Система имеет единственное решение определитель системы. Определители и системы линейных уравнений

Определителем второго порядка

и вычисляется по правилу

Числа называютсяэлементами определителя (первый индекс указывает номер строки, а второй
номер столбца, на пересечении которых стоит этот элемент); диагональ, образованная элементами
,
, называетсяглавной , элементами
,

побочной .

Аналогично вводится понятие определителя третьего порядка.

Определителем третьего порядка называется число, которое обозначается символом

и вычисляется по правилу

Диагональ, образованная элементами
,
,
, называетсяглавной , элементами
,
,

побочной .

Чтобы запомнить какие произведения в правой части равенства (1) берутся со знаком «
», а какие со знаком «
», полезно использовать следующее «правило треугольников»:

Можно ввести понятие определителя 4-го, 5-го и т. д. порядков.

Минором
некоторого элемента определителя называется определитель, образованный из данного вычёркиванием строки и столбца, на пересечении которых находится этот элемент.

Алгебраическим дополнением некоторого элемента определителя называется минор этого элемента, умноженный на
, где
номер строки,
номер столбца, на пересечении которых находится этот элемент:

.

Свойства определителей.

    Величина определителя не изменится, если его строки поменять местами со столбцами.

Рассмотренная операция называется транспонированием. Свойство 1

устанавливает равноправность строк и столбцов определителя.


Задача 1. Вычислить определители:

1) 2)3)4).

Задача 2. Вычислить определители, разложив их по элементам первого столбца:

1)
2)

Задача 3. Найти из уравнений:

1)
2)

1.2. Решение систем линейных уравнений с помощью определителей. Формулы Крамера

I) Система двух линейных неоднородных уравнений с двумя неизвестными

Обозначим

основной определитель системы;

,
вспомогательные определители.

а) Если определитель системы

,
. (1)

б) Если определитель системы
, то возможны случаи:

1)
(уравнения пропорциональны), тогда система содержит только одно уравнение, например,
и имеет бесконечно много решений (неопределённая система). Для её решения необходимо выразить одну переменную через другую, значение которой выбирается произвольно;

2) если хотя бы один из определителей
отличен от нуля, то система не имеет решений (несовместная система).

II) Система двух линейных однородных уравнений с тремя переменными

(2)

Линейное уравнение называется однородным , если свободный член этого уравнения равен нулю.

а) Если
, то система (2) сводится к одному уравнению (например, первому), из которого одно неизвестное выражается через два других, значения которых выбираются произвольно.

б) Если условие
не выполнено, то для решения системы (2) перенесем одну переменную вправо и решим систему двух линейных неоднородных уравнений с использованием формул Крамера (1).

III) Система трёх линейных неоднородных уравнений с тремя неизвестными:

Составим и вычислим основной определитель и вспомогательные определители,.

а) Если
, то система имеет единственное решение, которое находится по формулам Крамера:

,
,
(3)

б) Если
, то возможны случаи:

1)
, тогда система будет иметь бесконечно много решений, она будет сводиться либо к системе состоящей из одного, либо из двух уравнений (одну неизвестную перенесём направо и решим систему двух уравнений с двумя неизвестными);

2) хотя бы один из определителей
отличен от нуля, система не имеет решения.

IV) Система трёх линейных однородных уравнений с тремя неизвестными:

Эта система всегда совместна, так как имеет нулевое решение.

а) Если определитель системы
, то она имеет единственное нулевое решение.

б) Если же
, то система сводится либо к двум уравнениям (третье является их следствием), либо к одному уравнению (остальные два являются его следствием) и имеет бесконечно много решений (см. п.II).

Задача 4. Решить систему уравнений

Решение. Вычислим определитель системы

Так как
, то система имеет единственное решение. Воспользуемся формулами Крамера (3). Для этого вычислим вспомогательные определители:

,
,

,
,

Задача 5. Решить систему уравнений

Решение. Вычислим определитель системы:

Следовательно, система однородных уравнений имеет бесконечно много решение, отличных от нулевого. Решаем систему первых двух уравнений (третье уравнение является их следствием):

Перенесём переменную в правую часть равенства:

Отсюда по формулам (1) получаем


,
.

