Jak znaleźć liczbę n w postępie arytmetycznym. Jak znaleźć postęp arytmetyczny? Przykłady postępu arytmetycznego z rozwiązaniem

Jeśli dla każdej liczby naturalnej N dopasować liczbę rzeczywistą jakiś , to mówią, że jest dane sekwencja liczb :

A 1 , A 2 , A 3 , . . . , jakiś , . . . .

Zatem sekwencja liczb jest funkcją argumentu naturalnego.

Numer A 1 zwany pierwszy wyraz ciągu , numer A 2 drugi wyraz ciągu , numer A 3 trzeci i tak dalej. Numer jakiś zwany n-ty element ciągu i liczba naturalna Njego numer .

Od dwóch sąsiednich członków jakiś I jakiś +1 członek sekwencji jakiś +1 zwany późniejszy (w kierunku jakiś ), A jakiś poprzedni (w kierunku jakiś +1 ).

Aby zdefiniować ciąg, należy określić metodę, która pozwoli znaleźć element ciągu o dowolnym numerze.

Często kolejność jest określana za pomocą n-te formuły wyrazowe , czyli formuła pozwalająca określić element ciągu na podstawie jego numeru.

Na przykład,

Za pomocą wzoru można podać ciąg dodatnich liczb nieparzystych

jakiś= 2N- 1,

i kolejność naprzemienności 1 I -1 - formuła

B N = (-1)N +1 .

Można ustalić kolejność powtarzalna formuła, to znaczy formuła wyrażająca dowolny element sekwencji, zaczynając od niektórych, a kończąc na poprzednich (jednym lub większej liczbie) elementów.

Na przykład,

Jeśli A 1 = 1 , A jakiś +1 = jakiś + 5

A 1 = 1,

A 2 = A 1 + 5 = 1 + 5 = 6,

A 3 = A 2 + 5 = 6 + 5 = 11,

A 4 = A 3 + 5 = 11 + 5 = 16,

A 5 = A 4 + 5 = 16 + 5 = 21.

Jeśli 1= 1, 2 = 1, jakiś +2 = jakiś + jakiś +1 , wówczas pierwsze siedem wyrazów ciągu liczbowego ustala się w następujący sposób:

1 = 1,

2 = 1,

3 = 1 + 2 = 1 + 1 = 2,

4 = 2 + 3 = 1 + 2 = 3,

5 = 3 + 4 = 2 + 3 = 5,

A 6 = A 4 + A 5 = 3 + 5 = 8,

A 7 = A 5 + A 6 = 5 + 8 = 13.

Sekwencje mogą być finał I nieskończony .

Sekwencja nazywa się ostateczny , jeśli ma skończoną liczbę członków. Sekwencja nazywa się nieskończony , jeśli ma nieskończenie wiele elementów.

Na przykład,

ciąg dwucyfrowych liczb naturalnych:

10, 11, 12, 13, . . . , 98, 99

finał.

Sekwencja liczb pierwszych:

2, 3, 5, 7, 11, 13, . . .

nieskończony.

Sekwencja nazywa się wzrastający , jeśli każdy z jego członków, zaczynając od drugiego, jest większy od poprzedniego.

Sekwencja nazywa się malejące , jeśli każdy z jego członków, zaczynając od drugiego, jest mniejszy od poprzedniego.

Na przykład,

2, 4, 6, 8, . . . , 2N, . . . — ciąg rosnący;

1, 1 / 2 , 1 / 3 , 1 / 4 , . . . , 1 /N, . . . — ciąg malejący.

Nazywa się ciąg, którego elementy nie zmniejszają się wraz ze wzrostem liczby lub odwrotnie monotonna sekwencja .

W szczególności ciągi monotoniczne to sekwencje rosnące i malejące.

Postęp arytmetyczny

Postęp arytmetyczny to ciąg, w którym każdy człon, zaczynając od drugiego, jest równy poprzedniemu, do którego dodawana jest ta sama liczba.

A 1 , A 2 , A 3 , . . . , jakiś, . . .

jest postępem arytmetycznym, jeśli dla dowolnej liczby naturalnej N warunek jest spełniony:

jakiś +1 = jakiś + D,

Gdzie D - pewna liczba.

Zatem różnica pomiędzy kolejnymi i poprzednimi wyrazami danego ciągu arytmetycznego jest zawsze stała:

2 - A 1 = 3 - A 2 = . . . = jakiś +1 - jakiś = D.

Numer D zwany różnica postępu arytmetycznego.

Aby zdefiniować postęp arytmetyczny, wystarczy wskazać jego pierwszy wyraz i różnicę.

Na przykład,

Jeśli A 1 = 3, D = 4 , wówczas znajdujemy pierwsze pięć wyrazów ciągu w następujący sposób:

1 =3,

2 = 1 + D = 3 + 4 = 7,

3 = 2 + D= 7 + 4 = 11,

4 = 3 + D= 11 + 4 = 15,

A 5 = A 4 + D= 15 + 4 = 19.

Dla postępu arytmetycznego z pierwszym wyrazem A 1 i różnica D jej N

jakiś = 1 + (N- 1)D.

Na przykład,

znajdź trzydziesty wyraz ciągu arytmetycznego

1, 4, 7, 10, . . .

