İkinci dereceden denklem nedir? İkinci dereceden denklemler

İkinci dereceden denklemler, ikinci kuvvete yükseltilmiş bir bilinmeyenin varlığında doğrusal denklemlerden farklılık gösterir. Klasik (kanonik) formda a, b faktörleri ve serbest c terimi sıfıra eşit değildir.

İkinci dereceden denklem, sol tarafının sıfır ve sağ tarafının ikinci dereceden bir üç terimli form olduğu bir denklemdir:

Bir üç terimliyi çözmek veya köklerini bulmak, eşitliğin gerçekleştiği x değerlerini bulmak anlamına gelir. Böyle bir denklemin köklerinin x değişkeninin değerleri olduğu anlaşılmaktadır.

Diskriminant formülünü kullanarak kökleri bulma

Bir örneğin bir veya iki kökü olabilir veya hiç kökü olmayabilir. Çözüm sayısını belirlemek için oldukça basit ve anlaşılır bir algoritma vardır. Bunu yapmak için, bir ayırıcı bulmak yeterlidir - kökleri ararken kullanılan özel bir hesaplanmış değer. Hesaplamaların formülü aşağıdaki gibidir:

Elde edilen sonuçlara bağlı olarak aşağıdaki sonuçlar çıkarılabilir:

  • D > 0 ise iki kök vardır;
  • D = 0 ise bir çözüm vardır;
  • D ise kök yoktur< 0.

D ≥ 0 ise hesaplamalara aşağıdaki formülü kullanarak devam etmeniz gerekir:

x1'in değeri, ve x2 -'ye eşit olacaktır. D = 0 ise “±” işareti anlamını kaybeder çünkü √0 = 0. Bu durumda tek kök eşittir.

İkinci dereceden denklem çözme örnekleri

Bir polinomu çözme algoritması çok basittir:

  1. İfadeyi klasik forma getirin.
  2. İkinci dereceden bir denklemin (ayırt edici formül) köklerinin olup olmadığını belirleyin.
  3. D ≥ 0 ise bilinen yöntemlerden herhangi birini kullanarak x değişkeninin değerlerini bulun.

İkinci dereceden bir denklemin nasıl çözüleceğine dair net bir örnek verelim.

Sorun 1. 6x + 8 – 2×2 = 0 denkleminin köklerini bulun ve çözüm alanını grafiksel olarak belirtin.

Öncelikle eşitliği ax2+bx+c=0 kanonik formuna getirmek gerekir. Bunu yapmak için polinomun terimlerini yeniden düzenliyoruz.

Daha sonra x2'nin önündeki katsayıyı ortadan kaldırarak ifadeyi basitleştiriyoruz. Sol ve sağ tarafları (-1)⁄2 ile çarpın, sonuç:

İkinci dereceden bir denklemin köklerini bir diskriminant aracılığıyla bulma formüllerinin avantajları, onların yardımıyla ikinci derecenin herhangi bir trinomialini çözebilmenizdir.

Yani verilen polinomda a=1, b=-3 ve c=-4. Belirli bir örnek için diskriminant değerini hesaplayalım.

Bu, denklemin iki kökü olduğu anlamına gelir. Örneğin çözüm alanını grafiksel olarak bulmak için fonksiyonu şuna eşit olan bir parabol oluşturmanız gerekir: .

İfade grafikleri şöyle görünecektir:

Söz konusu örnekte D>0 dolayısıyla iki kök vardır.

İpucu 1: a faktörü negatif bir sayı ise örneğin her iki tarafını da (-1) ile çarpmanız gerekir.

İpucu 2: Örnekte kesirler varsa ifadenin sol ve sağ taraflarını karşılıklarıyla çarparak onlardan kurtulmaya çalışın.

İpucu 3: Denklemi her zaman kanonik forma getirmelisiniz, bu katsayılardaki karışıklık olasılığını ortadan kaldırmaya yardımcı olacaktır.

Vieta'nın teoremi

Hesaplamaları önemli ölçüde azaltabilecek yöntemler vardır. Bunlar Vieta teoremini içerir. Bu yöntem tüm denklem türlerine uygulanamaz, ancak yalnızca x2 değişkeninin çarpanının bire eşit olması, yani a = 1 olması durumunda uygulanabilir.

Bu ifadeye belirli örnekler kullanarak bakalım:

  1. 5×2 – 2x + 9 = 0 – a = 5 olduğundan bu durumda teoremin uygulanması uygun değildir;
  2. –x2 + 11x – 8 = 0 − a = -1, bu da denklemin Vieta yöntemini kullanarak ancak klasik forma getirildikten sonra çözülmesi, yani her iki tarafın da -1 ile çarpılması anlamına gelir;
  3. x2 + 4x – 5 = 0 – bu görev, çözüm yöntemini analiz etmek için idealdir.

Bir ifadenin köklerini hızlı bir şekilde bulmak için aşağıdaki doğrusal denklem sisteminin geçerli olduğu bir x değeri çiftinin seçilmesi gerekir.

İkinci dereceden denklem, a*x^2 +b*x+c=0 biçiminde bir denklemdir; burada a,b,c bazı keyfi gerçek sayılardır ve x bir değişkendir. Üstelik a=0 sayısı.

a,b,c sayılarına katsayılar denir. A sayısına baş katsayı, b sayısına x'in katsayısı ve c sayısına da serbest terim denir.

İkinci Dereceden Denklemleri Çözme

İkinci dereceden bir denklemi çözmek, onun tüm köklerini bulmak veya ikinci dereceden bir denklemin kökleri olmadığı gerçeğini ortaya koymak anlamına gelir. İkinci dereceden bir denklemin kökü a*x^2 +b*x+c=0 ikinci dereceden trinomial a*x^2 +b*x+c'nin sıfırlanacağı şekilde x değişkeninin herhangi bir değeridir. Bazen x'in bu değerine kare trinomiyalin kökü denir.

İkinci dereceden denklemleri çözmenin birkaç yolu vardır. Bunlardan birini düşünün - en evrensel olanı. Herhangi bir ikinci dereceden denklemi çözmek için kullanılabilir.

