\log_(3)(81)=4\)

Çünkü \(3^(4)=81\)

\(\log_(2)\)\(\frac(1)(32)\) \(=-5\)

Çünkü \(2^(-5)=\)\(\frac(1)(32)\)

Argüman ve logaritmanın tabanı

Herhangi bir logaritma aşağıdaki “anatomiye” sahiptir:

Bir logaritmanın argümanı genellikle kendi düzeyinde yazılır ve tabanı, logaritma işaretine daha yakın bir alt simgeyle yazılır. Ve bu girdi şu şekilde okunur: "Yirmi beşin beş tabanına göre logaritması."

Logaritma nasıl hesaplanır?

Logaritmayı hesaplamak için şu soruyu yanıtlamanız gerekir: Tartışmayı elde etmek için taban hangi güce yükseltilmelidir?

Örneğin, logaritmayı hesaplayın: a) \(\log_(4)(16)\) b) \(\log_(3)\)\(\frac(1)(3)\) c) \(\log_(\ sqrt (5))(1)\) d) \(\log_(\sqrt(7))(\sqrt(7))\) e) \(\log_(3)(\sqrt(3))\)

a) \(16\) elde etmek için \(4\) hangi kuvvete yükseltilmelidir? Açıkçası ikincisi. Bu yüzden:

\(\log_(4)(16)=2\)

\(\log_(3)\)\(\frac(1)(3)\) \(=-1\)

c) \(1\) elde etmek için \(\sqrt(5)\) hangi kuvvete yükseltilmelidir? Hangi güç herhangi bir numarayı bir numara yapar? Elbette sıfır!

\(\log_(\sqrt(5))(1)=0\)

d) \(\sqrt(7)\) elde etmek için \(\sqrt(7)\) hangi kuvvete yükseltilmelidir? Öncelikle herhangi bir sayının birinci kuvveti kendisine eşittir.

\(\log_(\sqrt(7))(\sqrt(7))=1\)

e) \(\sqrt(3)\) elde etmek için \(3\) hangi kuvvete yükseltilmelidir? Bunun kesirli bir kuvvet olduğunu biliyoruz, bu da karekökün \(\frac(1)(2)\) kuvveti olduğu anlamına gelir.

\(\log_(3)(\sqrt(3))=\)\(\frac(1)(2)\)

Örnek : Logaritmayı hesaplayın \(\log_(4\sqrt(2))(8)\)

Çözüm :

\(\log_(4\sqrt(2))(8)=x\)

Logaritmanın değerini bulmamız gerekiyor, x olarak gösterelim. Şimdi logaritmanın tanımını kullanalım:
\(\log_(a)(c)=b\) \(\Leftrightarrow\) \(a^(b)=c\)

\((4\sqrt(2))^(x)=8\)

\(4\sqrt(2)\) ile \(8\)'i birbirine bağlayan şey nedir? İki, çünkü her iki sayı da ikişer sayıyla temsil edilebilir:
\(4=2^(2)\) \(\sqrt(2)=2^(\frac(1)(2))\) \(8=2^(3)\)

\(((2^(2)\cdot2^(\frac(1)(2))))^(x)=2^(3)\)

Sol tarafta derecenin özelliklerini kullanıyoruz: \(a^(m)\cdot a^(n)=a^(m+n)\) ve \((a^(m))^(n)= a^(m\cdot n)\)

\(2^(\frac(5)(2)x)=2^(3)\)

Bazlar eşit, göstergelerin eşitliğine geçiyoruz

\(\frac(5x)(2)\) \(=3\)


Denklemin her iki tarafını \(\frac(2)(5)\) ile çarpın


Ortaya çıkan kök logaritmanın değeridir

Cevap : \(\log_(4\sqrt(2))(8)=1,2\)

Logaritma neden icat edildi?

Bunu anlamak için denklemi çözelim: \(3^(x)=9\). Denklemin çalışması için \(x\) ile eşleşmeniz yeterli. Elbette \(x=2\).

Şimdi denklemi çözün: \(3^(x)=8\).x neye eşittir? Önemli olan bu.

En akıllıları şunu söyleyecektir: "X ikiden biraz küçüktür." Bu sayı tam olarak nasıl yazılır? Bu soruyu cevaplamak için logaritma icat edildi. Onun sayesinde buradaki cevap \(x=\log_(3)(8)\) şeklinde yazılabilir.

Şunu vurgulamak istiyorum: \(\log_(3)(8)\), mesela herhangi bir logaritma sadece bir sayıdır. Evet, sıradışı görünüyor ama kısa. Çünkü bunu ondalık sayı olarak yazmak isteseydik şu şekilde görünürdü: \(1.892789260714.....\)

Örnek : \(4^(5x-4)=10\) denklemini çözün

Çözüm :

\(4^(5x-4)=10\)

\(4^(5x-4)\) ve \(10\) aynı tabana getirilemez. Bu, logaritma olmadan yapamayacağınız anlamına gelir.

Logaritmanın tanımını kullanalım:
\(a^(b)=c\) \(\Leftrightarrow\) \(\log_(a)(c)=b\)

\(\log_(4)(10)=5x-4\)

Denklemi X solda olacak şekilde çevirelim

\(5x-4=\log_(4)(10)\)

Bizden önce. \(4\)'ü sağa taşıyalım.

Logaritmadan korkmayın, ona sıradan bir sayı gibi davranın.

\(5x=\log_(4)(10)+4\)

Denklemi 5'e bölün

\(x=\)\(\frac(\log_(4)(10)+4)(5)\)


Bu bizim kökümüzdür. Evet, alışılmadık görünüyor ama cevabı seçmiyorlar.

Cevap : \(\frac(\log_(4)(10)+4)(5)\)

Ondalık ve doğal logaritmalar

Logaritmanın tanımında belirtildiği gibi tabanı \((a>0, a\neq1)\) dışında herhangi bir pozitif sayı olabilir. Ve tüm olası tabanlar arasında, o kadar sık ​​görülen iki taban var ki, bunlarla logaritmalar için özel bir kısa notasyon icat edildi:

Doğal logaritma: tabanı Euler sayısı \(e\) (yaklaşık olarak \(2,7182818…\)'ye eşit) olan ve logaritma \(\ln(a)\) olarak yazılan bir logaritma.

Yani, \(\ln(a)\) \(\log_(e)(a)\) ile aynıdır

Ondalık Logaritma: Tabanı 10 olan logaritma \(\lg(a)\) olarak yazılır.

Yani, \(\lg(a)\) \(\log_(10)(a)\) ile aynıdır, burada \(a\) bir sayıdır.

Temel logaritmik kimlik

Logaritmaların birçok özelliği vardır. Bunlardan birine “Temel Logaritmik Kimlik” denir ve şuna benzer:

\(a^(\log_(a)(c))=c\)

Bu özellik doğrudan tanımdan kaynaklanmaktadır. Bu formülün tam olarak nasıl ortaya çıktığını görelim.

Logaritmanın tanımına ilişkin kısa bir notasyonu hatırlayalım:

eğer \(a^(b)=c\), o zaman \(\log_(a)(c)=b\)

Yani \(b\), \(\log_(a)(c)\) ile aynıdır. Daha sonra \(a^(b)=c\) formülünde \(b\) yerine \(\log_(a)(c)\) yazabiliriz. Ana logaritmik kimlik olan \(a^(\log_(a)(c))=c\) ortaya çıktı.

Logaritmanın diğer özelliklerini bulabilirsiniz. Onların yardımıyla, doğrudan hesaplanması zor olan ifadelerin değerlerini logaritmalarla basitleştirebilir ve hesaplayabilirsiniz.

Örnek : \(36^(\log_(6)(5))\) ifadesinin değerini bulun

Çözüm :

Cevap : \(25\)

Bir sayı logaritma olarak nasıl yazılır?

Yukarıda belirtildiği gibi, herhangi bir logaritma yalnızca bir sayıdır. Bunun tersi de doğrudur: Herhangi bir sayı logaritma olarak yazılabilir. Örneğin, \(\log_(2)(4)\)'un ikiye eşit olduğunu biliyoruz. Daha sonra iki yerine \(\log_(2)(4)\) yazabilirsiniz.

Ancak \(\log_(3)(9)\) aynı zamanda \(2\)'ye eşittir, bu da \(2=\log_(3)(9)\) yazabileceğimiz anlamına gelir. Aynı şekilde \(\log_(5)(25)\) ve \(\log_(9)(81)\), vb. ile. Yani ortaya çıkıyor

\(2=\log_(2)(4)=\log_(3)(9)=\log_(4)(16)=\log_(5)(25)=\log_(6)(36)=\ log_(7)(49)...\)

Dolayısıyla, eğer ihtiyaç duyarsak, ikiyi herhangi bir yerde herhangi bir tabanla logaritma olarak yazabiliriz (bir denklemde, bir ifadede veya bir eşitsizlikte) - sadece tabanın karesini argüman olarak yazabiliriz.