1 =1, D = 3,

30 = 1 + (30 - 1)d = 1 + 29· 3 = 88.

n-1 = 1 + (N- 2)D,

jakiś= 1 + (N- 1)D,

jakiś +1 = A 1 + II,

wtedy oczywiście

jakiś=
za n-1 + za n+1
2

Każdy element ciągu arytmetycznego, zaczynając od drugiego, jest równy średniej arytmetycznej poprzednich i kolejnych elementów.

liczby a, b i c są kolejnymi wyrazami pewnego postępu arytmetycznego wtedy i tylko wtedy, gdy jedna z nich jest równa średniej arytmetycznej dwóch pozostałych.

Na przykład,

jakiś = 2N- 7 , jest postępem arytmetycznym.

Skorzystajmy z powyższego stwierdzenia. Mamy:

jakiś = 2N- 7,

n-1 = 2(N- 1) - 7 = 2N- 9,

n+1 = 2(n+ 1) - 7 = 2N- 5.

Stąd,

za n+1 + za n-1
=
2N- 5 + 2N- 9
= 2N- 7 = jakiś,
2
2

Zauważ to N Wyraz dziewiątego ciągu arytmetycznego można znaleźć nie tylko poprzez A 1 , ale także wszelkie poprzednie k

jakiś = k + (N- k)D.

Na przykład,

Dla A 5 można zapisać

5 = 1 + 4D,

5 = 2 + 3D,

5 = 3 + 2D,

5 = 4 + D.

jakiś = nk + kd,

jakiś = n+k - kd,

wtedy oczywiście

jakiś=
A nie wiem +a n+k
2

każdy element ciągu arytmetycznego, zaczynając od drugiego, jest równy połowie sumy równo rozmieszczonych elementów tego postępu arytmetycznego.

Ponadto dla dowolnego postępu arytmetycznego zachodzi równość:

za m + za n = za k + za l,

m + n = k + l.

Na przykład,

w postępie arytmetycznym

1) A 10 = 28 = (25 + 31)/2 = (A 9 + A 11 )/2;

2) 28 = 10 = 3 + 7D= 7 + 7 3 = 7 + 21 = 28;

3) 10= 28 = (19 + 37)/2 = (7 + 13)/2;

4) za 2 + za 12 = za 5 + za 9, ponieważ

2 + 12= 4 + 34 = 38,

5 + 9 = 13 + 25 = 38.

S n= za 1 + za 2 + za 3 + . . .+ jakiś,

Pierwszy N wyrazy ciągu arytmetycznego są równe iloczynowi połowy sumy skrajnych wyrazów i liczby wyrazów:

Stąd w szczególności wynika, że ​​jeśli trzeba podsumować warunki

k, k +1 , . . . , jakiś,

wówczas poprzednia formuła zachowuje swoją strukturę:

Na przykład,

w postępie arytmetycznym 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

S 10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = S 10 - S 3 = (10 + 28 ) · (10 - 4 + 1)/2 = 133.

Jeśli podany jest postęp arytmetyczny, to ilości A 1 , jakiś, D, N IS N połączone dwoma wzorami:

Dlatego też, jeśli podane zostaną wartości trzech z tych wielkości, wówczas z tych wzorów zostaną określone odpowiadające im wartości dwóch pozostałych wielkości, połączone w układ dwóch równań z dwiema niewiadomymi.

Postęp arytmetyczny jest ciągiem monotonicznym. W której:

  • Jeśli D > 0 , to rośnie;
  • Jeśli D < 0 , to maleje;
  • Jeśli D = 0 , to ciąg będzie stacjonarny.

Postęp geometryczny

Postęp geometryczny to ciąg, w którym każdy element, zaczynając od drugiego, jest równy poprzedniemu pomnożonemu przez tę samą liczbę.

B 1 , B 2 , B 3 , . . . , b n, . . .

jest postępem geometrycznym, jeśli dla dowolnej liczby naturalnej N warunek jest spełniony:

b n +1 = b n · Q,

Gdzie Q ≠ 0 - pewna liczba.

Zatem stosunek kolejnego wyrazu danego ciągu geometrycznego do poprzedniego jest liczbą stałą:

B 2 / B 1 = B 3 / B 2 = . . . = b n +1 / b n = Q.

Numer Q zwany mianownik postępu geometrycznego.

Aby zdefiniować postęp geometryczny, wystarczy wskazać jego pierwszy wyraz i mianownik.

Na przykład,

Jeśli B 1 = 1, Q = -3 , wówczas znajdujemy pierwsze pięć wyrazów ciągu w następujący sposób:

b 1 = 1,

b 2 = b 1 · Q = 1 · (-3) = -3,

b 3 = b 2 · Q= -3 · (-3) = 9,

b 4 = b 3 · Q= 9 · (-3) = -27,

B 5 = B 4 · Q= -27 · (-3) = 81.

B 1 i mianownik Q jej N Termin ten można znaleźć korzystając ze wzoru:

b n = B 1 · qn -1 .

Na przykład,

znajdź siódmy wyraz postępu geometrycznego 1, 2, 4, . . .