İkinci dereceden denklemleri çözmek için formüller

İkinci dereceden bir denklemin köklerinin formülü a*x^2 +b*x+c=0'dır.

x=(-b±√D)/(2*a), burada D =b^2-4*a*c.

Bu formül, a*x^2 +b*x+c=0 denkleminin binomun karesi kullanılarak genel formda çözülmesiyle elde edilir.

İkinci dereceden bir denklemin kökleri formülünde, D (b^2-4*a*c) ifadesine ikinci dereceden a*x^2 +b*x+c=0 denkleminin diskriminantı denir. Bu isim Latince'den geliyor ve "ayrımcı" olarak çevriliyor. Diskriminantın değerine bağlı olarak, ikinci dereceden denklemin iki veya bir kökü olacak veya hiç kökü olmayacaktır.

Diskriminant sıfırdan büyükse, o zaman ikinci dereceden denklemin iki kökü vardır. (x=(-b±√D)/(2*a))

Diskriminant sıfır ise o zaman ikinci dereceden denklemin bir kökü vardır. (x=(-b/(2*a))

Diskriminant negatif ise o zaman ikinci dereceden denklemin kökleri yoktur.

İkinci dereceden bir denklemi çözmek için genel algoritma

Yukarıdakilere dayanarak, ikinci dereceden a*x^2 +b*x+c=0 denklemini çözmek için aşağıdaki formülü kullanarak genel bir algoritma formüle ediyoruz:

1. D =b^2-4*a*c formülünü kullanarak diskriminantın değerini bulun.

2. Diskriminantın değerine bağlı olarak aşağıdaki formülleri kullanarak kökleri hesaplayın:

D<0, корней нет.

D=0, x=(-b/(2*a)

D>0, x=(-b+√D)/(2*a), x=(-b-√D)/(2*a)

Bu algoritma evrenseldir ve herhangi bir ikinci dereceden denklemi çözmek için uygundur. Tam ve eksik, verilmiş ve verilmemiş.

Modern toplumda, kare değişkeni içeren denklemlerle işlem yapabilme yeteneği birçok faaliyet alanında yararlı olabilir ve bilimsel ve teknik gelişmelerde pratikte yaygın olarak kullanılmaktadır. Bunun kanıtı deniz ve nehir gemilerinin, uçakların ve roketlerin tasarımında bulunabilir. Bu tür hesaplamalar kullanılarak, uzay nesneleri de dahil olmak üzere çok çeşitli cisimlerin hareket yörüngeleri belirlenir. İkinci dereceden denklemlerin çözümüne ilişkin örnekler yalnızca ekonomik tahminlerde, binaların tasarımında ve yapımında değil, aynı zamanda en sıradan günlük koşullarda da kullanılmaktadır. Yürüyüş gezilerinde, spor etkinliklerinde, mağazalarda alışveriş yaparken ve diğer çok yaygın durumlarda bunlara ihtiyaç duyulabilir.

İfadeyi bileşen faktörlerine ayıralım

Bir denklemin derecesi, ifadenin içerdiği değişkenin derecesinin maksimum değeri ile belirlenir. 2'ye eşitse, böyle bir denklem ikinci dereceden olarak adlandırılır.

Formül diliyle konuşursak, belirtilen ifadeler, nasıl görünürse görünsün, ifadenin sol tarafı üç terimden oluştuğunda her zaman forma getirilebilir. Bunlar arasında: ax 2 (yani, katsayısı ile karesi olan bir değişken), bx (katsayısıyla karesi olmayan bir bilinmeyen) ve c (serbest bir bileşen, yani sıradan bir sayı). Sağ taraftaki tüm bunlar 0'a eşittir. Böyle bir polinomun, ax 2 hariç kendisini oluşturan terimlerden birinin eksik olması durumunda, buna tamamlanmamış ikinci dereceden denklem denir. Bu tür problemlerin çözümüne yönelik örneklerde öncelikle bulunması kolay olan değişkenlerin değerleri dikkate alınmalıdır.

İfade, sağ taraftaki ifadenin iki terimi, daha doğrusu ax 2 ve bx olacak şekilde görünüyorsa, x'i bulmanın en kolay yolu, değişkeni parantezlerin dışına yerleştirmektir. Şimdi denklemimiz şöyle görünecek: x(ax+b). Daha sonra, ya x=0 olduğu ya da problemin şu ifadeden bir değişken bulmakta olduğu açıkça ortaya çıkıyor: ax+b=0. Bu, çarpmanın özelliklerinden biri tarafından belirlenir. Kural, iki faktörün çarpımının yalnızca biri sıfır olduğunda 0 ile sonuçlanacağını belirtir.

Örnek

x=0 veya 8x - 3 = 0

Sonuç olarak denklemin iki kökünü elde ederiz: 0 ve 0,375.

Bu tür denklemler, koordinatların orijini olarak alınan belirli bir noktadan itibaren hareket etmeye başlayan yerçekiminin etkisi altındaki cisimlerin hareketini tanımlayabilir. Burada matematiksel gösterim şu biçimi alır: y = v 0 t + gt 2/2. Gerekli değerleri yerine koyarak, sağ tarafı 0'a eşitleyerek ve olası bilinmeyenleri bularak, cismin yükseldiği andan düştüğü ana kadar geçen süreyi ve daha birçok niceliği bulabilirsiniz. Ama bunu daha sonra konuşacağız.

Bir İfadeyi Faktoringe Alma

Yukarıda açıklanan kural, bu sorunların daha karmaşık durumlarda çözülmesini mümkün kılar. Bu tür ikinci dereceden denklemleri çözme örneklerine bakalım.

X 2 - 33x + 200 = 0

Bu ikinci dereceden trinomial tamamlandı. Öncelikle ifadeyi dönüştürüp çarpanlarına ayıralım. Bunlardan iki tane var: (x-8) ve (x-25) = 0. Sonuç olarak elimizde 8 ve 25 olmak üzere iki kök var.

9. sınıfta ikinci dereceden denklemlerin çözümüne ilişkin örnekler, bu yöntemin yalnızca ikinci dereceden değil, üçüncü ve dördüncü dereceden ifadelerde de bir değişken bulmasına olanak tanır.

