Сколько сумма всех углов в треугольнике. Теорема о сумме углов треугольника

1) Сумма углов треугольника равна 180°.

Доказательство

Пусть ABC" - произвольный треугольник. Проведем через вершину B прямую, параллельную прямой AC (такая прямая называется прямой Евклида) . Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны прямой BC.Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD.Сумма всех трех углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Теорема доказана.
2) Внешним углом треугольника при данной вершине называется угол, смежный с углом треугольника при этой вершине.

Теорема: Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним

Доказательство. Пусть ABC – данный треугольник. По теореме о сумме углов в треугольнике
∠ ABС + ∠ BCA + ∠ CAB = 180 º.
Отсюда следует
∠ ABС + ∠ CAB = 180 º - ∠ BCA = ∠ BCD
Теорема доказана.

Из теоремы следует:
Внешний угол треугольника больше любого угла треугольника, не смежного с ним.
3)
Сумма углов треугольника = 180 градусов. Если один из углов прямой (90 градусов) на два остальных приходится тоже 90. значит, каждый из них - меньше 90 то есть они - острые. если один из углов - тупой, то на два остальных приходится менее 90 то есть они явно острые.
4)
тупоугольный - больше 90 градусов
остроугольный - меньше 90 градусов
5) а. Треугольник, у которого один из углов равен 90 градусов.
б. Катеты и гипотенуза
6)
6°. В каждом треугольнике против большей стороны лежит больший угол и обратно: против большего угла лежит большая сторона. Любой отрезок имеет одну и только одну середину.
7)
По теореме Пифагора: квадрат гипотенузы равен сумме квадратов катетов, значит гипотенуза больше каждого из катетов
8) --- тоже самое, что и 7
9)
сумма углов треугольника равно 180 градусов. а если бы аждая сторона треугольника была бы больше суммы двух других сторонон, то сумма углов была бы больше 180, что невозможно. следовательно - каждая сторона треугольника меньше суммы двух других сторон.
10)
Сумма углов любого треугольника равна 180 градусам.
Т. к. этот треугольник прямоугольный, то один из углов у него прямой, т. е. равен 90 градусам.
Следовательно, сумма двух других острых углов равна 180-90=90 градусов.
11)
1. рассмотрим прямоугольный треугольник ABC в которм угол А - прямой, угол В = 30 градусам а угол С = 60.Приложим к треугольнику АВС равный ему треугольник АВD. Получим треугольни BCD в котором угол B = углу D = 60 градусов, следовательно DC = BC. Но по построению АС 1/2 ВС, что и требовалось доказать.2. Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета равен 30 градусам.докажем это.рассмотрим прямоугольный треугольник АВC, у которого катет АС равен половине гипотенузы АС.Приложим к треугольнику АВС равный ему треугольник ABD. Получит равносторонний треугольник BCD. Углы равностороннего треугольника равны друг другу(т.к. против равных строн лежат равные углы), поэтому каждый из них = 60 градусам. Но угол DBC = 2 угла ABC, следовательно угол АВС = 30 градусов,что и требовалось доказать.

Вдогонку ко вчерашнему:

Играем с мозаикой под сказку по геометрии:

Жили-были треугольники. Такие похожие, что просто копия друг друга.
Стали они как-то рядышком на прямую линию. А так как были они все одного роста -
то и верхушки их были на одном уровне, под линеечку:

Треугольники любили кувыркаться и стоять на голове. Взобрались в верхний ряд и стали на уголок, как акробаты.
А мы уже знаем - когда они стоят верхушками ровно в линию,
то и подошвы у них тоже по линеечке - потому что если кто одного роста, то он и верх ногами одного роста!

Во всем они были одинаковые - и высота одинаковая, и подошвы один в один,
и горки по сторонам - одна круче, другая более пологая - по длине одинаковые
и наклон у них одинаковый. Ну просто близнецы! (только в разных одежках, у каждого свой кусочек пазла) .

- Где у треугольников одинаковые стороны? А где уголки одинаковые?

Постояли треугольники на голове, постояли, да и решили соскользнуть и улечься в нижнем ряду.
Заскользили и съехали как с горки; а горки-то у них одинаковые!
Вот и поместились аккурат между нижними треугольниками, без зазоров и никто никого не потеснил.

Огляделись треугольники и заметили интересную особенность.
Везде, где их углы вместе сошлись - непременно встретились все три угла:
самый большой - "угол-голова", самый острый угол и третий, средний по величине угол.
Они даже ленточки цветные повязали, что б сразу было заметно, где какой.

И получилось, что три угла треугольника, если их совместить -
составляют один большой угол, "угол нараспашку" - как обложка раскрытой книги,

______________________о ___________________

он так и называется: развернутый угол.