B 1 = 1, Q = 2,

B 7 = B 1 · Q 6 = 1 2 6 = 64.

b n-1 = b 1 · qn -2 ,

b n = b 1 · qn -1 ,

b n +1 = B 1 · qn,

wtedy oczywiście

b n 2 = b n -1 · b n +1 ,

każdy element ciągu geometrycznego, zaczynając od drugiego, jest równy średniej geometrycznej (proporcjonalnej) elementów poprzedzających i kolejnych.

Ponieważ prawdą jest również sytuacja odwrotna, zachodzi następujące stwierdzenie:

liczby a, b i c są kolejnymi wyrazami pewnego postępu geometrycznego wtedy i tylko wtedy, gdy kwadrat jednej z nich jest równy iloczynowi dwóch pozostałych, to znaczy jedna z liczb jest średnią geometryczną dwóch pozostałych.

Na przykład,

Udowodnimy, że ciąg określony wzorem b n= -3 2 N , jest postępem geometrycznym. Skorzystajmy z powyższego stwierdzenia. Mamy:

b n= -3 2 N,

b n -1 = -3 2 N -1 ,

b n +1 = -3 2 N +1 .

Stąd,

b n 2 = (-3 2 N) 2 = (-3 2 N -1 ) · (-3 · 2 N +1 ) = b n -1 · b n +1 ,

co dowodzi pożądanego stwierdzenia.

Zauważ to N Termin ciągu geometrycznego można znaleźć nie tylko poprzez B 1 , ale także każdego poprzedniego członka b k , dla czego wystarczy skorzystać ze wzoru

b n = b k · qn - k.

Na przykład,

Dla B 5 można zapisać

b 5 = b 1 · Q 4 ,

b 5 = b 2 · q 3,

b 5 = b 3 · q 2,

b 5 = b 4 · Q.

b n = b k · qn - k,

b n = b n - k · q k,

wtedy oczywiście

b n 2 = b n - k· b n + k

kwadrat dowolnego wyrazu ciągu geometrycznego, zaczynając od drugiego, jest równy iloczynowi wyrazów tego ciągu w równej odległości od niego.

Ponadto dla dowolnego postępu geometrycznego prawdziwa jest równość:

b m· b n= b k· b l,

M+ N= k+ l.

Na przykład,

w postępie geometrycznym

1) B 6 2 = 32 2 = 1024 = 16 · 64 = B 5 · B 7 ;

2) 1024 = B 11 = B 6 · Q 5 = 32 · 2 5 = 1024;

3) B 6 2 = 32 2 = 1024 = 8 · 128 = B 4 · B 8 ;

4) B 2 · B 7 = B 4 · B 5 , ponieważ

B 2 · B 7 = 2 · 64 = 128,

B 4 · B 5 = 8 · 16 = 128.

S n= B 1 + B 2 + B 3 + . . . + b n

Pierwszy N elementy ciągu geometrycznego z mianownikiem Q 0 obliczane według wzoru:

I kiedy Q = 1 - zgodnie ze wzorem

S n= uwaga 1

Pamiętaj, że jeśli chcesz zsumować warunki

b k, b k +1 , . . . , b n,

wówczas stosuje się wzór:

S n- Sk -1 = b k + b k +1 + . . . + b n = b k · 1 - qn - k +1
.
1 - Q

Na przykład,

w postępie geometrycznym 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

S 10 = 1 + 2 + . . . + 512 = 1 · (1 - 2 10) / (1 - 2) = 1023;

64 + 128 + 256 + 512 = S 10 - S 6 = 64 · (1 - 2 10-7+1) / (1 - 2) = 960.

Jeśli podany jest postęp geometryczny, to ilości B 1 , b n, Q, N I S n połączone dwoma wzorami:

Dlatego jeśli podane zostaną wartości dowolnych trzech z tych wielkości, wówczas z tych wzorów zostaną określone odpowiednie wartości pozostałych dwóch wielkości, połączone w układ dwóch równań z dwiema niewiadomymi.

Dla postępu geometrycznego z pierwszym wyrazem B 1 i mianownik Q mają miejsce następujące zdarzenia właściwości monotoniczności :

  • progresja wzrasta, jeśli spełniony jest jeden z poniższych warunków:

B 1 > 0 I Q> 1;

B 1 < 0 I 0 < Q< 1;

  • Progresja maleje, jeśli spełniony jest jeden z poniższych warunków:

B 1 > 0 I 0 < Q< 1;

B 1 < 0 I Q> 1.

Jeśli Q< 0 , to postęp geometryczny jest naprzemienny: jego wyrazy o liczbach nieparzystych mają ten sam znak, co pierwszy wyraz, a wyrazy o liczbach parzystych mają znak przeciwny. Jest oczywiste, że naprzemienny postęp geometryczny nie jest monotoniczny.

Produkt pierwszy N wyrazy postępu geometrycznego można obliczyć korzystając ze wzoru:

P. n= b 1 · b 2 · b 3 · . . . · b n = (b 1 · b n) N / 2 .

Na przykład,

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128) 8/2 = 128 4 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48) 5/2 = (144 1/2) 5 = 12 5 = 248 832.

Nieskończenie malejący postęp geometryczny

Nieskończenie malejący postęp geometryczny nazywany nieskończonym postępem geometrycznym, którego moduł mianownika jest mniejszy 1 , to jest

|Q| < 1 .