Задачи для самостоятельного решения

Задача 6. Решить с помощью определителей системы уравнений:

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

1.1. Системы двух линейных уравнений и определители второго порядка

Рассмотрим систему двух линейных уравнений с двумя неизвестными:

Коэффициенты при неизвестных и имеют два индекса: первый указывает номер уравнения, второй – номер переменной.


Правило Крамера: Решение системы находят путем деления вспомогательных определителей на главный определитель системы

,

Замечание 1. Использование правила Крамера возможно, если определитель системы не равен нулю.

Замечание 2. Формулы Крамера обобщаются и на системы большего порядка.

Пример 1. Решить систему:
.

Решение.

;
;

;

Проверка:

Вывод: Система решена верно:
.

1.2. Системы трех линейных уравнений и определители третьего порядка

Рассмотрим систему трех линейных уравнений с тремя неизвестными:

Определитель, составленный из коэффициентов при неизвестных, называется определителем системы или главным определителем:

.

Если
то система имеет единственное решение, которое определяется по формулам Крамера:

где определители
– называются вспомогательными и получаются из определителя путем замены его первого, второго или третьего столбца столбцом свободных членов системы.

Пример 2. Решить систему
.

Сформируем главный и вспомогательные определители:

Осталось рассмотреть правила вычисления определителей третьего порядка. Их три: правило дописывания столбцов, правило Саррюса, правило разложения.

а) Правило дописывания первых двух столбцов к основному определителю:

Вычисление проводятся следующим образом: со своим знаком идут произведения элементов главной диагонали и по параллелям к ней, с обратным знаком берут произведения элементов побочной диагонали и по параллелям к ней.

б) Правило Саррюса:

Со своим знаком берут произведения элементов главной диагонали и по параллелям к ней, причем недостающий третий элемент берут из противоположного угла. С обратным знаком берут произведения элементов побочной диагонали и по параллелям к ней, третий элемент берут из противоположного угла.

в) Правило разложения по элементам строки или столбца:

Если
, тогда .

Алгебраическое дополнение – это определитель более низкого порядка, получаемый путем вычеркивания соответствующей строки и столбца и учитывающий знак
, где– номер строки,– номер столбца.

Например,

,
,
и т.д.

Вычислим по этому правилу вспомогательные определители и , раскрывая их по элементам первой строки.

Вычислив все определители, по правилу Крамера найдем переменные:

Проверка:

Вывод: система решена верно: .

      Основные свойства определителей

Необходимо помнить, что определитель – это число , найденное по некоторым правилам. Его вычисление может быть упрощено, если пользоваться основными свойствами, справедливыми для определителей любого порядка.

Свойство 1. Значение определителя не изменится от замены всех его строк соответствующими по номеру столбцами и наоборот.

Операция замены строк столбцами называется транспонированием. Из этого свойства вытекает, что всякое утверждение, справедливое для строк определителя, будет справедливым и для его столбцов.

Свойство 2. Если в определителе поменять местами две строки (столбца), то знак определителя поменяется на противоположный.

Свойство 3. Если все элементы какой-нибудь строки определителя равны 0, то определитель равен 0.

Свойство 4. Если элементы строки определителя умножить (разделить) на какое-нибудь число , то и значение определителя увеличится (уменьшится) в раз.

Если элементы какой-нибудь строки, имеют общий множитель, то его можно вынести за знак определителя.

Свойство 5. Если определитель имеет две одинаковые или пропорциональные строки, то такой определитель равен 0.

Свойство 6. Если элементы какой-нибудь строки определителя представляют собой сумму двух слагаемых, то определитель равен сумме двух определителей.