Örneğin: 2x 3 + 2x 2 - 18x - 18 = 0. Sağ tarafı değişkenli çarpanlara ayırdığımızda bunlardan üç tane vardır, yani (x+1), (x-3) ve (x+ 3).

Sonuç olarak bu denklemin üç kökü olduğu ortaya çıkıyor: -3; -1; 3.

Kare kök

Tamamlanmamış bir ikinci dereceden denklemin başka bir durumu, harf dilinde, sağ tarafı ax 2 ve c bileşenlerinden oluşturulacak şekilde temsil edilen bir ifadedir. Burada değişkenin değerini elde etmek için serbest terim sağ tarafa aktarılır ve ardından eşitliğin her iki tarafından karekök çıkarılır. Bu durumda genellikle denklemin iki kökü olduğuna dikkat edilmelidir. Tek istisna, değişkenin sıfıra eşit olduğu, hiç bir terim içermeyen eşitlikler ve sağ tarafın negatif olduğu ifadelerin çeşitleri olabilir. İkinci durumda, yukarıdaki eylemler köklerle gerçekleştirilemediğinden hiçbir çözüm yoktur. Bu tür ikinci dereceden denklemlerin çözüm örnekleri dikkate alınmalıdır.

Bu durumda denklemin kökleri -4 ve 4 sayıları olacaktır.

Arazi alanının hesaplanması

Bu tür hesaplamalara duyulan ihtiyaç eski zamanlarda ortaya çıktı, çünkü o uzak zamanlarda matematiğin gelişimi büyük ölçüde arazi parsellerinin alanlarını ve çevrelerini en yüksek doğrulukla belirleme ihtiyacıyla belirlendi.

Bu tür problemlere dayanarak ikinci dereceden denklemleri çözme örneklerini de düşünmeliyiz.

Diyelim ki uzunluğu genişliğinden 16 metre daha fazla olan dikdörtgen bir arsa var. Alanının 612 m 2 olduğunu biliyorsanız sitenin uzunluğunu, genişliğini ve çevresini bulmalısınız.

Başlamak için önce gerekli denklemi oluşturalım. Alanın genişliğini x ile gösterirsek uzunluğu (x+16) olur. Yazılmış olanlardan, alanın, problemimizin koşullarına göre 612 olan x(x+16) ifadesiyle belirlendiği anlaşılmaktadır. Bu, x(x+16) = 612 anlamına gelir.

İkinci dereceden denklemlerin tam çözümü, ki bu ifade tam da budur, aynı şekilde yapılamaz. Neden? Sol tarafta hala iki faktör bulunsa da çarpımları hiç 0'a eşit olmadığından burada farklı yöntemler kullanılıyor.

diskriminant

Öncelikle gerekli dönüşümleri yapacağız, daha sonra bu ifadenin görünümü şu şekilde görünecektir: x 2 + 16x - 612 = 0. Bu, ifadeyi daha önce belirtilen standarda karşılık gelen bir biçimde aldığımız anlamına gelir; a=1, b=16, c= -612.

Bu, ikinci dereceden denklemleri bir diskriminant kullanarak çözmenin bir örneği olabilir. Burada gerekli hesaplamalar şemaya göre yapılır: D = b 2 - 4ac. Bu yardımcı miktar sadece ikinci dereceden bir denklemde gerekli miktarları bulmayı mümkün kılmakla kalmaz, aynı zamanda olası seçeneklerin sayısını da belirler. D>0 ise iki tane vardır; D=0 için bir kök vardır. D durumunda<0, никаких шансов для решения у уравнения вообще не имеется.

Kökler ve formülleri hakkında

Bizim durumumuzda diskriminant şuna eşittir: 256 - 4(-612) = 2704. Bu, problemimizin bir cevabı olduğunu gösteriyor. Eğer k'yı biliyorsanız ikinci dereceden denklemlerin çözümüne aşağıdaki formül kullanılarak devam edilmelidir. Kökleri hesaplamanızı sağlar.

Bu, sunulan durumda şu anlama gelir: x 1 =18, x 2 =-34. Bu ikilemde ikinci seçenek çözüm olamaz çünkü arsanın boyutları negatif büyüklüklerle ölçülemez, yani x (yani arsanın genişliği) 18 m olur. Buradan uzunluğu hesaplıyoruz: 18. +16=34 ve çevre 2(34+ 18)=104(m2).

Örnekler ve görevler

İkinci dereceden denklemler çalışmamıza devam ediyoruz. Bunlardan birkaçının örnekleri ve ayrıntılı çözümleri aşağıda verilecektir.

1) 15x2 + 20x + 5 = 12x2 + 27x + 1

Her şeyi eşitliğin sol tarafına taşıyalım, bir dönüşüm yapalım yani standart denilen denklem türünü elde edip sıfıra eşitleyelim.

15x 2 + 20x + 5 - 12x 2 - 27x - 1 = 0

Benzerlerini toplayarak diskriminantı belirliyoruz: D = 49 - 48 = 1. Bu, denklemimizin iki kökü olacağı anlamına gelir. Bunları yukarıdaki formüle göre hesaplayalım, yani birincisi 4/3'e, ikincisi ise 1'e eşit olacaktır.

2) Şimdi farklı türden gizemleri çözelim.

Burada herhangi bir kök olup olmadığını bulalım x 2 - 4x + 5 = 1? Kapsamlı bir cevap elde etmek için polinomu karşılık gelen olağan forma indirgeyelim ve diskriminantı hesaplayalım. Yukarıdaki örnekte ikinci dereceden denklemi çözmeye gerek yoktur çünkü sorunun özü bu değildir. Bu durumda D = 16 - 20 = -4, yani gerçekte köklerin olmadığı anlamına gelir.

Vieta'nın teoremi

İkinci dereceden denklemleri yukarıdaki formülleri ve diskriminantı kullanarak, ikincisinin değerinden karekök alındığında çözmek uygundur. Ancak bu her zaman gerçekleşmez. Ancak bu durumda değişkenlerin değerlerini elde etmenin birçok yolu vardır. Örnek: İkinci dereceden denklemlerin Vieta teoremini kullanarak çözülmesi. Adını 16. yüzyıl Fransa'sında yaşayan ve matematik yeteneği ve saraydaki bağlantıları sayesinde parlak bir kariyere sahip olan birinden alıyor. Portresi makalede görülebilir.