Należy zauważyć, że nieskończenie malejący postęp geometryczny może nie być sekwencją malejącą. Pasuje do okazji

1 < Q< 0 .

Przy takim mianowniku sekwencja jest naprzemienna. Na przykład,

1, - 1 / 2 , 1 / 4 , - 1 / 8 , . . . .

Suma nieskończenie malejącego postępu geometrycznego podaj liczbę, do której suma pierwszych zbliża się bez ograniczeń N członkowie progresji o nieograniczonym zwiększeniu liczby N . Liczba ta jest zawsze skończona i wyrażana jest wzorem

S= B 1 + B 2 + B 3 + . . . = B 1
.
1 - Q

Na przykład,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 - 0,1) = 11 1 / 9 ,

10 - 1 + 0,1 - 0,01 + . . . = 10 / (1 + 0,1) = 9 1 / 11 .

Związek pomiędzy postępem arytmetycznym i geometrycznym

Postęp arytmetyczny i geometryczny są ze sobą ściśle powiązane. Spójrzmy tylko na dwa przykłady.

A 1 , A 2 , A 3 , . . . D , To

b.a 1 , b.a 2 , b.a 3 , . . . b d .

Na przykład,

1, 3, 5, . . . - postęp arytmetyczny z różnicą 2 I

7 1 , 7 3 , 7 5 , . . . - postęp geometryczny z mianownikiem 7 2 .

B 1 , B 2 , B 3 , . . . - postęp geometryczny z mianownikiem Q , To

zaloguj a b 1, zaloguj a b 2, zaloguj a b 3, . . . - postęp arytmetyczny z różnicą zaloguj sięQ .

Na przykład,

2, 12, 72, . . . - postęp geometryczny z mianownikiem 6 I

lg 2, lg 12, lg 72, . . . - postęp arytmetyczny z różnicą lg 6 .


Na przykład sekwencja \(2\); \(5\); \(8\); \(jedenaście\); \(14\)... jest postępem arytmetycznym, gdyż każdy kolejny element różni się od poprzedniego o trzy (można uzyskać z poprzedniego dodając trzy):

W tym postępie różnica \(d\) jest dodatnia (równa \(3\)), a zatem każdy kolejny wyraz jest większy od poprzedniego. Takie postępy nazywane są wzrastający.

Jednak \(d\) może być również liczbą ujemną. Na przykład, w postępie arytmetycznym \(16\); \(10\); \(4\); \(-2\); \(-8\)... różnica progresji \(d\) jest równa minus sześć.

I w tym przypadku każdy kolejny element będzie mniejszy od poprzedniego. Te progresje nazywane są malejące.

Notacja postępu arytmetycznego

Postęp jest oznaczony małą literą łacińską.

Liczby tworzące progresję nazywane są członkowie(lub elementy).

Oznacza się je tą samą literą co ciąg arytmetyczny, ale z indeksem liczbowym równym numerowi elementu w kolejności.

Na przykład ciąg arytmetyczny \(a_n = \left\( 2; 5; 8; 11; 14…\right\)\) składa się z elementów \(a_1=2\); \(a_2=5\); \(a_3=8\) i tak dalej.

Innymi słowy, dla progresji \(a_n = \left\(2; 5; 8; 11; 14…\right\)\)

Rozwiązywanie problemów z postępem arytmetycznym

W zasadzie informacje przedstawione powyżej wystarczą już do rozwiązania prawie każdego problemu postępu arytmetycznego (w tym oferowanych w OGE).

Przykład (OGE). Postęp arytmetyczny jest określony przez warunki \(b_1=7; d=4\). Znajdź \(b_5\).
Rozwiązanie:

Odpowiedź: \(b_5=23\)

Przykład (OGE). Podano trzy pierwsze wyrazy postępu arytmetycznego: \(62; 49; 36…\) Znajdź wartość pierwszego ujemnego wyrazu tego ciągu.
Rozwiązanie:

Mamy dane pierwsze elementy ciągu i wiemy, że jest to ciąg arytmetyczny. Oznacza to, że każdy element różni się od swojego sąsiada tą samą liczbą. Dowiedzmy się który, odejmując poprzedni od następnego elementu: \(d=49-62=-13\).

Teraz możemy przywrócić naszą progresję do (pierwszego negatywnego) elementu, którego potrzebujemy.

Gotowy. Możesz napisać odpowiedź.

Odpowiedź: \(-3\)

Przykład (OGE). Mając kilka kolejnych elementów ciągu arytmetycznego: \(…5; x; 10; 12,5...\) Znajdź wartość elementu oznaczonego literą \(x\).
Rozwiązanie:


Aby znaleźć \(x\), musimy wiedzieć, jak bardzo następny element różni się od poprzedniego, innymi słowy, różnica w progresji. Znajdźmy go na podstawie dwóch znanych sąsiednich elementów: \(d=12,5-10=2,5\).

I teraz możemy łatwo znaleźć to, czego szukamy: \(x=5+2,5=7,5\).


Gotowy. Możesz napisać odpowiedź.

Odpowiedź: \(7,5\).