Üçlü için de durum aynıdır; \(\log_(2)(8)\), \(\log_(3)(27)\) veya \(\log_(4)() olarak yazılabilir. 64) \)... Burada küpteki tabanı argüman olarak yazıyoruz:

\(3=\log_(2)(8)=\log_(3)(27)=\log_(4)(64)=\log_(5)(125)=\log_(6)(216)=\ log_(7)(343)...\)

Ve dört ile:

\(4=\log_(2)(16)=\log_(3)(81)=\log_(4)(256)=\log_(5)(625)=\log_(6)(1296)=\ log_(7)(2401)...\)

Ve eksi bir ile:

\(-1=\) \(\log_(2)\)\(\frac(1)(2)\) \(=\) \(\log_(3)\)\(\frac(1)( 3)\) \(=\) \(\log_(4)\)\(\frac(1)(4)\) \(=\) \(\log_(5)\)\(\frac(1) )(5)\) \(=\) \(\log_(6)\)\(\frac(1)(6)\) \(=\) \(\log_(7)\)\(\frac (1)(7)\) \(...\)

Ve üçte biriyle:

\(\frac(1)(3)\) \(=\log_(2)(\sqrt(2))=\log_(3)(\sqrt(3))=\log_(4)(\sqrt( 4))=\log_(5)(\sqrt(5))=\log_(6)(\sqrt(6))=\log_(7)(\sqrt(7))...\)

Herhangi bir \(a\) sayısı \(b\) tabanına sahip bir logaritma olarak temsil edilebilir: \(a=\log_(b)(b^(a))\)

Örnek : İfadenin anlamını bulun \(\frac(\log_(2)(14))(1+\log_(2)(7))\)

Çözüm :

Cevap : \(1\)

(Yunanca λόγος - “kelime”, “ilişki” ve ἀριθμός - “sayı”) sayılar B dayalı A(log α B) böyle bir sayıya denir C, Ve B= bir c yani log α'yı kaydeder B=C Ve b=aC eşdeğerdir. Logaritma eğer a > 0, a ≠ 1, b > 0 ise anlamlıdır.

Başka bir deyişle logaritma sayılar B dayalı A bir sayının yükseltilmesi gereken bir üs olarak formüle edilmiştir A numarayı almak için B(logaritma yalnızca pozitif sayılar için mevcuttur).

Bu formülasyondan şu sonuç çıkar: x= log α hesaplaması B, a x =b denklemini çözmeye eşdeğerdir.

Örneğin:

log 2 8 = 3 çünkü 8 = 2 3.

Logaritmanın belirtilen formülasyonunun hemen belirlenmesini mümkün kıldığını vurgulayalım. logaritma değeri Logaritma işaretinin altındaki sayı tabanın belirli bir kuvveti gibi davrandığında. Aslında, logaritmanın formülasyonu şunu doğrulamayı mümkün kılar: b=a c, sonra sayının logaritması B dayalı A eşittir İle. Logaritma konusunun konuyla yakından ilgili olduğu da açıktır. bir sayının kuvvetleri.

Logaritmanın hesaplanmasına denir logaritma. Logaritma, logaritma almanın matematiksel işlemidir. Logaritma alırken faktörlerin çarpımları terim toplamlarına dönüştürülür.

Potansiyelleşme logaritmanın ters matematiksel işlemidir. Güçlendirme sırasında belirli bir baz, güçlendirmenin gerçekleştirileceği ifade derecesine yükseltilir. Bu durumda terimlerin toplamları faktörlerin çarpımına dönüştürülür.

Oldukça sık olarak, gerçek logaritmalar 2 tabanı (ikili), Euler sayısı e ≈ 2,718 (doğal logaritma) ve 10 (ondalık) ile kullanılır.

Bu aşamada dikkate alınması tavsiye edilir. logaritma örnekleri günlük 7 2 , içinde 5, lg0.0001.

Ve lg(-3), log -3 3.2, log -1 -4.3 girişleri mantıklı değil, çünkü ilkinde logaritmanın işaretinin altına negatif bir sayı yerleştiriliyor, ikincisinde negatif bir sayı var tabanda, üçüncüde logaritma işaretinin altında negatif bir sayı ve tabanda birim vardır.

Logaritmayı belirleme koşulları.

Şunu elde ettiğimiz a > 0, a ≠ 1, b > 0 koşullarını ayrı ayrı dikkate almakta fayda var. logaritmanın tanımı. Bu kısıtlamaların neden alındığını düşünelim. x = log α formundaki eşitlik bu konuda bize yardımcı olacaktır. B Yukarıda verilen logaritmanın tanımından doğrudan çıkan temel logaritmik özdeşlik olarak adlandırılır.

Hadi durumu ele alalım a≠1. Bir üzeri herhangi bir kuvvet bire eşit olduğundan, x=log α eşitliği sağlanır. B yalnızca şu durumlarda var olabilir: b=1, ancak log 1 1 herhangi bir gerçek sayı olacaktır. Bu belirsizliği ortadan kaldırmak için şunları alırız: a≠1.

Durumun gerekliliğini kanıtlayalım a>0. Şu tarihte: a=0 logaritmanın formülasyonuna göre ancak şu durumlarda var olabilir: b=0. Ve buna göre o zaman günlük 0 0 sıfırın sıfır olmayan herhangi bir kuvveti sıfır olduğundan, sıfırdan farklı herhangi bir gerçek sayı olabilir. Bu belirsizlik şu koşulla ortadan kaldırılabilir: a≠0. Ve ne zaman A<0 Logaritmanın rasyonel ve irrasyonel değerlerinin analizini reddetmek zorunda kalacağız, çünkü rasyonel ve irrasyonel bir üste sahip bir derece yalnızca negatif olmayan bazlar için tanımlanır. Bu nedenle şart koşulmuştur. a>0.

Ve son şart b>0 eşitsizlikten kaynaklanır a>0, çünkü x=log α B ve pozitif tabanlı derecenin değeri A her zaman olumlu.

Logaritmanın özellikleri.

Logaritmalar ayırt edici özelliklerle karakterize edilen özellikler Bu da özenli hesaplamaları önemli ölçüde kolaylaştırmak için yaygın kullanımlarına yol açtı. Logaritma dünyasına geçerken çarpma çok daha kolay bir toplama işlemine, bölme çıkarma işlemine, üs alma ve kök çıkarma ise sırasıyla üs ile çarpma ve bölme işlemine dönüştürülür.

Logaritmaların formülasyonu ve değerlerinin tablosu (trigonometrik fonksiyonlar için) ilk olarak 1614'te İskoç matematikçi John Napier tarafından yayınlandı. Diğer bilim adamları tarafından genişletilen ve detaylandırılan logaritmik tablolar bilimsel ve mühendislik hesaplamalarında yaygın olarak kullanılmış ve elektronik hesap makineleri ve bilgisayarların kullanımına kadar geçerliliğini korumuştur.

ana özellikler.

  1. logax + logay = loga(x y);
  2. logax – logay = loga (x: y).

aynı gerekçeler

Log6 4 + log6 9.

Şimdi görevi biraz karmaşıklaştıralım.

Logaritma çözme örnekleri

Ya bir logaritmanın tabanı veya argümanı bir kuvvet ise? Daha sonra bu derecenin üssü aşağıdaki kurallara göre logaritmanın işaretinden çıkarılabilir:

Elbette tüm bu kurallar, logaritmanın ODZ'sine uyulduğu takdirde anlamlıdır: a > 0, a ≠ 1, x >

Görev. İfadenin anlamını bulun:

Yeni bir temele geçiş

Logaritmanın logax'ı verilsin. O halde c > 0 ve c ≠ 1 olacak şekilde herhangi bir c sayısı için eşitlik doğrudur:

Görev. İfadenin anlamını bulun:

Ayrıca bakınız:


Logaritmanın temel özellikleri

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Üs 2,718281828…. Üssü hatırlamak için kuralı inceleyebilirsiniz: üs 2,7'ye eşittir ve Leo Nikolaevich Tolstoy'un doğum yılının iki katıdır.

Logaritmanın temel özellikleri

Bu kuralı bildiğinizde hem üssün tam değerini hem de Leo Tolstoy'un doğum tarihini bileceksiniz.


Logaritma örnekleri

Logaritma ifadeleri

Örnek 1.
A). x=10ac^2 (a>0,c>0).

3.5 özelliklerini kullanarak hesaplıyoruz

2.

3.

4. Nerede .



Örnek 2. Eğer x'i bulun


Örnek 3. Logaritmanın değeri verilsin

Log(x)'i hesaplayın, eğer




Logaritmanın temel özellikleri

Logaritmalar da diğer sayılar gibi her şekilde toplanabilir, çıkarılabilir ve dönüştürülebilir. Ancak logaritmalar tam olarak sıradan sayılar olmadığından burada kurallar vardır. ana özellikler.

Kesinlikle bu kuralları bilmeniz gerekiyor; onlar olmadan tek bir ciddi logaritmik problem çözülemez. Ayrıca bunlardan çok azı var - her şeyi bir günde öğrenebilirsiniz. Öyleyse başlayalım.