Ünlü Fransız'ın fark ettiği desen şu şekildeydi. Denklemin köklerinin sayısal olarak toplamının -p=b/a olduğunu ve çarpımlarının q=c/a'ya karşılık geldiğini kanıtladı.

Şimdi belirli görevlere bakalım.

3x2 + 21x - 54 = 0

Basit olması açısından ifadeyi dönüştürelim:

x 2 + 7x - 18 = 0

Vieta teoremini kullanalım, bu bize şunu verecektir: Köklerin toplamı -7 ve çarpımı -18'dir. Buradan denklemin köklerinin -9 ve 2 sayıları olduğunu anlıyoruz. Kontrol ettikten sonra bu değişken değerlerinin gerçekten ifadeye uyduğundan emin olacağız.

Parabol grafiği ve denklemi

İkinci dereceden fonksiyon ve ikinci dereceden denklem kavramları yakından ilişkilidir. Bunun örnekleri daha önce verilmişti. Şimdi bazı matematik bilmecelerine biraz daha detaylı bakalım. Tanımlanan türdeki herhangi bir denklem görsel olarak temsil edilebilir. Grafik olarak çizilen böyle bir ilişkiye parabol denir. Çeşitli türleri aşağıdaki şekilde gösterilmektedir.

Her parabolün bir tepe noktası, yani dallarının çıktığı bir nokta vardır. Eğer a>0 ise, sonsuza kadar yükselirler ve<0, они рисуются вниз. Простейшим примером подобной зависимости является функция y = x 2 . В данном случае в уравнении x 2 =0 неизвестное может принимать только одно значение, то есть х=0, а значит существует только один корень. Это неудивительно, ведь здесь D=0, потому что a=1, b=0, c=0. Выходит формула корней (точнее одного корня) квадратного уравнения запишется так: x = -b/2a.

Fonksiyonların görsel temsilleri, ikinci dereceden denklemler de dahil olmak üzere tüm denklemlerin çözülmesine yardımcı olur. Bu yönteme grafik denir. X değişkeninin değeri ise grafik çizgisinin 0x ile kesiştiği noktalardaki apsis koordinatıdır. Tepe noktasının koordinatları az önce verilen x 0 = -b/2a formülü kullanılarak bulunabilir. Ve ortaya çıkan değeri fonksiyonun orijinal denkleminde değiştirerek, y 0'ı, yani ordinat eksenine ait olan parabolün tepe noktasının ikinci koordinatını bulabilirsiniz.

Bir parabolün dallarının apsis ekseni ile kesişimi

İkinci dereceden denklemleri çözmenin birçok örneği vardır, ancak aynı zamanda genel modeller de vardır. Şimdi onlara bakalım. a>0 için grafiğin 0x ekseni ile kesişmesinin ancak 0'ın negatif değer alması durumunda mümkün olacağı açıktır. Ve bir için<0 координата у 0 должна быть положительна. Для указанных вариантов D>0. Aksi takdirde D<0. А когда D=0, вершина параболы расположена непосредственно на оси 0х.

Parabolün grafiğinden kökleri de belirleyebilirsiniz. Bunun tersi de doğrudur. Yani ikinci dereceden bir fonksiyonun görsel temsilini elde etmek kolay değilse ifadenin sağ tarafını 0'a eşitleyebilir ve ortaya çıkan denklemi çözebilirsiniz. Ve 0x ekseniyle kesişme noktalarını bilerek bir grafik oluşturmak daha kolaydır.

Tarihten

Eskiden kare değişkeni içeren denklemleri kullanarak sadece matematiksel hesaplamalar yapmakla kalmıyor, geometrik şekillerin alanlarını da belirliyorlardı. Kadim insanlar, fizik ve astronomi alanlarındaki büyük keşiflerin yanı sıra astrolojik tahminler yapmak için de bu tür hesaplamalara ihtiyaç duyuyorlardı.

Modern bilim adamlarının öne sürdüğü gibi, Babil sakinleri ikinci dereceden denklemleri ilk çözenler arasındaydı. Bu, çağımızdan dört yüzyıl önce oldu. Elbette onların hesaplamaları şu anda kabul edilenlerden kökten farklıydı ve çok daha ilkel olduğu ortaya çıktı. Örneğin Mezopotamyalı matematikçilerin negatif sayıların varlığından haberleri yoktu. Ayrıca herhangi bir modern okul çocuğunun bildiği diğer inceliklere de aşina değillerdi.

Belki de Babil'deki bilim adamlarından bile önce, Hintli bilge Baudhayama ikinci dereceden denklemleri çözmeye başladı. Bu, İsa'nın döneminden yaklaşık sekiz yüzyıl önce gerçekleşti. Doğru, ikinci dereceden denklemler, verdiği çözme yöntemleri en basitleriydi. Onun yanı sıra Çinli matematikçiler de eski günlerde benzer sorularla ilgileniyorlardı. Avrupa'da ikinci dereceden denklemler ancak 13. yüzyılın başında çözülmeye başlandı, ancak daha sonra Newton, Descartes ve diğerleri gibi büyük bilim adamları tarafından çalışmalarında kullanıldılar.

Bu matematik programıyla şunları yapabilirsiniz: ikinci dereceden denklemi çöz.

Program sadece sorunun cevabını vermekle kalmıyor, aynı zamanda çözüm sürecini de iki şekilde gösteriyor:
- diskriminant kullanmak
- Vieta teoremini kullanarak (mümkünse).

Üstelik cevap yaklaşık olarak değil kesin olarak görüntülenir.
Örneğin, \(81x^2-16x-1=0\) denklemi için cevap aşağıdaki biçimde görüntülenir:

$$ x_1 = \frac(8+\sqrt(145))(81), \quad x_2 = \frac(8-\sqrt(145))(81) $$ ve şu şekilde değil: \(x_1 = 0,247; \quad x_2 = -0,05\)

Bu program, genel eğitim okullarındaki lise öğrencileri için test ve sınavlara hazırlanırken, Birleşik Devlet Sınavı öncesinde bilgileri test ederken ve ebeveynler için matematik ve cebirdeki birçok problemin çözümünü kontrol etmek için yararlı olabilir.