Przykład (OGE). Postęp arytmetyczny definiują następujące warunki: \(a_1=-11\); \(a_(n+1)=a_n+5\) Znajdź sumę pierwszych sześciu wyrazów tego ciągu.
Rozwiązanie:

Musimy znaleźć sumę pierwszych sześciu wyrazów progresji. Nie znamy jednak ich znaczenia; podano nam jedynie pierwszy element. Dlatego najpierw obliczamy wartości jedna po drugiej, korzystając z tego, co nam podano:

\(n=1\); \(a_(1+1)=a_1+5=-11+5=-6\)
\(n=2\); \(a_(2+1)=a_2+5=-6+5=-1\)
\(n=3\); \(a_(3+1)=a_3+5=-1+5=4\)
Po obliczeniu sześciu potrzebnych nam elementów znajdujemy ich sumę.

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

Znaleziono wymaganą kwotę.

Odpowiedź: \(S_6=9\).

Przykład (OGE). W postępie arytmetycznym \(a_(12)=23\); \(a_(16)=51\). Znajdź różnicę tego postępu.
Rozwiązanie:

Odpowiedź: \(d=7\).

Ważne wzory na postęp arytmetyczny

Jak widać, wiele problemów z postępem arytmetycznym można rozwiązać po prostu rozumiejąc najważniejszą rzecz - że ciąg arytmetyczny jest ciągiem liczb, a każdy kolejny element w tym łańcuchu uzyskuje się przez dodanie tej samej liczby do poprzedniej (tzw. różnica w postępie).

Czasami jednak zdarzają się sytuacje, w których podjęcie decyzji „od razu” jest bardzo niewygodne. Wyobraźmy sobie na przykład, że w pierwszym przykładzie musimy znaleźć nie piąty element \(b_5\), ale trzysta osiemdziesiąty szósty \(b_(386)\). Czy powinniśmy dodać cztery \(385\) razy? Lub wyobraź sobie, że w przedostatnim przykładzie musisz znaleźć sumę pierwszych siedemdziesięciu trzech elementów. Będziesz zmęczony liczeniem...

Dlatego w takich przypadkach nie rozwiązuje się sprawy „od razu”, ale stosuje się specjalne wzory wyprowadzone na postęp arytmetyczny. A najważniejsze to wzór na n-ty wyraz progresji i wzór na sumę \(n\) pierwszych wyrazów.

Wzór \(n\)tego wyrazu: \(a_n=a_1+(n-1)d\), gdzie \(a_1\) jest pierwszym wyrazem ciągu;
\(n\) – numer wymaganego elementu;
\(a_n\) – wyraz ciągu o numerze \(n\).


Formuła ta pozwala nam szybko znaleźć nawet trzysetny lub milionowy element, znając tylko pierwszy i różnicę progresji.

Przykład. Postęp arytmetyczny określony jest przez warunki: \(b_1=-159\); \(d=8,2\). Znajdź \(b_(246)\).
Rozwiązanie:

Odpowiedź: \(b_(246)=1850\).

Wzór na sumę pierwszych n wyrazów: \(S_n=\frac(a_1+a_n)(2) \cdot n\), gdzie



\(a_n\) – ostatni zsumowany wyraz;


Przykład (OGE). Postęp arytmetyczny jest określony przez warunki \(a_n=3,4n-0,6\). Znajdź sumę pierwszych \(25\) wyrazów tego ciągu.
Rozwiązanie:

\(S_(25)=\)\(\frac(a_1+a_(25))(2 )\) \(\cdot 25\)

Aby obliczyć sumę pierwszych dwudziestu pięciu wyrazów, musimy znać wartość pierwszego i dwudziestego piątego wyrazu.
Naszą progresję wyznacza wzór n-tego wyrazu w zależności od jego liczby (więcej szczegółów w artykule). Obliczmy pierwszy element, zastępując jedynką \(n\).

\(n=1;\) \(a_1=3,4·1-0,6=2,8\)

Teraz znajdźmy dwudziesty piąty wyraz, zastępując dwadzieścia pięć zamiast \(n\).

\(n=25;\) \(a_(25)=3,4·25-0,6=84,4\)

Cóż, teraz możemy łatwo obliczyć wymaganą kwotę.

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25=\)
\(=\) \(\frac(2.8+84.4)(2)\) \(\cdot 25 =\)\(1090\)

Odpowiedź jest gotowa.

Odpowiedź: \(S_(25)=1090\).

Na sumę \(n\) pierwszych wyrazów możesz uzyskać inny wzór: wystarczy \(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \ (\cdot 25\ ) zamiast \(a_n\) zamień na to wzór \(a_n=a_1+(n-1)d\). Otrzymujemy:

Wzór na sumę pierwszych n wyrazów: \(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\), gdzie

\(S_n\) – wymagana suma \(n\) pierwszych elementów;
\(a_1\) – pierwszy wyraz zsumowany;
\(d\) – różnica progresji;
\(n\) – całkowita liczba elementów.

Przykład. Znajdź sumę pierwszych \(33\)-ex wyrazów ciągu arytmetycznego: \(17\); \(15,5\); \(14\)…
Rozwiązanie:

Odpowiedź: \(S_(33)=-231\).