Logaritmaların toplanması ve çıkarılması

Aynı tabanlara sahip iki logaritmayı düşünün: logax ve logay. Daha sonra bunlar eklenebilir ve çıkarılabilir ve:

  1. logax + logay = loga(x y);
  2. logax – logay = loga (x: y).

Yani logaritmaların toplamı çarpımın logaritmasına, fark ise bölümün logaritmasına eşittir. Lütfen dikkat: buradaki kilit nokta aynı gerekçeler. Sebepler farklıysa bu kurallar işe yaramaz!

Bu formüller, tek tek parçaları dikkate alınmasa bile logaritmik bir ifadeyi hesaplamanıza yardımcı olacaktır (“Logaritma nedir” dersine bakın). Örneklere bir göz atın ve şunu görün:

Logaritmaların tabanları aynı olduğundan toplam formülünü kullanırız:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Görev. İfadenin değerini bulun: log2 48 − log2 3.

Bazlar aynı, fark formülünü kullanıyoruz:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Görev. İfadenin değerini bulun: log3 135 − log3 5.

Tabanlar yine aynı olduğundan elimizde:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Gördüğünüz gibi orijinal ifadeler ayrı olarak hesaplanmayan “kötü” logaritmalardan oluşuyor. Ancak dönüşümlerden sonra tamamen normal sayılar elde edilir. Birçok test bu gerçeğe dayanmaktadır. Evet, Birleşik Devlet Sınavında test benzeri ifadeler tüm ciddiyetiyle (bazen neredeyse hiç değişiklik yapılmadan) sunulmaktadır.

Üslü logaritmadan çıkarma

Son kuralın ilk ikisini takip ettiğini görmek kolaydır. Ancak yine de hatırlamak daha iyidir - bazı durumlarda hesaplama miktarını önemli ölçüde azaltacaktır.

Elbette, logaritmanın ODZ'sine uyulursa tüm bu kurallar anlamlıdır: a > 0, a ≠ 1, x > 0. Ve bir şey daha: tüm formülleri yalnızca soldan sağa değil, aynı zamanda tam tersi şekilde uygulamayı öğrenin. yani Logaritma işaretinden önceki sayıları logaritmanın kendisine girebilirsiniz. En sık ihtiyaç duyulan şey budur.

Görev. İfadenin değerini bulun: log7 496.

İlk formülü kullanarak argümandaki dereceden kurtulalım:
log7 496 = 6 log7 49 = 6 2 = 12

Görev. İfadenin anlamını bulun:

Paydanın, tabanı ve argümanının tam kuvvetleri olan bir logaritma içerdiğine dikkat edin: 16 = 24; 49 = 72. Elimizde:

Son örneğin biraz açıklama gerektirdiğini düşünüyorum. Logaritmalar nereye gitti? Son ana kadar sadece paydayla çalışıyoruz.

Logaritma formülleri. Logaritma örnek çözümleri.

Orada duran logaritmanın temelini ve argümanını kuvvetler şeklinde sunduk ve üsleri çıkardık - “üç katlı” bir kesir elde ettik.

Şimdi ana kesirlere bakalım. Pay ve payda aynı sayıyı içerir: log2 7. log2 7 ≠ 0 olduğundan kesri azaltabiliriz - 2/4 paydada kalacaktır. Aritmetik kurallarına göre dörtlü paya aktarılabilir ki yapılan da budur. Sonuç şuydu: 2.

Yeni bir temele geçiş

Logaritma toplama ve çıkarma kurallarından bahsederken bunların sadece aynı tabanlarla çalıştığını özellikle vurguladım. Peki ya sebepler farklıysa? Ya aynı sayının tam kuvvetleri değilse?

Yeni bir vakfa geçiş formülleri kurtarmaya geliyor. Bunları bir teorem şeklinde formüle edelim:

Logaritmanın logax'ı verilsin. O halde c > 0 ve c ≠ 1 olacak şekilde herhangi bir c sayısı için eşitlik doğrudur:

Özellikle c = x değerini ayarlarsak şunu elde ederiz:

İkinci formülden, logaritmanın tabanı ve argümanının değiştirilebileceği anlaşılmaktadır, ancak bu durumda ifadenin tamamı "tersine çevrilmiştir", yani. logaritma paydada görünür.

Bu formüllere sıradan sayısal ifadelerde nadiren rastlanır. Ne kadar kullanışlı olduklarını ancak logaritmik denklem ve eşitsizlikleri çözerken değerlendirmek mümkündür.

Ancak yeni bir temele taşınmak dışında hiçbir şekilde çözülemeyen sorunlar var. Bunlardan birkaçına bakalım:

Görev. İfadenin değerini bulun: log5 16 log2 25.

Her iki logaritmanın argümanlarının tam güçler içerdiğini unutmayın. Göstergeleri çıkaralım: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Şimdi ikinci logaritmayı “tersine çevirelim”:

Faktörleri yeniden düzenlerken çarpım değişmediğinden, sakince dört ve ikiyi çarptık ve ardından logaritmalarla uğraştık.

Görev. İfadenin değerini bulun: log9 100 lg 3.

Birinci logaritmanın tabanı ve argümanı tam kuvvetlerdir. Bunu bir kenara yazalım ve göstergelerden kurtulalım:

Şimdi yeni bir tabana geçerek ondalık logaritmadan kurtulalım:

Temel logaritmik kimlik

Çoğu zaman çözüm sürecinde bir sayının belirli bir tabana göre logaritması olarak gösterilmesi gerekir. Bu durumda aşağıdaki formüller bize yardımcı olacaktır:

İlk durumda, n sayısı argümandaki üs haline gelir. N sayısı kesinlikle herhangi bir şey olabilir çünkü bu yalnızca bir logaritma değeridir.

İkinci formül aslında başka kelimelerle ifade edilmiş bir tanımdır. Buna şöyle denir: .

Aslında b sayısı, b sayısının bu kuvveti a sayısını verecek şekilde yükseltilirse ne olur? Doğru: sonuç aynı a sayısıdır. Bu paragrafı dikkatlice tekrar okuyun; birçok kişi buna takılıp kalıyor.

Yeni bir tabana geçiş formülleri gibi, temel logaritmik özdeşlik de bazen mümkün olan tek çözümdür.

Görev. İfadenin anlamını bulun:

log25 64 = log5 8 - basitçe tabandan ve logaritmanın argümanından kareyi aldığını unutmayın. Aynı tabanla kuvvetleri çarpma kurallarını hesaba katarsak şunu elde ederiz:

Bilmeyen varsa, bu Birleşik Devlet Sınavından gerçek bir görevdi :)

Logaritmik birim ve logaritmik sıfır

Sonuç olarak, özellik olarak adlandırılması pek mümkün olmayan iki kimlik vereceğim - bunlar daha ziyade logaritmanın tanımının sonuçlarıdır. Sürekli problemlerle karşı karşıya kalırlar ve şaşırtıcı bir şekilde “ileri düzey” öğrenciler için bile problem yaratırlar.

  1. logaa = 1'dir. Bir kere şunu unutmayın: o tabanın herhangi bir a tabanının logaritması bire eşittir.
  2. loga 1 = 0'dır. A tabanı herhangi bir şey olabilir, ancak argüman bir içeriyorsa logaritma sıfıra eşittir! Çünkü a0 = 1 tanımın doğrudan sonucudur.

Tüm özellikler bu kadar. Bunları uygulamaya koymayı unutmayın! Dersin başındaki kopya kağıdını indirin, yazdırın ve problemleri çözün.

Ayrıca bakınız:

b'nin a tabanına göre logaritması ifadeyi belirtir. Logaritmayı hesaplamak, eşitliğin sağlandığı x () kuvvetini bulmak anlamına gelir

Logaritmanın temel özellikleri

Logaritmalarla ilgili hemen hemen tüm problemler ve örnekler temel alınarak çözüldüğü için yukarıdaki özellikleri bilmek gerekir. Egzotik özelliklerin geri kalanı bu formüllerle matematiksel manipülasyonlar yoluyla elde edilebilir.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Logaritmaların toplamı ve farkı formülünü (3.4) hesaplarken oldukça sık karşılaşırsınız. Geri kalanı biraz karmaşıktır ancak bazı görevlerde karmaşık ifadeleri basitleştirmek ve değerlerini hesaplamak için vazgeçilmezdirler.

Yaygın logaritma durumları

En yaygın logaritmalardan bazıları, tabanının on, üstel veya iki olduğu logaritmalardır.
On tabanına göre logaritmaya genellikle ondalık logaritma denir ve basitçe lg(x) ile gösterilir.

Kayıtta esasların yazılmadığı kayıttan anlaşılıyor. Örneğin

Doğal logaritma, tabanı bir üs olan (ln(x) ile gösterilir) bir logaritmadır.

Üs 2,718281828…. Üssü hatırlamak için kuralı inceleyebilirsiniz: üs 2,7'ye eşittir ve Leo Nikolaevich Tolstoy'un doğum yılının iki katıdır. Bu kuralı bildiğinizde hem üssün tam değerini hem de Leo Tolstoy'un doğum tarihini bileceksiniz.