Ya da belki bir öğretmen tutmak ya da yeni ders kitapları satın almak sizin için çok mu pahalı? Yoksa matematik veya cebir ödevinizi mümkün olduğu kadar çabuk bitirmek mi istiyorsunuz? Bu durumda detaylı çözümlere sahip programlarımızı da kullanabilirsiniz.

Bu sayede hem kendi eğitiminizi hem de küçük kardeşlerinizin eğitimini yürütebilir, sorun çözme alanındaki eğitim düzeyi de artar.

İkinci dereceden polinom girme kurallarına aşina değilseniz, bunları öğrenmenizi öneririz.

İkinci dereceden polinom girme kuralları
Herhangi bir Latin harfi değişken görevi görebilir.

Örneğin: \(x, y, z, a, b, c, o, p, q\), vb.
Üstelik kesirli sayılar yalnızca ondalık sayı biçiminde değil aynı zamanda sıradan kesir biçiminde de girilebilir.

Ondalık kesirleri girme kuralları.
Ondalık kesirlerde kesirli kısım bütün kısımdan nokta veya virgülle ayrılabilir.
Örneğin ondalık sayıları şu şekilde girebilirsiniz: 2,5x - 3,5x^2

Sıradan kesirleri girme kuralları.
Yalnızca bir tam sayı bir kesrin pay, payda ve tam sayı kısmı olarak işlev görebilir.

Payda negatif olamaz.

Sayısal bir kesir girerken pay, paydadan bir bölme işaretiyle ayrılır: /
Parçanın tamamı kesirden ve işaretiyle ayrılır: &
Giriş: 3&1/3 - 5&6/5z +1/7z^2
Sonuç: \(3\frac(1)(3) - 5\frac(6)(5) z + \frac(1)(7)z^2\)

Bir ifade girerken parantez kullanabilirsiniz. Bu durumda, ikinci dereceden bir denklemi çözerken, tanıtılan ifade ilk önce basitleştirilir.
Örneğin: 1/2(y-1)(y+1)-(5y-10&1/2)


=0
Karar vermek

Bu sorunu çözmek için gerekli olan bazı scriptlerin yüklenmediği ve programın çalışmayabileceği tespit edildi.
AdBlock'u etkinleştirmiş olabilirsiniz.
Bu durumda devre dışı bırakın ve sayfayı yenileyin.

Tarayıcınızda JavaScript devre dışı bırakıldı.
Çözümün görünmesi için JavaScript'i etkinleştirmeniz gerekir.
Tarayıcınızda JavaScript'i nasıl etkinleştireceğinize ilişkin talimatları burada bulabilirsiniz.

Çünkü Sorunu çözmek isteyen çok kişi var, talebiniz sıraya alındı.
Birkaç saniye içinde çözüm aşağıda görünecektir.
Lütfen bekleyin saniye...


Eğer sen çözümde bir hata fark ettim, ardından Geri Bildirim Formu'na bu konuda yazabilirsiniz.
Unutma hangi görevi belirtin ne olduğuna sen karar ver alanlara girin.



Oyunlarımız, bulmacalarımız, emülatörlerimiz:

Küçük bir teori.

İkinci dereceden denklem ve kökleri. Tamamlanmamış ikinci dereceden denklemler

Denklemlerin her biri
\(-x^2+6x+1,4=0, \quad 8x^2-7x=0, \quad x^2-\frac(4)(9)=0 \)
benziyor
\(ax^2+bx+c=0, \)
burada x bir değişkendir, a, b ve c sayılardır.
Birinci denklemde a = -1, b = 6 ve c = 1.4, ikincisinde a = 8, b = -7 ve c = 0, üçüncüsünde ise a = 1, b = 0 ve c = 4/9 bulunmaktadır. Bu tür denklemlere denir ikinci dereceden denklemler.

Tanım.
İkinci dereceden denklem ax 2 +bx+c=0 biçiminde bir denklem denir; burada x bir değişkendir, a, b ve c bazı sayılardır ve \(a \neq 0 \).

a, b ve c sayıları ikinci dereceden denklemin katsayılarıdır. A sayısına birinci katsayı, b sayısına ikinci katsayı, c sayısına ise serbest terim denir.

ax 2 +bx+c=0 formundaki denklemlerin her birinde (burada \(a\neq 0\), x değişkeninin en büyük kuvveti bir karedir. Bu nedenle adı: ikinci dereceden denklem.

İkinci dereceden bir denklemin ikinci dereceden bir denklem olarak da adlandırıldığını unutmayın, çünkü sol tarafı ikinci dereceden bir polinomdur.

x 2 katsayısının 1'e eşit olduğu ikinci dereceden denklem denir verilen ikinci dereceden denklem. Örneğin, verilen ikinci dereceden denklemler denklemlerdir
\(x^2-11x+30=0, \quad x^2-6x=0, \quad x^2-8=0 \)

İkinci dereceden bir denklemde ax 2 +bx+c=0 b veya c katsayılarından en az biri sıfıra eşitse, böyle bir denklem denir tamamlanmamış ikinci dereceden denklem. Dolayısıyla -2x 2 +7=0, 3x 2 -10x=0, -4x 2 =0 denklemleri tamamlanmamış ikinci dereceden denklemlerdir. Bunlardan ilkinde b=0, ikincisinde c=0, üçüncüsünde b=0 ve c=0 olur.

Üç tür tamamlanmamış ikinci dereceden denklem vardır:
1) ax 2 +c=0, burada \(c \neq 0 \);
2) ax 2 +bx=0, burada \(b \neq 0 \);
3) balta 2 =0.

Bu türlerin her birinin denklemlerini çözmeyi düşünelim.