Bardziej złożone problemy postępu arytmetycznego

Teraz masz wszystkie informacje potrzebne do rozwiązania niemal każdego problemu postępu arytmetycznego. Zakończmy temat rozważeniem problemów, w których trzeba nie tylko zastosować formuły, ale też trochę pomyśleć (w matematyce może się to przydać ☺)

Przykład (OGE). Znajdź sumę wszystkich ujemnych wyrazów progresji: \(-19,3\); \(-19\); \(-18,7\)…
Rozwiązanie:

\(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\)

Zadanie jest bardzo podobne do poprzedniego. Zaczynamy rozwiązywać to samo: najpierw znajdujemy \(d\).

\(d=a_2-a_1=-19-(-19,3)=0,3\)

Teraz chciałbym podstawić \(d\) do wzoru na sumę... i tu pojawia się mały niuans - nie wiemy \(n\). Innymi słowy, nie wiemy, ile terminów trzeba będzie dodać. Jak się dowiedzieć? Pomyślmy. Przestaniemy dodawać elementy, gdy osiągniemy pierwszy pozytywny element. Oznacza to, że musisz znaleźć numer tego elementu. Jak? Zapiszmy dla naszego przypadku wzór na obliczenie dowolnego elementu ciągu arytmetycznego: \(a_n=a_1+(n-1)d\).

\(a_n=a_1+(n-1)d\)

\(a_n=-19,3+(n-1)·0,3\)

Potrzebujemy \(a_n\), aby stać się większym od zera. Dowiedzmy się, kiedy \(n\) to się stanie.

\(-19,3+(n-1)·0,3>0\)

\((n-1)·0,3>19,3\) \(|:0,3\)

Obie strony nierówności dzielimy przez \(0,3\).

\(n-1>\)\(\frac(19.3)(0.3)\)

Przenosimy minus jeden, nie zapominając o zmianie znaków

\(n>\)\(\frac(19.3)(0.3)\) \(+1\)

Obliczmy...

\(n>65 333…\)

...i okazuje się, że pierwszy dodatni element będzie miał liczbę \(66\). Odpowiednio, ostatnia liczba ujemna ma \(n=65\). Na wszelki wypadek sprawdźmy to.

\(n=65;\) \(a_(65)=-19,3+(65-1)·0,3=-0,1\)
\(n=66;\) \(a_(66)=-19,3+(66-1)·0,3=0,2\)

Musimy więc dodać pierwsze \(65\) elementy.

\(S_(65)=\) \(\frac(2 \cdot (-19,3)+(65-1)0,3)(2)\)\(\cdot 65\)
\(S_(65)=\)\((-38,6+19,2)(2)\)\(\cdot 65=-630,5\)

Odpowiedź jest gotowa.

Odpowiedź: \(S_(65)=-630,5\).

Przykład (OGE). Postęp arytmetyczny określony jest przez warunki: \(a_1=-33\); \(a_(n+1)=a_n+4\). Znajdź sumę od \(26\) do \(42\) elementu włącznie.
Rozwiązanie:

\(a_1=-33;\) \(a_(n+1)=a_n+4\)

W tym zadaniu również trzeba znaleźć sumę elementów, ale zaczynając nie od pierwszego, ale od \(26\)-tego. Na taki przypadek nie mamy wzoru. Jak zdecydować?
To proste - aby otrzymać sumę od \(26\)-tej do \(42\)-tej, musisz najpierw znaleźć sumę od \(1\)-tej do \(42\)-tej, a następnie odjąć z niego suma od pierwszej do (25) (patrz rysunek).


Dla naszej progresji \(a_1=-33\) i różnicy \(d=4\) (w końcu dodajemy czwórkę do poprzedniego elementu, żeby znaleźć następny). Wiedząc o tym, znajdujemy sumę pierwszych \(42\)-y elementów.

\(S_(42)=\) \(\frac(2 \cdot (-33)+(42-1)4)(2)\)\(\cdot 42=\)
\(=\)\(\frac(-66+164)(2)\) \(\cdot 42=2058\)

Teraz suma pierwszych \(25\) elementów.

\(S_(25)=\) \(\frac(2 \cdot (-33)+(25-1)4)(2)\)\(\cdot 25=\)
\(=\)\(\frac(-66+96)(2)\) \(\cdot 25=375\)

Na koniec obliczamy odpowiedź.

\(S=S_(42)-S_(25)=2058-375=1683\)

Odpowiedź: \(S=1683\).

W przypadku postępu arytmetycznego istnieje jeszcze kilka formuł, których nie rozważaliśmy w tym artykule ze względu na ich niską przydatność praktyczną. Można je jednak łatwo znaleźć.

Postęp arytmetyczny nazwać ciąg liczb (warunki progresji)

W którym każdy kolejny termin różni się od poprzedniego nowym terminem, który jest również nazywany różnica stopnia lub progresji.

Zatem określając krok progresji i jego pierwszy człon, za pomocą wzoru można znaleźć dowolny jego element

Własności ciągu arytmetycznego

1) Każdy członek ciągu arytmetycznego, zaczynając od drugiej liczby, jest średnią arytmetyczną poprzednich i kolejnych członków ciągu arytmetycznego

Odwrotna sytuacja jest również prawdą. Jeżeli średnia arytmetyczna sąsiednich wyrazów nieparzystych (parzystych) ciągu jest równa wyrazowi znajdującemu się między nimi, to ten ciąg liczb jest postępem arytmetycznym. Korzystając z tego stwierdzenia, bardzo łatwo jest sprawdzić dowolną sekwencję.