Ve ikinci tabanın bir diğer önemli logaritması şu şekilde gösterilir:

Bir fonksiyonun logaritmasının türevi, birin değişkene bölünmesine eşittir

İntegral veya ters türev logaritması ilişkiyle belirlenir.

Verilen materyal, logaritma ve logaritmalarla ilgili çok çeşitli problemleri çözmeniz için yeterlidir. Materyali anlamanıza yardımcı olmak için okul müfredatından ve üniversitelerden yalnızca birkaç yaygın örnek vereceğim.

Logaritma örnekleri

Logaritma ifadeleri

Örnek 1.
A). x=10ac^2 (a>0,c>0).

3.5 özelliklerini kullanarak hesaplıyoruz

2.
Logaritma farkının özelliği ile elimizdeki

3.
Bulduğumuz özellikler 3.5'i kullanarak

4. Nerede .

Görünüşte karmaşık bir ifade, bir dizi kural kullanılarak basitleştirilerek oluşturulur

Logaritma değerlerini bulma

Örnek 2. Eğer x'i bulun

Çözüm. Hesaplama için son terim 5 ve 13'ün özelliklerine başvuruyoruz.

Bunu kayda geçirdik ve yas tuttuk

Tabanlar eşit olduğundan ifadeleri eşitliyoruz

Logaritmalar. Giriş seviyesi.

Logaritmanın değeri verilsin

Log(x)'i hesaplayın, eğer

Çözüm: Değişkenin logaritmasını alarak terimlerinin toplamı üzerinden logaritmasını yazalım.


Bu, logaritmalar ve özellikleriyle tanışmamızın sadece başlangıcıdır. Hesaplamalar yapın, pratik becerilerinizi zenginleştirin; yakında logaritmik denklemleri çözmek için edindiğiniz bilgilere ihtiyacınız olacak. Bu tür denklemleri çözmenin temel yöntemlerini inceledikten sonra, bilginizi eşit derecede önemli başka bir konuya, logaritmik eşitsizliklere genişleteceğiz...

Logaritmanın temel özellikleri

Logaritmalar da diğer sayılar gibi her şekilde toplanabilir, çıkarılabilir ve dönüştürülebilir. Ancak logaritmalar tam olarak sıradan sayılar olmadığından burada kurallar vardır. ana özellikler.

Kesinlikle bu kuralları bilmeniz gerekiyor; onlar olmadan tek bir ciddi logaritmik problem çözülemez. Ayrıca bunlardan çok azı var - her şeyi bir günde öğrenebilirsiniz. Öyleyse başlayalım.

Logaritmaların toplanması ve çıkarılması

Aynı tabanlara sahip iki logaritmayı düşünün: logax ve logay. Daha sonra bunlar eklenebilir ve çıkarılabilir ve:

  1. logax + logay = loga(x y);
  2. logax – logay = loga (x: y).

Yani logaritmaların toplamı çarpımın logaritmasına, fark ise bölümün logaritmasına eşittir. Lütfen dikkat: buradaki kilit nokta aynı gerekçeler. Sebepler farklıysa bu kurallar işe yaramaz!

Bu formüller, tek tek parçaları dikkate alınmasa bile logaritmik bir ifadeyi hesaplamanıza yardımcı olacaktır (“Logaritma nedir” dersine bakın). Örneklere bir göz atın ve şunu görün:

Görev. İfadenin değerini bulun: log6 4 + log6 9.

Logaritmaların tabanları aynı olduğundan toplam formülünü kullanırız:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Görev. İfadenin değerini bulun: log2 48 − log2 3.

Bazlar aynı, fark formülünü kullanıyoruz:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Görev. İfadenin değerini bulun: log3 135 − log3 5.

Tabanlar yine aynı olduğundan elimizde:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Gördüğünüz gibi orijinal ifadeler ayrı olarak hesaplanmayan “kötü” logaritmalardan oluşuyor. Ancak dönüşümlerden sonra tamamen normal sayılar elde edilir. Birçok test bu gerçeğe dayanmaktadır. Evet, Birleşik Devlet Sınavında test benzeri ifadeler tüm ciddiyetiyle (bazen neredeyse hiç değişiklik yapılmadan) sunulmaktadır.

Üslü logaritmadan çıkarma

Şimdi görevi biraz karmaşıklaştıralım. Ya bir logaritmanın tabanı veya argümanı bir kuvvet ise? Daha sonra bu derecenin üssü aşağıdaki kurallara göre logaritmanın işaretinden çıkarılabilir:

Son kuralın ilk ikisini takip ettiğini görmek kolaydır. Ancak yine de hatırlamak daha iyidir - bazı durumlarda hesaplama miktarını önemli ölçüde azaltacaktır.

Elbette, logaritmanın ODZ'sine uyulursa tüm bu kurallar anlamlıdır: a > 0, a ≠ 1, x > 0. Ve bir şey daha: tüm formülleri yalnızca soldan sağa değil, aynı zamanda tam tersi şekilde uygulamayı öğrenin. yani Logaritma işaretinden önceki sayıları logaritmanın kendisine girebilirsiniz.

Logaritmalar nasıl çözülür?

En sık ihtiyaç duyulan şey budur.

Görev. İfadenin değerini bulun: log7 496.

İlk formülü kullanarak argümandaki dereceden kurtulalım:
log7 496 = 6 log7 49 = 6 2 = 12

Görev. İfadenin anlamını bulun:

Paydanın, tabanı ve argümanının tam kuvvetleri olan bir logaritma içerdiğine dikkat edin: 16 = 24; 49 = 72. Elimizde:

Son örneğin biraz açıklama gerektirdiğini düşünüyorum. Logaritmalar nereye gitti? Son ana kadar sadece paydayla çalışıyoruz. Orada duran logaritmanın temelini ve argümanını kuvvetler şeklinde sunduk ve üsleri çıkardık - “üç katlı” bir kesir elde ettik.

Şimdi ana kesirlere bakalım. Pay ve payda aynı sayıyı içerir: log2 7. log2 7 ≠ 0 olduğundan kesri azaltabiliriz - 2/4 paydada kalacaktır. Aritmetik kurallarına göre dörtlü paya aktarılabilir ki yapılan da budur. Sonuç şuydu: 2.

Yeni bir temele geçiş

Logaritma toplama ve çıkarma kurallarından bahsederken bunların sadece aynı tabanlarla çalıştığını özellikle vurguladım. Peki ya sebepler farklıysa? Ya aynı sayının tam kuvvetleri değilse?

Yeni bir vakfa geçiş formülleri kurtarmaya geliyor. Bunları bir teorem şeklinde formüle edelim:

Logaritmanın logax'ı verilsin. O halde c > 0 ve c ≠ 1 olacak şekilde herhangi bir c sayısı için eşitlik doğrudur:

Özellikle c = x değerini ayarlarsak şunu elde ederiz:

İkinci formülden, logaritmanın tabanı ve argümanının değiştirilebileceği anlaşılmaktadır, ancak bu durumda ifadenin tamamı "tersine çevrilmiştir", yani. logaritma paydada görünür.

Bu formüllere sıradan sayısal ifadelerde nadiren rastlanır. Ne kadar kullanışlı olduklarını ancak logaritmik denklem ve eşitsizlikleri çözerken değerlendirmek mümkündür.

Ancak yeni bir temele taşınmak dışında hiçbir şekilde çözülemeyen sorunlar var. Bunlardan birkaçına bakalım:

Görev. İfadenin değerini bulun: log5 16 log2 25.

Her iki logaritmanın argümanlarının tam güçler içerdiğini unutmayın. Göstergeleri çıkaralım: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Şimdi ikinci logaritmayı “tersine çevirelim”:

Faktörleri yeniden düzenlerken çarpım değişmediğinden, sakince dört ve ikiyi çarptık ve ardından logaritmalarla uğraştık.

Görev. İfadenin değerini bulun: log9 100 lg 3.

Birinci logaritmanın tabanı ve argümanı tam kuvvetlerdir. Bunu bir kenara yazalım ve göstergelerden kurtulalım:

Şimdi yeni bir tabana geçerek ondalık logaritmadan kurtulalım:

Temel logaritmik kimlik

Çoğu zaman çözüm sürecinde bir sayının belirli bir tabana göre logaritması olarak gösterilmesi gerekir. Bu durumda aşağıdaki formüller bize yardımcı olacaktır:

İlk durumda, n sayısı argümandaki üs haline gelir. N sayısı kesinlikle herhangi bir şey olabilir çünkü bu yalnızca bir logaritma değeridir.

İkinci formül aslında başka kelimelerle ifade edilmiş bir tanımdır. Buna şöyle denir: .

Aslında b sayısı, b sayısının bu kuvveti a sayısını verecek şekilde yükseltilirse ne olur? Doğru: sonuç aynı a sayısıdır. Bu paragrafı dikkatlice tekrar okuyun; birçok kişi buna takılıp kalıyor.

Yeni bir tabana geçiş formülleri gibi, temel logaritmik özdeşlik de bazen mümkün olan tek çözümdür.