Свойство 7. Значение определителя не изменится, если к элементам какой-нибудь строки добавить элементы другой строки, умноженной на одно и то же число.

В этом определителе вначале ко второй строке прибавили третью, умноженную на 2, затем из третьего столбца вычли второй, после чего вторую строку прибавили к первой и третьей, в результате получили много нулей и упростили подсчет.

Элементарными преобразованиями определителя называются упрощения его благодаря использованию указанных свойств.

Пример 1. Вычислить определитель

Непосредственный подсчет по одному из рассмотренных выше правил приводит к громоздким вычислениям. Поэтому целесообразно воспользоваться свойствами:

а) из І строки вычтем вторую, умноженную на 2;

б) из ІІ строки вычтем третью, умноженную на 3.

В результате получаем:

Разложим этот определитель по элементам первого столбца, содержащего лишь один ненулевой элемент.

.

      Системы и определители высших порядков

Систему линейных уравнений с неизвестными можно записать в таком виде:

Для этого случая также можно составить главный и вспомогательные определители, а неизвестные определять по правилу Крамера. Проблема состоит в том, что определители более высокого порядка могут быть вычислены только путем понижения порядка и сведения их к определителям третьего порядка. Это может быть осуществлено способом прямого разложения по элементам строк или столбцов, а также с помощью предварительных элементарных преобразований и дальнейшего разложения.

Пример 4. Вычислить определитель четвертого порядка

Решение найдем двумя способами:

а) путем прямого разложения по элементам первой строки:

б) путем предварительных преобразований и дальнейшего разложения

а) из І строки вычтем ІІІ

б) ІІ строку прибавим к ІV

Пример 5. Вычислить определитель пятого порядка, получая нули в третьей строке с помощью четвертого столбца

из первой строки вычтем вторую, из третьей вычтем вторую, из четвертой вычтем вторую, умноженную на 2.

из второго столбца вычтем третий:

из второй строки вычтем третью:

Пример 6. Решить систему:

Решение. Составим определитель системы и, применив свойства определителей, вычислим его:

(из первой строки вычтем третью, а затем в полученном определителе третьего порядка из третьего столбца вычитаем первый, умноженный на 2). Определитель
, следовательно, формулы Крамера применимы.

Вычислим остальные определители:


Четвертый столбец умножили на 2 и вычли из остальных


Четвертый столбец вычли из первого, а затем, умножив на 2, вычли из второго и третьего столбцов.


.

Здесь выполнили те же преобразования, что и для
.


.

При нахождении первый столбец умножили на 2 и вычли из остальных.

По правилу Крамера имеем:

После подстановки в уравнения найденных значений убеждаемся в правильности решения системы.

2. МАТРИЦЫ и ИХ ИСПОЛЬЗОВАНИЕ

В РЕШЕНИИ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

  • Системы m линейных уравнений с n неизвестными.
    Решение системы линейных уравнений — это такое множество чисел {x 1 , x 2 , …, x n }, при подстановке которых в каждое из уравнений системы получается верное равенство.
    где a ij , i = 1, …, m; j = 1, …, n — коэффициенты системы;
    b i , i = 1, …, m — свободные члены;
    x j , j = 1, …, n — неизвестные.
    Вышеприведенная система может быть записана в матричном виде: A · X = B ,