У любого треугольника - будто паспорт: три угла вместе равны развернутому углу.
Постучится к вам кто-нибудь: - тук-тук, я треугольник, пустите меня переночевать!
А вы ему - Предъяви-ка сумму углов в развернутом виде!
И сразу понятно - настоящий ли это треугольник или самозванец.
Не прошел проверку - Разворачивайся на сто восемьдесят градусов и ступай восвояси!

Когда говорят "повернуть на 180° - это значит развернуться задом наперед и
идти в обратном направлении.

То же самое в более привычных выражениях, без "жили были":

Совершим параллельный перенос треугольника АВС вдоль оси ОХ
на вектор АВ равный длине основания АВ.
Прямая, DF проходящая через вершины С и С 1 треугольников
параллельна оси ОХ, в силу того, что перпендикулярные оси ОХ
отрезки h и h 1 (высоты равных треугольников) равны.
Таким образом основание треугольника А 2 В 2 С 2 параллельно основанию АВ
и равно ему по длине (т.к. вершина С 1 смещена относительно С на величину АВ).
Треугольники А 2 В 2 С 2 и АВС равны по трем сторонам.
А стало быть углы ∠А 1 ∠В ∠С 2 , образующие развернутый угол, равны углам треугольника АВС.
=> Сумма углов треугольника равна 180°

С движениями - "трансляциями" так называемыми доказательство короче и наглядней,
на кусочках мозаики даже малышу может быть понятно.

Зато традиционное школьное:

опирающееся на равенство внутренних накрест-лежащих углов, отсекаемых на параллельных прямых

ценно тем, что дает представление о том - почему это так,
почему сумма углов треугольника равна развернутому углу?

Потому что иначе параллельные прямые не обладали бы привычными нашему миру свойствами.

Теоремы работают в обе стороны. Из аксиомы о параллельных прямых следует
равенство накрест лежащих и вертикальных углов, а из них - сумма углов треугольника.

Но верно и обратное: пока углы треугольника составляют 180° - существуют параллельные прямые
(такие, что через точку не лежащую на прямой можно провести единственную прямую || данной).
Если однажды в мире появится треугольник, у которого сумма углов не равна развернутому углу -
то параллельные перестанут быть параллельны, весь мир искривится и перекособочится.

Если полосы с орнаментом из треугольников расположить друг над другом -
можно покрыть все поле повторяющимся узором, будто пол плиткой:


можно обводить на такой сетке разные фигуры - шестиугольники, ромбы,
звездные многоугольники и получать самые разные паркеты


Замощение плоскости паркетами - не только занятная игра, но и актуальная математическая задача:

________________________________________ _______________________-------__________ ________________________________________ ______________
/\__||_/\__||_/\__||_/\__||_/\__|)0(|_/\__||_/\__||_/\__||_/\__||_/\=/\__||_/ \__||_/\__||_/\__||_/\__|)0(|_/\__||_/\__||_/\__||_/\__||_/\

Поскольку каждый четырехугольник - прямоугольник, квадрат, ромб и проч.,
может быть составлен из двух треугольников,
соответственно сумма углов четырехугольника: 180° + 180°= 360°

Одинаковые равнобедренные треугольники складываются в квадраты разными способами.
Маленький квадратик из 2-х частей. Средний из 4-х. И самый большой из 8-ми.
Сколько на чертеже фигур, состоящих из 6-ти треугольников?

Эта теорема сформулирована и в учебнике Атанасяна Л.С. , и в учебнике Погорелова А.В. . Доказательства этой теоремы в этих учебниках существенно не отличаются, а поэтому приведем ее доказательство, например, из учебника Погорелова А.В.

Теорема: Сумма углов треугольника равна 180°

Доказательство. Пусть АВС - данный треугольник. Проведем через вершину В прямую, параллельную прямой АС. Отметим на ней точку D так, чтобы точки А и D лежали по разные стороны от прямой ВС (рис.6).

Углы DВС и АСВ равны как внутренние накрест лежащие, образованные секущей ВС с параллельными прямыми АС и ВD. Поэтому сумма углов треугольника при вершинах В и С равна углу АВD. А сумма всех трех углов треугольника равна сумме углов АВD и ВАС. Так как эти углы внутренние односторонние для параллельных АС и ВD и секущей АВ, то их сумма равна 180°. Теорема доказана.

Идея этого доказательства состоит в проведение параллельной линии и обозначении равенства нужных углов. Реконструируем идею такого дополнительного построения, доказав эту теорему с использованием понятия о мысленном эксперименте. Доказательство теоремы с использованием мысленного эксперимента. Итак, предмет мысли нашего мысленного эксперимента - углы треугольника. Поместим его мысленно в такие условия, в которых его сущность может раскрыться с особой определенностью(1этап).

Такими условиями будут являться такое расположение углов треугольника, при котором все их три вершины будут совмещены в одной точке. Такое совмещение возможно, если допустить возможность «перемещения» углов, посредством движения сторон треугольника не меняя при этом угол наклона (рис.1). Такие перемещения по сути есть последующие мысленные трансформации (2 этап).