Görev. İfadenin anlamını bulun:

log25 64 = log5 8 - basitçe tabandan ve logaritmanın argümanından kareyi aldığını unutmayın. Aynı tabanla kuvvetleri çarpma kurallarını hesaba katarsak şunu elde ederiz:

Bilmeyen varsa, bu Birleşik Devlet Sınavından gerçek bir görevdi :)

Logaritmik birim ve logaritmik sıfır

Sonuç olarak, özellik olarak adlandırılması pek mümkün olmayan iki kimlik vereceğim - bunlar daha ziyade logaritmanın tanımının sonuçlarıdır. Sürekli problemlerle karşı karşıya kalırlar ve şaşırtıcı bir şekilde “ileri düzey” öğrenciler için bile problem yaratırlar.

  1. logaa = 1'dir. Bir kere şunu unutmayın: o tabanın herhangi bir a tabanının logaritması bire eşittir.
  2. loga 1 = 0'dır. A tabanı herhangi bir şey olabilir, ancak argüman bir içeriyorsa logaritma sıfıra eşittir! Çünkü a0 = 1 tanımın doğrudan sonucudur.

Tüm özellikler bu kadar. Bunları uygulamaya koymayı unutmayın! Dersin başındaki kopya kağıdını indirin, yazdırın ve problemleri çözün.

Bu videoyla logaritmik denklemlerle ilgili uzun bir ders serisine başlıyorum. Artık en basit problemleri çözmeyi öğreneceğimiz üç örneğiniz var; bunlara - tek hücreli hayvan.

log 0,5 (3x − 1) = −3

günlük (x + 3) = 3 + 2 günlük 5

En basit logaritmik denklemin şu olduğunu hatırlatayım:

log a f(x) = b

Bu durumda x değişkeninin yalnızca argümanın içinde, yani yalnızca f(x) fonksiyonunda mevcut olması önemlidir. Ve a ve b sayıları yalnızca sayılardır ve hiçbir durumda x değişkenini içeren işlevler değildir.

Temel çözüm yöntemleri

Bu tür yapıları çözmenin birçok yolu vardır. Örneğin, okuldaki çoğu öğretmen şu yöntemi sunmaktadır: Aşağıdaki formülü kullanarak f(x) fonksiyonunu hemen ifade edin. F ( x) = bir b. Yani en basit yapıyla karşılaştığınızda ek işlemlere ve yapılara gerek kalmadan hemen çözüme geçebilirsiniz.

Evet elbette karar doğru olacaktır. Ancak bu formülle ilgili sorun çoğu öğrencinin anlamıyorum, nereden geliyor ve neden a harfini b harfine yükseltiyoruz?

Sonuç olarak, örneğin bu harflerin yerini değiştirirken sıklıkla çok can sıkıcı hatalar görüyorum. Bu formül ya anlaşılmalı ya da sıkıştırılmalıdır ve ikinci yöntem en uygunsuz ve en önemli anlarda hatalara yol açar: sınavlar, testler vb.

Bu nedenle tüm öğrencilerime standart okul formülünden vazgeçmelerini ve logaritmik denklemleri çözmek için muhtemelen isminden de tahmin edebileceğiniz gibi ikinci yaklaşımı kullanmalarını öneriyorum. kanonik form.

Kanonik formun fikri basittir. Sorunumuza tekrar bakalım: solda log a var ve a harfiyle bir sayıyı kastediyoruz ve hiçbir durumda x değişkenini içeren bir fonksiyon değil. Sonuç olarak, bu mektup logaritma bazında uygulanan tüm kısıtlamalara tabidir. yani:

1 ≠ a > 0

Öte yandan, aynı denklemden logaritmanın b sayısına eşit olması gerektiğini ve bu harfe herhangi bir kısıtlama getirilmediğini görüyoruz çünkü hem pozitif hem de negatif herhangi bir değeri alabilir. Her şey f(x) fonksiyonunun hangi değerleri aldığına bağlıdır.

Ve burada, herhangi bir b sayısının a tabanının a üssü b'nin logaritması olarak temsil edilebileceğine dair harika kuralımızı hatırlıyoruz:

b = log a a b

Bu formülü nasıl hatırlayacağız? Evet, çok basit. Aşağıdaki yapıyı yazalım:

b = b 1 = b log a a

Elbette bu durumda başlangıçta yazdığımız tüm kısıtlamalar ortaya çıkıyor. Şimdi logaritmanın temel özelliğini kullanalım ve b çarpanını a'nın kuvveti olarak tanıtalım. Şunu elde ederiz:

b = b 1 = b log a a = log a a b

Sonuç olarak orijinal denklem şu şekilde yeniden yazılacaktır:

log a f (x) = log a a b → f (x) = a b

İşte bu. Yeni fonksiyon artık logaritma içermiyor ve standart cebirsel teknikler kullanılarak çözülebiliyor.

Elbette birileri şimdi itiraz edecek: Neden bir tür kanonik formül bulmak gerekliydi, orijinal tasarımdan son formüle hemen geçmek mümkünse neden iki gereksiz adım daha uygulayalım? Evet, çoğu öğrencinin bu formülün nereden geldiğini anlamaması ve sonuç olarak onu uygularken düzenli olarak hata yapması nedeniyle.

Ancak üç adımdan oluşan bu eylem dizisi, son formülün nereden geldiğini anlamasanız bile orijinal logaritmik denklemi çözmenize olanak tanır. Bu arada, bu girdiye kanonik formül adı veriliyor:

log a f (x) = log a a b

Kanonik formun rahatlığı aynı zamanda sadece bugün düşündüğümüz en basit olanları değil, çok geniş bir logaritmik denklem sınıfını çözmek için kullanılabilmesi gerçeğinde de yatmaktadır.

Çözüm örnekleri

Şimdi gerçek örneklere bakalım. Öyleyse karar verelim:

log 0,5 (3x − 1) = −3

Bunu şu şekilde yeniden yazalım:

log 0,5 (3x − 1) = log 0,5 0,5 −3

Pek çok öğrencinin acelesi var ve hemen 0,5 sayısını asıl problemden bize gelen kuvvete yükseltmeye çalışıyor. Aslında, bu tür sorunları çözme konusunda zaten iyi eğitimli olduğunuzda, bu adımı hemen gerçekleştirebilirsiniz.

Ancak şimdi bu konuyu incelemeye yeni başlıyorsanız, saldırgan hatalar yapmaktan kaçınmak için hiçbir yere acele etmemek daha iyidir. Yani kanonik formumuz var. Sahibiz:

3x − 1 = 0,5 −3

Bu artık logaritmik bir denklem değil, x değişkenine göre doğrusaldır. Bunu çözmek için önce 0,5 üssü −3 sayısına bakalım. 0,5'in 1/2 olduğunu unutmayın.

(1/2) −3 = (2/1) 3 = 8

Logaritmik bir denklemi çözerken tüm ondalık kesirleri ortak kesirlere dönüştürün.

Yeniden yazıyoruz ve şunu elde ediyoruz:

3x - 1 = 8
3x = 9
x = 3

İşte bu, cevabı aldık. İlk sorun çözüldü.

İkinci görev

Gelelim ikinci göreve:

Gördüğümüz gibi, bu denklem artık en basiti değil. Sırf solda bir fark olduğu ve bir tabana göre tek bir logaritma olmadığı için.

Dolayısıyla bir şekilde bu farktan kurtulmamız gerekiyor. Bu durumda her şey çok basittir. Tabanlara daha yakından bakalım: solda kökün altındaki sayı var:

Genel öneri: tüm logaritmik denklemlerde radikallerden kurtulmaya çalışın, yani kökleri olan girişlerden ve kuvvet fonksiyonlarına geçin, çünkü bu kuvvetlerin üsleri kolayca logaritmanın işaretinden çıkarılır ve sonuçta böyle olur. bir giriş, hesaplamaları önemli ölçüde basitleştirir ve hızlandırır. Bunu şu şekilde yazalım:

Şimdi logaritmanın dikkate değer özelliğini hatırlayalım: kuvvetler tabandan olduğu gibi argümandan da elde edilebilir. Gerekçe durumunda aşağıdakiler gerçekleşir:

log a k b = 1/k loga b

Yani temel kuvvette olan sayı öne çıkarılır ve aynı zamanda tersine çevrilir, yani karşılıklı sayı haline gelir. Bizim olgumuzda taban derecesi 1/2 idi. Bu nedenle 2/1 olarak çıkarabiliriz. Şunu elde ederiz:

5 2 log 5 x − log 5 x = 18
10 günlük 5 x − günlük 5 x = 18

Lütfen dikkat: Bu adımda hiçbir durumda logaritmalardan kurtulmamalısınız. 4.-5. sınıf matematiğini ve işlem sırasını hatırlayın: önce çarpma yapılır, ancak daha sonra toplama ve çıkarma yapılır. Bu durumda 10 elementten aynı elementlerden birini çıkarıyoruz:

9 log 5 x = 18
günlük 5 x = 2

Artık denklemimiz olması gerektiği gibi görünüyor. Bu en basit yapıdır ve bunu kanonik formu kullanarak çözüyoruz:

günlük 5 x = günlük 5 5 2
x = 5 2
x = 25

İşte bu. İkinci sorun çözüldü.