    где (A |B ) — основная матрица системы;
    A — расширенная матрица системы;
    X — столбец неизвестных;
    B — столбец свободных членов.
    Если матрица B не является нуль-матрицей ∅, то данная система линейных уравнений называется неоднородной.
    Если матрица B = ∅, то данная система линейных уравнений называется однородной. Однородная система всегда имеет нулевое (тривиальное) решение: x 1 = x 2 = …, x n = 0 .
    Совместная система линейных уравнений — это имеющая решение система линейных уравнений.
    Несовместная система линейных уравнений — это не имеющая решение система линейных уравнений.
    Определённая система линейных уравнений — это имеющая единственное решение система линейных уравнений.
    Неопределённая система линейных уравнений — это имеющая бесконечное множество решений система линейных уравнений.
  • Системы n линейных уравнений с n неизвестными
    Если число неизвестных равно числу уравнений, то матрица – квадратная. Определитель матрицы называется главным определителем системы линейных уравнений и обозначается символом Δ.
    Метод Крамера для решения систем n линейных уравнений с n неизвестными.
    Правило Крамера.
    Если главный определитель системы линейных уравнений не равен нулю, то система совместна и определена, причем единственное решение вычисляется по формулам Крамера:
    где Δ i — определители, получаемые из главного определителя системы Δ заменой i -го столбца на столбец свободных членов. .
  • Системы m линейных уравнений с n неизвестными
    Теорема Кронекера−Капелли .


    Для того чтобы данная система линейных уравнений была совместной, необходимо и достаточно, чтобы ранг матрицы системы был равен рангу расширенной матрицы системы, rang(Α) = rang(Α|B) .
    Если rang(Α) ≠ rang(Α|B) , то система заведомо не имеет решений.
    Eсли rang(Α) = rang(Α|B) , то возможны два случая:
    1) rang(Α) = n (числу неизвестных) − решение единственно и может быть получено по формулам Крамера;
    2) rang(Α) < n − решений бесконечно много.
  • Метод Гаусса для решения систем линейных уравнений


    Составим расширенную матрицу (A |B ) данной системы из коэффициентов при неизвестных и правых частей.
    Метод Гаусса или метод исключения неизвестных состоит в приведении расширенной матрицы (A |B ) с помощью элементарных преобразований над ее строками к диагональному виду (к верхнему треугольному виду). Возвращаясь к системе уравнений, определяют все неизвестные.
    К элементарным преобразованиям над строками относятся следующие:
    1) перемена местами двух строк;
    2) умножение строки на число, отличное от 0;
    3) прибавление к строке другой строки, умноженной на произвольное число;
    4) выбрасывание нулевой строки.
    Расширенной матрице, приведенной к диагональному виду, соответствует линейная система, эквивалентная данной, решение которой не вызывает затруднений. .
  • Система однородных линейных уравнений.
    Однородная система имеет вид:

    ей соответствует матричное уравнение A · X = 0 .
    1) Однородная система всегда совместна, так как r(A) = r(A|B) , всегда существует нулевое решение (0, 0, …, 0).
    2) Для того чтобы однородная система имела ненулевое решение, необходимо и достаточно, чтобы r = r(A) < n , что равносильно Δ = 0.
    3) Если r < n , то заведомо Δ = 0, тогда возникают свободные неизвестные c 1 , c 2 , …, c n-r , система имеет нетривиальные решения, причем их бесконечно много.
    4) Общее решение X при r < n может быть записано в матричном виде следующим образом:
    X = c 1 · X 1 + c 2 · X 2 + … + c n-r · X n-r ,
    где решения X 1 , X 2 , …, X n-r образуют фундаментальную систему решений.
    5) Фундаментальная система решений может быть получена из общего решения однородной системы:

    ,
    если последовательно полагать значения параметров равными (1, 0, …, 0), (0, 1, …, 0), …, (0, 0, …,1).
    Разложение общего решения по фундаментальной системе решений — это запись общего решения в виде линейной комбинации решений, принадлежащих к фундаментальной системе.
    Теорема . Для того, чтобы система линейных однородных уравнений имела ненулевое решение, необходимо и достаточно, чтобы Δ ≠ 0.
    Итак, если определитель Δ ≠ 0, то система имеет единственное решение.
    Если же Δ ≠ 0, то система линейных однородных уравнений имеет бесконечное множество решений.
    Теорема . Для того чтобы однородная система имела ненулевое решение, необходимо и достаточно, чтобы r(A) < n .
    Доказательство :
    1) r не может быть больше n (ранг матрицы не превышает числа столбцов или строк);
    2) r < n , т.к. если r = n , то главный определитель системы Δ ≠ 0, и, по формулам Крамера, существует единственное тривиальное решение x 1 = x 2 = … = x n = 0 , что противоречит условию. Значит, r(A) < n .
    Следствие . Для того чтобы однородная система n линейных уравнений с n неизвестными имела ненулевое решение, необходимо и достаточно, чтобы Δ = 0.

Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных. Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.

Определение . Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).

Определители

получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

;

.

Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.

Пример 1. Решить систему линейных уравнений:

Согласно теореме Крамера имеем:

Итак, решение системы (2):

онлайн-калькулятором , решающим методом Крамера.

Три случая при решении систем линейных уравнений

Как явствует из теоремы Крамера , при решении системы линейных уравнений могут встретиться три случая:

Первый случай: система линейных уравнений имеет единственное решение

(система совместна и определённа)

Второй случай: система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

** ,

т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

Третий случай: система линейных уравнений решений не имеет

(система несовместна)

Итак, система m линейных уравнений с n переменными называется несовместной , если у неё нет ни одного решения, и совместной , если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой , а более одного – неопределённой .

Примеры решения систем линейных уравнений методом Крамера

Пусть дана система

.

На основании теоремы Крамера

………….
,

где
-

определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:

Пример 2.

.

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

По формулам Крамера находим:



Итак, (1; 0; -1) – единственное решение системы.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

Пример 3. Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

По формулам Крамера находим:

Итак, решение системы - (2; -1; 1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

К началу страницы

Продолжаем решать системы методом Крамера вместе

Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.

Пример 6. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных

Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных - буквы. За примерами далеко ходить не надо.

Следующий пример - на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое действительное число.

Пример 8. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Находим определители при неизвестных

Матрица - прямоугольная таблица, составленная из чисел.

Пусть дана квадратная матрица 2 порядка:

Определителем (или детерминантом) 2 порядка, соответствующим данной матрице, называется число

Определитель (или детерминант) 3 порядка, соответствующим матрице называется число

Пример1: Найти определители матриц и

Система линейных алгебраических уравнений

Пусть дана система 3х линейных уравнений с 3мя неизвестными

Систему (1) можно записать в матрично-векторной форме

где А - матрица коэффициентов

В - расширенная матрица

Х - искомый компонентный вектор;

Решение систем уравнений методом Крамера

Пусть дана система линейных уравнений с двумя неизвестными:

Рассмотрим решение систем линейных уравнений с двумя и тремя неизвестными по формулам Крамера. Теорема 1. Если главный определитель системы отличен от нуля, то система имеет решение, притом единственное. Решение системы определяется формулами:

где x1, x2 - корни системы уравнений,

Главный определитель системы, x1, х2 - вспомогательные определители.

Вспомогательные определители:

Решение систем линейных уравнений с тремя неизвестными по методу Крамера.

Пусть дана система линейных уравнений с тремя неизвестными:

Теорема 2. Если главный определитель системы отличен от нуля, то система имеет решение, притом единственное. Решение системы определяется формулами:

где x1, x2, x3 - корни системы уравнений,

Главный определитель системы,

x1, x2, x3 - вспомогательные определители.

Главный определитель системы определяется:

Вспомогательные определители:


  • 1. Составить табличку (матрицу) коэффициентов при неизвестных и вычислить основной определитель.
  • 2. Найти - дополнительный определитель x, получаемый из заменой первого столбца на столбец свободных членов.
  • 3. Найти - дополнительный определитель y, получаемый из заменой второго столбца на столбец свободных членов.
  • 4. Найти - дополнительный определитель z, получаемый из заменой третьего столбца на столбец свободных членов. Если основной определитель системы не равен нулю, то выполняют пункт 5.
  • 5. Найти значение переменной x по формуле x / .
  • 6. Найти значение переменной у по формуле y / .
  • 7. Найти значение переменной z по формуле z / .
  • 8. Записать ответ: х=…; у=…, z=… .