Ponadto, dzięki właściwości postępu arytmetycznego, powyższy wzór można uogólnić na następujący

Łatwo to sprawdzić, pisząc wyrazy po prawej stronie znaku równości

Jest często stosowany w praktyce w celu uproszczenia obliczeń w problemach.

2) Sumę pierwszych n wyrazów ciągu arytmetycznego oblicza się ze wzoru

Zapamiętaj dobrze wzór na sumę postępu arytmetycznego; jest on niezbędny w obliczeniach i dość często spotykany w prostych sytuacjach życiowych.

3) Jeśli chcesz znaleźć nie całą sumę, ale część ciągu zaczynając od jego k-tego wyrazu, przyda Ci się następujący wzór na sumę

4) Praktyczne znaczenie ma znalezienie sumy n wyrazów ciągu arytmetycznego zaczynając od k-tej liczby. Aby to zrobić, użyj formuły

Na tym kończy się materiał teoretyczny i przechodzi się do rozwiązywania typowych problemów w praktyce.

Przykład 1. Znajdź czterdziesty wyraz ciągu arytmetycznego 4;7;...

Rozwiązanie:

Według stanu jaki mamy

Określmy krok progresji

Korzystając ze znanego wzoru, znajdujemy czterdziesty wyraz progresji

Przykład 2. Postęp arytmetyczny jest określony przez jego trzeci i siódmy wyraz. Znajdź pierwszy wyraz progresji i sumę dziesięciu.

Rozwiązanie:

Zapiszmy dane elementy progresji korzystając ze wzorów

Odejmujemy pierwsze od drugiego równania, w wyniku czego znajdujemy krok progresji

Podstawiamy znalezioną wartość do dowolnego z równań, aby znaleźć pierwszy wyraz ciągu arytmetycznego

Obliczamy sumę pierwszych dziesięciu wyrazów progresji

Bez stosowania skomplikowanych obliczeń znaleźliśmy wszystkie wymagane ilości.

Przykład 3. Postęp arytmetyczny jest dany przez mianownik i jeden z jego wyrazów. Znajdź pierwszy wyraz progresji, sumę jego 50 wyrazów, zaczynając od 50 i sumę pierwszych 100.

Rozwiązanie:

Zapiszmy wzór na setny element progresji

i znajdź pierwszą

Na podstawie pierwszego znajdujemy 50. wyraz progresji

Znalezienie sumy części progresji

i suma pierwszych 100

Kwota progresji wynosi 250.

Przykład 4.

Znajdź liczbę wyrazów ciągu arytmetycznego, jeśli:

a3-a1=8, a2+a4=14, Sn=111.

Rozwiązanie:

Zapiszmy równania w odniesieniu do pierwszego wyrazu i kroku progresji i określmy je

Otrzymane wartości podstawiamy do wzoru na sumę, aby określić liczbę wyrazów w sumie

Wprowadzamy uproszczenia

i rozwiąż równanie kwadratowe

Z dwóch znalezionych wartości tylko liczba 8 pasuje do warunków problemu. Zatem suma pierwszych ośmiu wyrazów progresji wynosi 111.

Przykład 5.

Rozwiązać równanie

1+3+5+...+x=307.

Rozwiązanie: To równanie jest sumą postępu arytmetycznego. Zapiszmy jego pierwszy wyraz i znajdźmy różnicę w postępie

Uwaga!
Są dodatkowe
materiały w sekcji specjalnej 555.
Dla tych, którzy są bardzo „nie bardzo…”
A dla tych, którzy „bardzo…”)

Postęp arytmetyczny to ciąg liczb, w którym każda liczba jest większa (lub mniejsza) od poprzedniej o tę samą kwotę.

Temat ten często wydaje się skomplikowany i niezrozumiały. Indeksy liter, n-ty wyraz progresji, różnica progresji - wszystko to jest w jakiś sposób mylące, tak... Ustalmy znaczenie postępu arytmetycznego i od razu wszystko się poprawi.)

Pojęcie postępu arytmetycznego.

Postęp arytmetyczny jest pojęciem bardzo prostym i przejrzystym. Czy masz jakieś wątpliwości? Na próżno.) Przekonaj się sam.

Napiszę niedokończony ciąg liczb:

1, 2, 3, 4, 5, ...

Czy możesz przedłużyć tę serię? Jakie liczby będą następne, po piątce? Wszyscy… hm… w skrócie, wszyscy zorientują się, że liczby 6, 7, 8, 9 itd. będą następne.

Skomplikujmy zadanie. Podaję niedokończony ciąg liczb:

2, 5, 8, 11, 14, ...

Będziesz mógł złapać wzór, rozszerzyć serię i nazwać siódmy Numer wiersza?

Jeśli zdałeś sobie sprawę, że ta liczba to 20, gratulacje! Nie tylko ty to czułeś kluczowe punkty postępu arytmetycznego, ale także z sukcesem wykorzystał je w biznesie! Jeśli jeszcze tego nie zrozumiałeś, czytaj dalej.