Üçüncü örnek

Gelelim üçüncü göreve:

günlük (x + 3) = 3 + 2 günlük 5

Size şu formülü hatırlatayım:

günlük b = günlük 10 b

Herhangi bir nedenle log b notasyonuyla kafanız karıştıysa, tüm hesaplamaları yaparken log 10 b yazabilirsiniz. Ondalık logaritmalarla diğerleriyle aynı şekilde çalışabilirsiniz: kuvvetleri alın, herhangi bir sayıyı ekleyin ve lg 10 biçiminde temsil edin.

Dersimizin en başında yazdığımız en basit özellik olmadığından, şimdi sorunu çözmek için kullanacağımız bu özelliklerdir.

İlk olarak, lg 5'in önündeki faktör 2'nin toplanabileceğini ve 5 tabanındaki bir kuvvet haline gelebileceğini unutmayın. Ek olarak, serbest terim 3 bir logaritma olarak da temsil edilebilir - bunu notasyonumuzdan gözlemlemek çok kolaydır.

Kendiniz karar verin: herhangi bir sayı, 10 tabanına göre log olarak temsil edilebilir:

3 = günlük 10 10 3 = günlük 10 3

Elde edilen değişiklikleri dikkate alarak orijinal problemi yeniden yazalım:

log (x − 3) = log 1000 + log 25
log (x − 3) = log 1000 25
günlük (x - 3) = günlük 25.000

Önümüzde yine kanonik form var ve bunu dönüşüm aşamasından geçmeden elde ettik, yani. en basit logaritmik denklem hiçbir yerde görünmedi.

Dersin başında bahsettiğim şey tam olarak buydu. Kanonik form, çoğu okul öğretmeninin verdiği standart okul formülünden daha geniş bir problem sınıfını çözmenize olanak tanır.

İşte bu kadar, ondalık logaritmanın işaretinden kurtuluyoruz ve basit bir doğrusal yapı elde ediyoruz:

x + 3 = 25.000
x = 24,997

Tüm! Sorun çözüldü.

Kapsamla ilgili bir not

Burada tanımın kapsamına ilişkin önemli bir açıklama yapmak istiyorum. Artık mutlaka şöyle diyecek öğrenci ve öğretmenler olacaktır: “Logaritmalı ifadeleri çözerken f(x) argümanının sıfırdan büyük olması gerektiğini unutmamalıyız!” Bu bağlamda mantıksal bir soru ortaya çıkıyor: Ele alınan sorunların hiçbirinde neden bu eşitsizliğin giderilmesini talep etmedik?

Merak etme. Bu durumlarda fazladan kök görünmeyecektir. Bu da çözümü hızlandırmanıza olanak tanıyan bir başka harika numaradır. Sadece şunu bilin ki, problemde x değişkeni yalnızca tek bir yerde (veya daha doğrusu, tek bir logaritmanın tek bir argümanında) ortaya çıkıyorsa ve bizim durumumuzda x değişkeni başka hiçbir yerde görünmüyorsa, o zaman tanımın tanım kümesini yazın. gerek yokçünkü otomatik olarak yürütülecektir.

Kendiniz karar verin: ilk denklemde 3x − 1 elde ettik, yani argüman 8'e eşit olmalıdır. Bu otomatik olarak 3x − 1'in sıfırdan büyük olacağı anlamına gelir.

Aynı başarıyla, ikinci durumda x'in 5 2'ye eşit olması gerektiğini, yani kesinlikle sıfırdan büyük olduğunu yazabiliriz. Ve üçüncü durumda, x + 3 = 25.000, yani yine açıkça sıfırdan büyüktür. Başka bir deyişle, kapsam otomatik olarak karşılanır, ancak yalnızca x yalnızca bir logaritmanın argümanında yer alıyorsa.

En basit sorunları çözmek için bilmeniz gereken tek şey bu. Tek başına bu kural, dönüşüm kurallarıyla birlikte çok geniş bir problem sınıfını çözmenize olanak sağlayacaktır.

Ancak dürüst olalım: Bu tekniği nihayet anlamak için, logaritmik denklemin kanonik formunun nasıl uygulanacağını öğrenmek için sadece bir video dersi izlemek yeterli değildir. Bu nedenle hemen şimdi bu video dersinde yer alan bağımsız çözüm seçeneklerini indirin ve bu iki bağımsız çalışmadan en az birini çözmeye başlayın.

Kelimenin tam anlamıyla birkaç dakikanızı alacak. Ancak böyle bir eğitimin etkisi, bu video dersini izlemiş olmanızdan çok daha yüksek olacaktır.

Umarım bu ders logaritmik denklemleri anlamanıza yardımcı olur. Kanonik formu kullanın, logaritmalarla çalışma kurallarını kullanarak ifadeleri basitleştirin; herhangi bir sorundan korkmayacaksınız. Bugünlük elimde olan tek şey bu.

Tanım alanı dikkate alınarak

Şimdi logaritmik fonksiyonun tanım alanından ve bunun logaritmik denklemlerin çözümünü nasıl etkilediğinden bahsedelim. Formun bir yapısını düşünün

loga f(x) = b

Böyle bir ifadeye en basit denir - yalnızca bir işlev içerir ve a ve b sayıları yalnızca sayılardır ve hiçbir durumda x değişkenine bağlı bir işlev değildir. Çok basit bir şekilde çözülebilir. Sadece formülü kullanmanız gerekir:

b = log a a b

Bu formül logaritmanın temel özelliklerinden biridir ve orijinal ifademizi yerine koyduğumuzda aşağıdakileri elde ederiz:

log a f (x) = log a a b

f(x) = a b

Bu okul ders kitaplarından tanıdık bir formüldür. Pek çok öğrencinin muhtemelen bir sorusu olacaktır: Orijinal ifadede f(x) fonksiyonu log işaretinin altında olduğundan, ona aşağıdaki kısıtlamalar getirilmiştir:

f(x) > 0

Negatif sayıların logaritması mevcut olmadığı için bu sınırlama geçerlidir. Peki belki de bu sınırlamanın bir sonucu olarak cevaplara yönelik bir kontrol getirilmeli? Belki de kaynağa eklenmeleri gerekiyor?

Hayır, en basit logaritmik denklemlerde ek kontrole gerek yoktur. İşte nedeni. Son formülümüze bir göz atın:

f(x) = a b

Gerçek şu ki, a sayısı her durumda 0'dan büyüktür - bu gereklilik aynı zamanda logaritma tarafından da dayatılmaktadır. A sayısı tabandır. Bu durumda b sayısına herhangi bir kısıtlama getirilmemektedir. Ancak bu önemli değil, çünkü pozitif bir sayıyı hangi kuvvete yükseltirsek yükseltelim, çıktıda yine de pozitif bir sayı elde edeceğiz. Böylece f(x) > 0 şartı otomatik olarak karşılanır.

Gerçekten kontrol etmeye değer olan şey, log işaretinin altındaki fonksiyonun etki alanıdır. Oldukça karmaşık yapılar olabilir ve çözüm sürecinde mutlaka bunlara dikkat etmeniz gerekir. Görelim.

İlk görev:

İlk adım: Sağdaki kesri dönüştürün. Şunu elde ederiz:

Logaritma işaretinden kurtuluruz ve olağan irrasyonel denklemi elde ederiz:

Elde edilen köklerden sadece birincisi bize uygundur çünkü ikinci kök sıfırdan küçüktür. Tek cevap 9 rakamı olacaktır. İşte bu, sorun çözüldü. Logaritma işaretinin altındaki ifadenin 0'dan büyük olduğundan emin olmak için ek bir kontrole gerek yoktur çünkü sadece 0'dan büyük değil, denklemin koşuluna göre 2'ye eşittir. Dolayısıyla “sıfırdan büyük” şartı ” otomatik olarak karşılanır.

Gelelim ikinci göreve:

Burada her şey aynı. Üçlüyü değiştirerek yapıyı yeniden yazıyoruz:

Logaritma işaretlerinden kurtuluruz ve irrasyonel bir denklem elde ederiz:

Kısıtlamaları dikkate alarak her iki tarafın karesini alırız ve şunu elde ederiz:

4 − 6x − x 2 = (x − 4) 2

4 − 6x − x 2 = x 2 + 8x + 16

x 2 + 8x + 16 −4 + ​​6x + x 2 = 0

2x2 + 14x + 12 = 0 |:2

x 2 + 7x + 6 = 0

Ortaya çıkan denklemi diskriminant aracılığıyla çözüyoruz:

D = 49 - 24 = 25

x 1 = −1

x 2 = −6

Ancak x = −6 bize uymuyor çünkü bu sayıyı eşitsizliğimizde yerine koyarsak şunu elde ederiz:

−6 + 4 = −2 < 0

Bizim durumumuzda 0'dan büyük veya aşırı durumlarda eşit olması gerekiyor. Fakat x = −1 bize uyar:

−1 + 4 = 3 > 0

Bizim durumumuzda tek cevap x = −1 olacaktır. Çözüm bu. Hesaplamalarımızın en başına dönelim.