Производя обозначение углов и сторон треугольника (рис.2), углов получаемых при «перемещении», мы тем самым мысленно формируем ту среду, ту систему связей, в которую помещаем наш предмет мысли (3 этап).

Линия АВ «перемещаясь» по линии ВС и не меняя к ней угла наклона, переводит угол 1 в угол 5, а «перемещаясь» по линии АС, переводит угол 2 в угол 4. Поскольку при таком «перемещении» линия АВ не меняет угла наклона к линиям АС и ВС, то очевиден вывод: лучи а и а1 параллельны АВ и переходят друг в друга, а лучи в и в1 являются продолжением соответственно сторон ВС и АС. Так как угол 3 и угол между лучами в и в1 - вертикальные, то они равны. Сумма этих углов равна развернутому углу аа1 - а значит 180°.

ЗАКЛЮЧЕНИЕ

В дипломной работе проведены «сконструированные» доказательства некоторых школьных геометрических теорем, с использованием структуры мысленного эксперимента, что явилось подтверждением сформулированной гипотезы.

Излагаемые доказательства, опирались на такие наглядно-чувственные идеализации: «сжатие», «растягивание», «скольжение», которые позволили особым образом трансформировать исходный геометрический объект и выделить его существенные характеристики, что характерно для мысленного эксперимента. При этом мысленный эксперимент выступает в роли определенного «креативного инструмента», способствующего появлению геометрического знания (например, о средней линии трапеции или об углах треугольника). Такие идеализации позволяют схватить в целом идею доказательства, идею проведения «дополнительного построения», что позволяет говорить о возможности более осознанного понимания школьниками процесса формально-дедуктивного доказательства геометрических теорем.

Мысленный эксперимент является одним из базовых методов получения и открытия геометрических теорем. Необходимо разработать методику передачи метода ученику. Остается открытым вопрос о приемлемом для «принятия» метода возрасте ученика, о «побочных эффектах» излагаемых таким образом доказательств.

Эти вопросы требуют дополнительного изучения. Но в любом случаи, несомненно, одно: мысленный эксперимент развивает у школьников теоретическое мышление, является его базой и, поэтому, способности к мысленному экспериментированию нужно развивать.

. (Слайд 1)

Тип урока: урок изучения нового материала.

Цели урока:

  • Образовательные :
    • рассмотреть теорему о сумме углов треугольника,
    • показать применение теоремы при решении задач.
  • Воспитательные :
    • воспитание положительного отношения учащихся к знаниям,
    • воспитывать в учащихся средствами урока уверенность в своих силах.
  • Развивающие :

Оборудование: интерактивная доска, презентация, карточки.

ХОД УРОКА

I. Организационный момент

– Сегодня на уроке мы вспомним определения прямоугольного, равнобедренного, равностороннего треугольников. Повторим свойства углов треугольников. Применяя свойства внутренних односторонних и внутренних накрест лежащих углов докажем теорему о сумме углов треугольника и научимся применять ее при решении задач.

II. Устно (Слайд 2)

1) Найти на рисунках прямоугольный, равнобедренный, равносторонний треугольники.
2) Дать определение этим треугольникам.
3) Сформулировать свойства углов равностороннего и равнобедренного треугольника.

4) На рисунке KE II NH. (слайд 3)

– Укажите секущие для этих прямых
– Найти внутренние односторонние углы, внутренние накрест лежащие углы, назвать их свойства

III. Объяснение нового материала

Теорема. Сумма углов треугольника равна 180 о

По формулировке теоремы, ребята строят чертеж, записывают условие, заключение. Отвечая на вопросы, самостоятельно доказывают теорему.

Дано:

Доказать:

Доказательство:

1. Через вершину В треугольника проведем прямую BD II AC.
2. Указать секущие для параллельных прямых.
3. Что можно сказать об углах CBD и ACB? (сделать запись)
4. Что мы знаем об углах CAB и ABD? (сделать запись)
5. Заменим угол CBD углом ACB
6. Сделать вывод.

IV. Закончи предложение. (Слайд 4)

1. Сумма углов треугольника равна …
2. В треугольнике один из углов равен, другой, третий угол треугольника равен …
3. Сумма острых углов прямоугольного треугольника равна …
4. Углы равнобедренного прямоугольного треугольника равны …
5. Углы равностороннего треугольника равны...
6. Если угол между боковыми сторонами равнобедренного треугольника равен 1000, то углы при основании равны …

V. Немного истории. (Слайды 5-7)

Доказательство теоремы о сумме углов треугольника «Сумма внутренних
углов треугольника равна двум прямым» приписывают Пифагору (580-500 г.г. до н.э.)

Древнегреческий ученый Прокл (410-485 г.г. н.э.),