\(c \neq 0 \) için ax 2 +c=0 formundaki tamamlanmamış ikinci dereceden bir denklemi çözmek için, serbest terimini sağ tarafa taşıyın ve denklemin her iki tarafını da a'ya bölün:
\(x^2 = -\frac(c)(a) \Rightarrow x_(1,2) = \pm \sqrt( -\frac(c)(a)) \)

\(c \neq 0 \) olduğundan \(-\frac(c)(a) \neq 0 \)

Eğer \(-\frac(c)(a)>0\) ise denklemin iki kökü vardır.

Eğer \(-\frac(c)(a) ax 2 +bx=0 formundaki tamamlanmamış ikinci dereceden bir denklemi \(b \neq 0 \) ile çözmek için sol tarafını çarpanlara ayırın ve denklemi elde edin
\(x(ax+b)=0 \Rightarrow \left\( \begin(array)(l) x=0 \\ ax+b=0 \end(array) \right. \Rightarrow \left\( \begin (array)(l) x=0 \\ x=-\frac(b)(a) \end(array) \right.

Bu, \(b \neq 0 \) için ax 2 +bx=0 formundaki tamamlanmamış ikinci dereceden bir denklemin her zaman iki kökü olduğu anlamına gelir.

ax 2 =0 formundaki tamamlanmamış bir ikinci dereceden denklem, x 2 =0 denklemine eşdeğerdir ve bu nedenle tek bir kökü 0'dır.

İkinci dereceden bir denklemin kökleri için formül

Şimdi hem bilinmeyenlerin katsayıları hem de serbest terimin sıfırdan farklı olduğu ikinci dereceden denklemlerin nasıl çözüleceğine bakalım.

İkinci dereceden denklemi genel formda çözelim ve sonuç olarak köklerin formülünü elde edelim. Bu formül daha sonra herhangi bir ikinci dereceden denklemi çözmek için kullanılabilir.

İkinci dereceden denklemi çözün ax 2 +bx+c=0

Her iki tarafı a'ya bölerek eşdeğer indirgenmiş ikinci dereceden denklemi elde ederiz
\(x^2+\frac(b)(a)x +\frac(c)(a)=0 \)

Binomun karesini seçerek bu denklemi dönüştürelim:
\(x^2+2x \cdot \frac(b)(2a)+\left(\frac(b)(2a)\right)^2- \left(\frac(b)(2a)\right)^ 2 + \frac(c)(a) = 0 \Rightarrow \)

\(x^2+2x \cdot \frac(b)(2a)+\left(\frac(b)(2a)\right)^2 = \left(\frac(b)(2a)\right)^ 2 - \frac(c)(a) \Rightarrow \) \(\left(x+\frac(b)(2a)\right)^2 = \frac(b^2)(4a^2) - \frac( c)(a) \Rightarrow \left(x+\frac(b)(2a)\right)^2 = \frac(b^2-4ac)(4a^2) \Rightarrow \) \(x+\frac(b) )(2a) = \pm \sqrt( \frac(b^2-4ac)(4a^2) ) \Rightarrow x = -\frac(b)(2a) + \frac( \pm \sqrt(b^2) -4ac) )(2a) \Rightarrow \) \(x = \frac( -b \pm \sqrt(b^2-4ac) )(2a) \)

Radikal ifade denir ikinci dereceden bir denklemin diskriminantı ax 2 +bx+c=0 (Latince'de “ayırıcı” - ayrımcı) D harfiyle belirtilir, yani.
\(D = b^2-4ac\)

Şimdi diskriminant gösterimini kullanarak ikinci dereceden denklemin köklerinin formülünü yeniden yazıyoruz:
\(x_(1,2) = \frac( -b \pm \sqrt(D) )(2a) \), burada \(D= b^2-4ac \)

Şu açıktır:
1) D>0 ise ikinci dereceden denklemin iki kökü vardır.
2) Eğer D=0 ise ikinci dereceden denklemin bir kökü vardır \(x=-\frac(b)(2a)\).
3) Eğer D Dolayısıyla, diskriminantın değerine bağlı olarak, ikinci dereceden bir denklemin iki kökü olabilir (D > 0 için), bir kökü olabilir (D = 0 için) veya hiç kökü olmayabilir (D için) Bunu kullanarak ikinci dereceden bir denklemi çözerken formülü aşağıdaki şekilde yapmanız önerilir:
1) diskriminantı hesaplayın ve sıfırla karşılaştırın;
2) Diskriminant pozitif veya sıfıra eşitse kök formülü kullanın; diskriminant negatifse kök olmadığını yazın.

Vieta'nın teoremi

Verilen ikinci dereceden ax 2 -7x+10=0 denkleminin kökleri 2 ve 5'tir. Köklerin toplamı 7, çarpımı ise 10'dur. Köklerin toplamının tersi ile alınan ikinci katsayıya eşit olduğunu görüyoruz. işareti ve köklerin çarpımı serbest terime eşittir. Kökleri olan herhangi bir indirgenmiş ikinci dereceden denklem bu özelliğe sahiptir.

İndirgenmiş ikinci dereceden denklemin köklerinin toplamı, ters işaretli ikinci katsayıya, köklerin çarpımı ise serbest terime eşittir.

Onlar. Vieta teoremi, indirgenmiş ikinci dereceden denklem x 2 +px+q=0'ın kökleri x 1 ve x 2'nin şu özelliğe sahip olduğunu belirtir:
\(\left\( \begin(array)(l) x_1+x_2=-p \\ x_1 \cdot x_2=q \end(array) \right. \)

Kop'evsk kırsal ortaokulu

İkinci Dereceden Denklemleri Çözmenin 10 Yolu

Başkan: Patrikeeva Galina Anatolyevna,

matematik öğretmeni

köy Kopevo, 2007

1. İkinci dereceden denklemlerin gelişiminin tarihi

1.1 Antik Babil'de ikinci dereceden denklemler

1.2 Diophantus ikinci dereceden denklemleri nasıl oluşturup çözdü?

1.3 Hindistan'da ikinci dereceden denklemler

1.4 El-Khorezmi'nin ikinci dereceden denklemleri

1.5 Avrupa XIII - XVII yüzyıllarda ikinci dereceden denklemler

1.6 Vieta teoremi hakkında

2. İkinci dereceden denklemleri çözme yöntemleri

Çözüm

Edebiyat

1. İkinci dereceden denklemlerin gelişiminin tarihi

1.1 Antik Babil'de ikinci dereceden denklemler

Antik çağda bile sadece birinci değil, aynı zamanda ikinci dereceden denklemleri çözme ihtiyacı, arsa alanlarının bulunması ve askeri nitelikteki kazı çalışmaları ile ilgili sorunların çözülmesi ihtiyacından da kaynaklanmıştır. astronomi ve matematiğin gelişmesinde olduğu gibi. İkinci dereceden denklemler MÖ 2000 civarında çözülebildi. e. Babilliler.