Bu dersten çıkan ana sonuç, basit logaritmik denklemlerde bir fonksiyon üzerindeki kısıtlamaları kontrol etmenize gerek olmadığıdır. Çünkü çözüm sürecinde tüm kısıtlar otomatik olarak karşılanır.

Ancak bu hiçbir şekilde kontrol etmeyi tamamen unutabileceğiniz anlamına gelmez. Logaritmik bir denklem üzerinde çalışma sürecinde, bugün iki farklı örnekte gördüğümüz, sağ taraf için kendi kısıtlamaları ve gereksinimleri olan irrasyonel bir denklem haline gelebilir.

Bu tür sorunları çözmekten çekinmeyin ve tartışmanın bir kökü varsa özellikle dikkatli olun.

Farklı tabanlara sahip logaritmik denklemler

Logaritmik denklemleri incelemeye devam ediyoruz ve daha karmaşık yapıları çözmenin moda olduğu iki ilginç tekniğe daha bakıyoruz. Ama önce en basit sorunların nasıl çözüldüğünü hatırlayalım:

loga f(x) = b

Bu girdide a ve b sayılardır ve f(x) fonksiyonunda x değişkeni mevcut olmalıdır ve yalnızca orada, yani x yalnızca argümanda bulunmalıdır. Bu tür logaritmik denklemleri kanonik formu kullanarak dönüştüreceğiz. Bunu yapmak için şunu unutmayın

b = log a a b

Üstelik a b tam olarak bir argümandır. Bu ifadeyi şu şekilde yeniden yazalım:

log a f (x) = log a a b

Bizim de ulaşmaya çalıştığımız şey tam olarak budur, yani a'yı hem sol hem de sağ temel alan bir logaritma vardır. Bu durumda mecazi anlamda log işaretlerinin üzerini çizebiliriz ve matematiksel açıdan argümanları basitçe eşitlediğimizi söyleyebiliriz:

f(x) = a b

Sonuç olarak çözülmesi çok daha kolay olacak yeni bir ifade elde edeceğiz. Bu kuralı bugünkü sorunlarımıza uygulayalım.

Yani ilk tasarım:

Öncelikle sağda paydası log olan bir kesir olduğunu belirteyim. Bunun gibi bir ifade gördüğünüzde logaritmanın harika bir özelliğini hatırlamak iyi bir fikirdir:

Rusçaya çevrildiğinde bu, herhangi bir logaritmanın herhangi bir c tabanına sahip iki logaritmanın bölümü olarak temsil edilebileceği anlamına gelir. tabii ki 0< с ≠ 1.

Yani: bu formülde c değişkeninin değişkene eşit olduğu harika bir özel durum vardır. B. Bu durumda şöyle bir yapı elde ederiz:

Denklemimizde sağdaki işarette gördüğümüz yapı tam olarak budur. Bu yapıyı log a b ile değiştirelim, şunu elde ederiz:

Başka bir deyişle, orijinal göreve kıyasla argümanı ve logaritmanın tabanını değiştirdik. Bunun yerine kesri tersine çevirmek zorunda kaldık.

Aşağıdaki kurala göre herhangi bir derecenin tabandan türetilebileceğini hatırlıyoruz:

Başka bir deyişle bazın kuvveti olan k katsayısı ters kesir olarak ifade edilir. Bunu ters kesir olarak gösterelim:

Kesirli faktör önde bırakılamaz çünkü bu durumda bu gösterimi kanonik formda gösteremeyeceğiz (sonuçta kanonik formda ikinci logaritmadan önce ek bir faktör yoktur). Bu nedenle argümana 1/4 kesirini kuvvet olarak ekleyelim:

Şimdi tabanları aynı olan (ve tabanlarımız gerçekten aynı olan) argümanları eşitliyoruz ve şunu yazıyoruz:

x + 5 = 1

x = −4

İşte bu. İlk logaritmik denklemin cevabını bulduk. Lütfen unutmayın: orijinal problemde, x değişkeni yalnızca bir günlükte görünür ve argümanında görünür. Bu nedenle tanım kümesini kontrol etmeye gerek yoktur ve x = −4 sayımız aslında cevaptır.

Şimdi ikinci ifadeye geçelim:

log 56 = log 2 log 2 7 − 3log (x + 4)

Burada olağan logaritmalara ek olarak log f(x) ile çalışmamız gerekecek. Böyle bir denklem nasıl çözülür? Hazırlıksız bir öğrenciye bu zor bir görev gibi görünebilir, ancak aslında her şey basit bir şekilde çözülebilir.

lg 2 log 2 7 terimine yakından bakın. Bu konuda ne söyleyebiliriz? Log ve lg'nin temelleri ve argümanları aynıdır ve bu bazı fikirler vermelidir. Logaritmanın işaretinin altındaki kuvvetlerin nasıl çıkarıldığını bir kez daha hatırlayalım:

log a b n = nlog a b

Başka bir deyişle, argümanda b'nin kuvveti olan şey log'un önünde bir faktör haline gelir. Bu formülü lg 2 log 2 7 ifadesine uygulayalım. lg 2'den korkmayın - bu en yaygın ifadedir. Aşağıdaki şekilde yeniden yazabilirsiniz:

Başka herhangi bir logaritma için geçerli olan tüm kurallar onun için de geçerlidir. Özellikle öndeki faktör argümanın derecesine eklenebilir. Bunu yazalım:

Çoğu zaman öğrenciler bu eylemi doğrudan görmezler çünkü bir günlüğe diğerinin işareti altında girmek iyi değildir. Aslında bunda suç teşkil edecek bir durum yok. Üstelik önemli bir kuralı hatırlarsanız hesaplaması kolay bir formül elde ederiz:

Bu formül hem tanım olarak hem de onun özelliklerinden biri olarak düşünülebilir. Her durumda, eğer logaritmik bir denklemi dönüştürüyorsanız, herhangi bir sayının log gösterimini bildiğiniz gibi bu formülü de bilmeniz gerekir.

Görevimize dönelim. Eşittir işaretinin sağındaki ilk terimin lg 7'ye eşit olacağı gerçeğini dikkate alarak yeniden yazıyoruz. Elimizde:

lg 56 = lg 7 − 3lg (x + 4)

LG 7'yi sola hareket ettirelim, şunu elde ederiz:

lg 56 − log 7 = −3lg (x + 4)

Tabanları aynı olduğundan soldaki ifadeleri çıkarıyoruz:

lg (56/7) = −3lg (x + 4)

Şimdi elde ettiğimiz denkleme daha yakından bakalım. Pratik olarak kanonik formdur, ancak sağda −3 çarpanı vardır. Bunu sağ lg argümanına ekleyelim:

log 8 = log (x + 4) −3

Önümüzde logaritmik denklemin kanonik formu var, bu yüzden lg işaretlerinin üstünü çiziyoruz ve argümanları eşitliyoruz:

(x + 4) −3 = 8

x + 4 = 0,5

İşte bu! İkinci logaritmik denklemi çözdük. Bu durumda hiçbir ek kontrole gerek yoktur çünkü orijinal problemde x yalnızca bir bağımsız değişkende mevcuttu.

Bu dersin önemli noktalarını tekrar sıralayayım.

Bu sayfadaki logaritmik denklemlerin çözümüne ayrılmış tüm derslerde öğretilen ana formül kanonik formdur. Ve çoğu okul ders kitabının size bu tür sorunları farklı şekilde çözmeyi öğrettiği gerçeğinden korkmayın. Bu araç çok etkili bir şekilde çalışır ve dersimizin başında incelediğimiz en basit sorunlardan çok daha geniş bir sorun sınıfını çözmenize olanak tanır.

Ayrıca logaritmik denklemlerin çözümünde temel özelliklerin bilinmesi yararlı olacaktır. Yani:

  1. Tek tabana geçme formülü ve logu ters çevirdiğimizdeki özel durum (bu ilk problemde bizim için çok yararlıydı);
  2. Logaritma işaretinden kuvvetlerin eklenmesi ve çıkarılması için formül. Burada birçok öğrenci takılıp kalıyor ve alınan ve tanıtılan derecenin kendisinin log f (x) içerebileceğini göremiyor. Bunda yanlış bir şey yok. Bir kütüğü diğerinin işaretine göre tanıtabiliriz ve aynı zamanda ikinci durumda gözlemlediğimiz gibi sorunun çözümünü önemli ölçüde basitleştirebiliriz.

Sonuç olarak, bu durumların her birinde tanım alanını kontrol etmenin gerekli olmadığını eklemek isterim, çünkü x değişkeni her yerde log'un yalnızca bir işaretinde mevcuttur ve aynı zamanda onun argümanındadır. Sonuç olarak kapsamın tüm gereklilikleri otomatik olarak yerine getirilir.

Değişken tabanla ilgili sorunlar

Bugün birçok öğrenci için tamamen çözülemez olmasa da standart dışı görünen logaritmik denklemlere bakacağız. Rakamlara değil, değişkenlere ve hatta fonksiyonlara dayalı ifadelerden bahsediyoruz. Bu tür yapıları standart tekniğimizi, yani kanonik formu kullanarak çözeceğiz.

Öncelikle sıradan sayılara dayanarak en basit problemlerin nasıl çözüldüğünü hatırlayalım. Yani en basit yapıya denir

loga f(x) = b

Bu tür problemleri çözmek için aşağıdaki formülü kullanabiliriz:

b = log a a b

Orijinal ifademizi yeniden yazarsak şunu elde ederiz:

log a f (x) = log a a b

Sonra argümanları eşitliyoruz, yani şunu yazıyoruz:

f(x) = a b

Böylece log işaretinden kurtulup alışılagelmiş sorunu çözmüş oluyoruz. Bu durumda çözümden elde edilen kökler orijinal logaritmik denklemin kökleri olacaktır. Ek olarak, hem sol hem de sağın aynı logaritmada ve aynı tabanda olduğu bir kayda tam olarak kanonik form adı verilir. Öyle bir rekora varıyoruz ki, bugünün tasarımlarını azaltmaya çalışacağız. Öyleyse gidelim.

İlk görev:

log x - 2 (2x 2 - 13x + 18) = 1

1'i log x − 2 (x − 2) 1 ile değiştirin. Argümanda gözlemlediğimiz derece aslında eşittir işaretinin sağında bulunan b sayısıdır. Böylece ifademizi yeniden yazalım. Şunu elde ederiz:

log x − 2 (2x 2 − 13x + 18) = log x − 2 (x − 2)

Ne görüyoruz? Önümüzde logaritmik denklemin kanonik formu var, bu yüzden argümanları güvenli bir şekilde eşitleyebiliriz. Şunu elde ederiz:

2x 2 − 13x + 18 = x − 2

Ancak çözüm burada bitmiyor çünkü bu denklem orijinaline eşdeğer değil. Sonuçta ortaya çıkan yapı, sayı doğrusunda tanımlanan fonksiyonlardan oluşur ve orijinal logaritmalarımız her zaman ve her yerde tanımlanmaz.

Bu nedenle tanım alanını ayrıca yazmamız gerekir. Saçmalamayalım ve önce tüm gereksinimleri yazalım:

İlk olarak, logaritmaların her birinin argümanı 0'dan büyük olmalıdır:

2x 2 − 13x + 18 > 0

x - 2 > 0

İkincisi, tabanın yalnızca 0'dan büyük olması değil aynı zamanda 1'den farklı olması gerekir:

x - 2 ≠ 1

Sonuç olarak, sistemi elde ediyoruz:

Ancak paniğe kapılmayın: logaritmik denklemleri işlerken böyle bir sistem önemli ölçüde basitleştirilebilir.

Kendiniz karar verin: Bir yandan ikinci dereceden fonksiyonun sıfırdan büyük olması gerekiyor, diğer yandan bu ikinci dereceden fonksiyon belirli bir doğrusal ifadeye eşitleniyor ve bunun da sıfırdan büyük olması gerekiyor.

Bu durumda, x − 2 > 0 olmasını istersek, 2x 2 − 13x + 18 > 0 gereksinimi otomatik olarak karşılanacaktır. Dolayısıyla ikinci dereceden fonksiyonu içeren eşitsizliğin üzerini güvenle çizebiliriz. Böylece sistemimizde yer alan ifade sayısı üçe düşecektir.

Elbette, aynı başarı ile doğrusal eşitsizliğin üzerini çizebiliriz, yani x − 2 > 0'ın üzerini çizebilir ve 2x 2 − 13x + 18 > 0 olmasını isteyebiliriz. Ancak en basit doğrusal eşitsizliği çözmenin çok daha hızlı olduğunu kabul edeceksiniz. ve ikinci dereceden daha basit, hatta tüm bu sistemin çözülmesinin bir sonucu olarak aynı kökleri elde etmemiz koşuluyla bile.

Genel olarak mümkün olduğunca hesaplamaları optimize etmeye çalışın. Logaritmik denklemler söz konusu olduğunda en zor eşitsizliklerin üzerini çizin.

Sistemimizi yeniden yazalım:

Burada üç ifadeden oluşan bir sistem var, bunlardan ikisini daha önce ele almıştık. İkinci dereceden denklemi ayrı ayrı yazıp çözelim:

2x 2 − 14x + 20 = 0

x 2 − 7x + 10 = 0

Önümüzde indirgenmiş ikinci dereceden bir üç terimli var ve bu nedenle Vieta formüllerini kullanabiliriz. Şunu elde ederiz:

(x − 5)(x − 2) = 0

x 1 = 5

x 2 = 2

Şimdi sistemimize dönüyoruz ve x = 2'nin bize uymadığını görüyoruz çünkü x'in kesinlikle 2'den büyük olması gerekiyor.

Ancak x = 5 bize çok yakışıyor: 5 sayısı 2'den büyüktür ve aynı zamanda 5, 3'e eşit değildir. Dolayısıyla bu sistemin tek çözümü x = 5 olacaktır.

İşte bu, ODZ dikkate alınarak sorun çözüldü. İkinci denkleme geçelim. Burada bizi daha ilginç ve bilgilendirici hesaplamalar bekliyor:

İlk adım: Geçen seferki gibi, tüm bu konuyu kanonik forma getiriyoruz. Bunun için 9 sayısını şu şekilde yazabiliriz:

Kök temele dokunulmadan bırakılabilir, ancak argümanı dönüştürmek daha iyidir. Rasyonel bir üsle kökten kuvvete doğru ilerleyelim. Hadi yazalım:

Büyük logaritmik denklemimizin tamamını yeniden yazmama izin verin, ancak hemen argümanları eşitleyelim:

x 3 + 10x 2 + 31x + 30 = x 3 + 9x 2 + 27x + 27

x 2 + 4x + 3 = 0

Önümüzde yeni indirgenmiş ikinci dereceden bir trinomial var, Vieta formüllerini kullanıp yazalım:

(x + 3)(x + 1) = 0

x 1 = −3

x 2 = −1

Yani kökleri bulduk ama kimse bize bunların orijinal logaritmik denkleme uyacağını garanti etmedi. Sonuçta, log işaretleri ek kısıtlamalar getirmektedir (burada sistemi yazmamız gerekirdi, ancak tüm yapının hantal doğası nedeniyle tanım alanını ayrı olarak hesaplamaya karar verdim).

Her şeyden önce, argümanların 0'dan büyük olması gerektiğini unutmayın; yani:

Bunlar tanımın kapsamının gerektirdiği gerekliliklerdir.

Hemen belirtelim ki sistemin ilk iki ifadesini birbirine eşitlediğimiz için herhangi birinin üzerini çizebiliriz. İlkinin üzerini çizelim çünkü ikincisinden daha tehditkar görünüyor.

Ek olarak, ikinci ve üçüncü eşitsizliklerin çözümünün aynı kümeler olacağını unutmayın (eğer bu sayının kendisi sıfırdan büyükse, bir sayının küpü sıfırdan büyüktür; benzer şekilde, üçüncü derecenin kökü ile - bu eşitsizlikler) tamamen benzer olduğundan üstünü çizebiliriz).

Ancak üçüncü eşitsizlikte bu işe yaramayacaktır. Her iki parçayı da küp haline getirerek soldaki kök işaretinden kurtulalım. Şunu elde ederiz:

Böylece aşağıdaki gereksinimleri alıyoruz:

− 2 ≠ x > −3

Köklerimizden hangisi: x 1 = −3 veya x 2 = −1 bu gereksinimleri karşılıyor? Açıkçası, yalnızca x = −1, çünkü x = −3 ilk eşitsizliği sağlamaz (eşitsizliğimiz katı olduğundan). Yani problemimize dönersek bir kök elde ederiz: x = −1. İşte bu, sorun çözüldü.

Bir kez daha, bu görevin kilit noktaları:

  1. Kanonik formu kullanarak logaritmik denklemleri uygulamaktan ve çözmekten çekinmeyin. Böyle bir gösterim yapan öğrenciler, doğrudan orijinal problemden log a f(x) = b gibi bir yapıya geçmek yerine, hesaplamaların ara adımlarını atlayarak bir yere acele eden öğrencilere göre çok daha az hata yaparlar;
  2. Logaritmada değişken bir taban ortaya çıktığı anda problem en basit olmaktan çıkar. Bu nedenle, çözerken tanım alanını dikkate almak gerekir: argümanlar sıfırdan büyük olmalı ve tabanlar yalnızca 0'dan büyük olmamalı, aynı zamanda 1'e eşit olmamalıdır.

Nihai gereksinimler, nihai cevaplara farklı şekillerde uygulanabilir. Örneğin tanım alanına ait tüm gereksinimleri içeren bir sistemin tamamını çözebilirsiniz. Öte yandan, önce problemin kendisini çözebilir, sonra tanım alanını hatırlayabilir, bunu bir sistem şeklinde ayrı ayrı çözebilir ve elde edilen köklere uygulayabilirsiniz.

Belirli bir logaritmik denklemi çözerken hangi yöntemi seçeceğinize karar vermek size kalmıştır. Her durumda cevap aynı olacaktır.