Modern cebirsel gösterimi kullanarak, çivi yazılı metinlerinde eksik olanlara ek olarak, örneğin tam ikinci dereceden denklemlerin bulunduğunu söyleyebiliriz:

X 2 + X = ¾; X 2 - X = 14,5

Babil metinlerinde belirtilen bu denklemleri çözme kuralı esasen modern kuralla örtüşmektedir, ancak Babillilerin bu kurala nasıl ulaştığı bilinmemektedir. Şu ana kadar bulunan hemen hemen tüm çivi yazılı metinler, nasıl bulunduklarına dair hiçbir ipucu vermeden, yalnızca yemek tarifleri biçiminde ortaya konan çözümlerle ilgili sorunlar sunuyor.

Babil'de cebirin yüksek düzeyde gelişmesine rağmen çivi yazısı metinleri negatif sayı kavramından ve ikinci dereceden denklemleri çözmek için genel yöntemlerden yoksundur.

1.2 Diophantus ikinci dereceden denklemleri nasıl oluşturup çözdü.

Diophantus'un Aritmetiği cebirin sistematik bir sunumunu içermez, ancak açıklamalarla birlikte sunulan ve çeşitli derecelerde denklemler oluşturularak çözülen sistematik bir dizi problem içerir.

Denklemler oluştururken Diophantus, çözümü basitleştirmek için bilinmeyenleri ustaca seçer.

Örneğin burada görevlerinden biri var.

Sorun 11.“Toplamlarının 20 ve çarpımlarının 96 olduğunu bilerek iki sayı bulun”

Diophantus şu sonuca varıyor: Sorunun koşullarından gerekli sayıların eşit olmadığı anlaşılıyor, çünkü eşit olsalardı çarpımları 96'ya değil 100'e eşit olurdu. Dolayısıyla bunlardan biri birden fazla olacaktır. toplamlarının yarısı, yani . 10 + x, diğeri daha azdır, yani. 10'lar. Aralarındaki fark 2 kere .

Dolayısıyla denklem:

(10 + x)(10 - x) = 96

100 - x 2 = 96

x 2 - 4 = 0 (1)

Buradan x = 2. Gerekli sayılardan biri eşittir 12 , diğer 8 . Çözüm x = -2 Yunan matematiği yalnızca pozitif sayıları bildiğinden Diophantus için mevcut değildir.

Bu problemi gerekli sayılardan birini bilinmeyen olarak seçerek çözersek denklemin çözümüne ulaşmış oluruz.

y(20 - y) = 96,

y 2 - 20y + 96 = 0. (2)


Diophantus'un gerekli sayıların yarı farkını bilinmeyen olarak seçerek çözümü basitleştirdiği açıktır; sorunu tamamlanmamış ikinci dereceden bir denklemin çözümüne indirgemeyi başarır (1).

1.3 Hindistan'da İkinci Dereceden Denklemler

İkinci dereceden denklemlerle ilgili problemler, Hintli matematikçi ve gökbilimci Aryabhatta tarafından 499 yılında derlenen “Aryabhattiam” astronomi incelemesinde zaten bulunmaktadır. Başka bir Hintli bilim adamı Brahmagupta (7. yüzyıl), tek bir kanonik forma indirgenmiş ikinci dereceden denklemlerin çözümü için genel bir kuralın ana hatlarını çizdi:

ah 2 + B x = c, a > 0. (1)

Denklem (1)'de katsayılar hariç A, aynı zamanda negatif de olabilir. Brahmagupta'nın kuralı aslında bizimkiyle aynı.

Eski Hindistan'da zor sorunların çözümünde halka açık yarışmalar yaygındı. Eski Hint kitaplarından biri bu tür yarışmalar hakkında şunları söylüyor: "Güneşin parlaklığıyla yıldızları gölgede bırakması gibi, bilgili bir adam da halka açık toplantılarda cebirsel problemler önererek ve çözerek diğerinin ihtişamını gölgede bırakacaktır." Sorunlar genellikle şiirsel biçimde sunuldu.

Bu, 12. yüzyılın ünlü Hintli matematikçisinin problemlerinden biridir. Bhaskarlar.

Sorun 13.

"Bir grup hareketli maymun ve asmaların arasında on iki tane...

Yemek yiyen yetkililer eğlendi. Zıplamaya, asılmaya başladılar...

Meydanda onlar var, sekizinci bölüm. Orada kaç tane maymun vardı?

Açıklıkta eğleniyordum. Söyle bana, bu pakette mi?

Bhaskara'nın çözümü, ikinci dereceden denklemlerin köklerinin iki değerli olduğunu bildiğini göstermektedir (Şekil 3).

Problem 13'e karşılık gelen denklem:

( X /8) 2 + 12 = X

Bhaskara kisvesi altında yazıyor:

x 2 - 64x = -768

ve bu denklemin sol tarafını kareye tamamlamak için her iki tarafa da ekleriz 32 2 , ardından şunu alıyorum:

x 2 - 64x + 32 2 = -768 + 1024,

(x - 32) 2 = 256,

x - 32 = ± 16,

x 1 = 16, x 2 = 48.

1.4 El - Khorezmi'de ikinci dereceden denklemler

El-Khorezmi'nin cebirsel eserinde doğrusal ve ikinci dereceden denklemlerin bir sınıflandırması verilmektedir. Yazar 6 tür denklem sayıyor ve bunları şu şekilde ifade ediyor:

1) “Kareler köklere eşittir” yani. balta 2 + c = B X.

2) “Kareler sayılara eşittir”, yani. balta 2 = c.

3) “Kökler sayıya eşittir” yani. ah = s.

4) “Kareler ve sayılar köklere eşittir” yani. balta 2 + c = B X.

5) “Kareler ve kökler sayılara eşittir” yani. ah 2 + bx = s.

6) “Kökler ve sayılar karelere eşittir” yani. bx + c = eksen 2 .

Negatif sayıları kullanmaktan kaçınan el-Harezmi'ye göre, bu denklemlerin her birinin terimleri toplamadır, çıkarılamaz. Bu durumda pozitif çözümü olmayan denklemler elbette dikkate alınmaz. Yazar, bu denklemlerin çözümü için el-cebr ve el-mukabele tekniklerini kullanarak yöntemler ortaya koymaktadır. Onun kararları elbette bizimkilerle tamamen örtüşmüyor. Bunun tamamen retorik olduğundan bahsetmiyorum bile, örneğin birinci türden tamamlanmamış ikinci dereceden bir denklemi çözerken şunu belirtmek gerekir:

el-Khorezmi, 17. yüzyıldan önceki tüm matematikçiler gibi, sıfır çözümü hesaba katmıyor, çünkü muhtemelen belirli pratik problemlerde bunun bir önemi yok. İkinci dereceden denklemlerin tamamını çözerken, el-Khorezmi belirli sayısal örnekler ve ardından geometrik ispatlar kullanarak bunları çözmenin kurallarını ortaya koyuyor.

Sorun 14.“Kare ve 21 sayısı 10 köke eşittir. Kökü bulun" (x 2 + 21 = 10x denkleminin kökünü ifade eder).

Yazarın çözümü şuna benziyor: kök sayısını ikiye bölerseniz 5 elde edersiniz, 5'i kendisiyle çarpın, sonuçtan 21 çıkarın, geriye 4 kalır. 4'ten kökü alın, 2 elde edersiniz. 5'ten 2 çıkarın. 3 elde edersiniz, bu istenen kök olacaktır. Veya 2'yi 5'e ekleyin, bu da 7'yi verir, bu da bir köktür.

El-Harezmi'nin eseri, ikinci dereceden denklemlerin sınıflandırılmasını sistematik olarak ortaya koyan ve bunların çözümü için formüller veren, bize ulaşan ilk kitaptır.

1.5 Avrupa'da ikinci dereceden denklemler XIII - XVII bb

Avrupa'da ikinci dereceden denklemleri Harezmi'nin çizgisinde çözmenin formülleri ilk kez İtalyan matematikçi Leonardo Fibonacci'nin 1202'de yazdığı Abaküs Kitabında ortaya konuldu. Hem İslam ülkelerinden hem de antik Yunan'dan matematik etkisini yansıtan bu hacimli eser, sunumunun bütünlüğü ve netliği ile öne çıkıyor. Yazar bağımsız olarak problem çözme konusunda bazı yeni cebirsel örnekler geliştirdi ve Avrupa'da negatif sayıların tanıtılmasına yaklaşan ilk kişi oldu. Kitabı cebir bilgisinin sadece İtalya'da değil, Almanya, Fransa ve diğer Avrupa ülkelerinde de yayılmasına katkıda bulundu. Abaküs Kitabı'ndaki pek çok problem, 16. - 17. yüzyılların neredeyse tüm Avrupa ders kitaplarında kullanıldı. ve kısmen XVIII.

Tek bir kanonik forma indirgenmiş ikinci dereceden denklemleri çözmenin genel kuralı:

x 2 + bx = c,

katsayı işaretlerinin tüm olası kombinasyonları için B , İle Avrupa'da yalnızca 1544'te M. Stiefel tarafından formüle edildi.

İkinci dereceden bir denklemin çözümü için formülün genel formda türetilmesi Vieth'te mevcuttur, ancak Vieth yalnızca pozitif kökleri tanımıştır. İtalyan matematikçiler Tartaglia, Cardano, Bombelli 16. yüzyılın ilkleri arasındaydı. Olumlu olanların yanı sıra olumsuz kökler de dikkate alınır. Sadece 17. yüzyılda. Girard, Descartes, Newton ve diğer bilim adamlarının çalışmaları sayesinde ikinci dereceden denklemleri çözme yöntemi modern bir biçim alıyor.

1.6 Vieta teoremi hakkında

İkinci dereceden bir denklemin katsayıları ile kökleri arasındaki ilişkiyi ifade eden Vieta adını taşıyan teorem, ilk kez 1591 yılında kendisi tarafından şu şekilde formüle edilmiştir: “Eğer B + D, çarpılır A - A 2 , eşittir BD, O A eşittir İÇİNDE ve eşit D ».

Vieta'yı anlamak için şunu hatırlamalıyız A Herhangi bir sesli harf gibi, bilinmeyen anlamına geliyordu (bizim X), sesli harfler İÇİNDE, D- bilinmeyene ait katsayılar. Modern cebir dilinde yukarıdaki Vieta formülasyonu şu anlama gelir: eğer varsa

(bir + B )x - x 2 = ab ,

x 2 - (bir + B )x + a B = 0,

x 1 = bir, x 2 = B .

Denklemlerin kökleri ve katsayıları arasındaki ilişkiyi semboller kullanılarak yazılan genel formüllerle ifade eden Viète, denklem çözme yöntemlerinde tekdüzelik kurdu. Ancak Viet'in sembolizmi hala modern biçiminden uzaktır. Negatif sayıları tanımıyordu ve bu nedenle denklemleri çözerken yalnızca tüm köklerin pozitif olduğu durumları dikkate alıyordu.

2. İkinci dereceden denklemleri çözme yöntemleri

İkinci dereceden denklemler cebirin görkemli yapısının dayandığı temeldir. İkinci dereceden denklemler trigonometrik, üstel, logaritmik, irrasyonel ve aşkın denklemlerin ve eşitsizliklerin çözümünde yaygın olarak kullanılır. Okuldan (8. sınıftan) mezuniyete kadar ikinci dereceden denklemlerin nasıl çözüleceğini hepimiz biliyoruz.