Teraz przełóżmy kluczowe punkty z wrażeń na matematykę.)

Pierwszy kluczowy punkt.

Postęp arytmetyczny dotyczy szeregów liczb. Na początku jest to mylące. Jesteśmy przyzwyczajeni do rozwiązywania równań, rysowania wykresów i tak dalej... Ale tutaj przedłużamy szereg, znajdujemy numer szeregu...

W porządku. Tyle, że progresje to pierwsza znajomość z nową gałęzią matematyki. Sekcja nosi nazwę „Seria” i działa w szczególności z seriami liczb i wyrażeń. Przyzwyczaić się do tego.)

Drugi kluczowy punkt.

W postępie arytmetycznym każda liczba różni się od poprzedniej o tę samą kwotę.

W pierwszym przykładzie różnica ta wynosi jeden. Bez względu na to, jaką liczbę wybierzesz, będzie ona o jeden większa od poprzedniej. W drugim - trzy. Dowolna liczba jest o trzy większa od poprzedniej. Właściwie to właśnie ten moment daje nam możliwość uchwycenia wzoru i obliczenia kolejnych liczb.

Trzeci kluczowy punkt.

Ten moment nie jest uderzający, to prawda... Ale jest bardzo, bardzo ważny. Tutaj jest: Każdy numer progresji znajduje się na swoim miejscu. Jest pierwsza liczba, jest siódma, jest czterdziesta piąta itd. Jeśli losowo je pomieszasz, wzór zniknie. Zniknie także postęp arytmetyczny. Pozostała tylko seria liczb.

O to właśnie chodzi.

Oczywiście w nowym temacie pojawiają się nowe terminy i oznaczenia. Musisz je poznać. Inaczej nie zrozumiesz zadania. Na przykład będziesz musiał zdecydować o czymś takim:

Zapisz pierwsze sześć wyrazów ciągu arytmetycznego (a n), jeśli a 2 = 5, d = -2,5.

Inspirujesz?) Listy, jakieś indeksy... A zadanie, swoją drogą, nie mogło być prostsze. Musisz tylko zrozumieć znaczenie terminów i oznaczeń. Teraz opanujemy tę sprawę i wrócimy do zadania.

Terminy i oznaczenia.

Postęp arytmetyczny to ciąg liczb, w którym każda liczba różni się od poprzedniej o tę samą kwotę.

Ta ilość nazywa się . Przyjrzyjmy się tej koncepcji bardziej szczegółowo.

Różnica postępu arytmetycznego.

Różnica postępu arytmetycznego to kwota, o jaką dowolny numer progresji więcej Poprzedni.

Jeden ważny punkt. Proszę zwrócić uwagę na słowo "więcej". Matematycznie oznacza to, że każdy numer progresji jest poprzez dodanie różnica postępu arytmetycznego do poprzedniej liczby.

Powiedzmy, że do obliczenia drugi numery serii, musisz Pierwszy numer dodać właśnie tę różnicę w postępie arytmetycznym. Do obliczeń piąty- różnica jest konieczna dodać Do czwarty, cóż, itp.

Różnica postępu arytmetycznego Może pozytywny, wtedy każda liczba w szeregu okaże się prawdziwa więcej niż poprzednio. Ten postęp nazywa się wzrastający. Na przykład:

8; 13; 18; 23; 28; .....

Tutaj uzyskuje się każdą liczbę poprzez dodanie liczba dodatnia, +5 do poprzedniej.

Różnica może być negatywny, wtedy każda liczba w serii będzie mniej niż poprzednio. Ten postęp nazywa się (nie uwierzysz!) malejące.

Na przykład:

8; 3; -2; -7; -12; .....

Tutaj również uzyskuje się każdą liczbę poprzez dodanie do poprzedniej, ale już liczbą ujemną, -5.

Swoją drogą, pracując z progresją, bardzo przydatne jest od razu określenie jej charakteru – czy jest ona rosnąca, czy malejąca. To bardzo pomaga w podjęciu decyzji, dostrzeżeniu błędów i skorygowaniu ich, zanim będzie za późno.

Różnica postępu arytmetycznego zwykle oznaczone literą D.

Jak znaleźć D? Bardzo prosta. Konieczne jest odjęcie od dowolnej liczby w serii poprzedni numer. Odejmować. Nawiasem mówiąc, wynik odejmowania nazywa się „różnicą”).

Zdefiniujmy np. D dla zwiększenia postępu arytmetycznego:

2, 5, 8, 11, 14, ...

Bierzemy dowolną liczbę z szeregu, na przykład 11. Odejmujemy od niej poprzedni numer te. 8:

To jest poprawna odpowiedź. W przypadku tego postępu arytmetycznego różnica wynosi trzy.

Możesz to wziąć dowolny numer progresji, ponieważ dla konkretnego postępu D-zawsze to samo. Przynajmniej gdzieś na początku rzędu, przynajmniej w środku, przynajmniej gdziekolwiek. Nie możesz wziąć tylko pierwszej cyfry. Po prostu dlatego, że jest to pierwsza liczba żadnego poprzedniego.)

Swoją drogą, wiedząc to d=3, znalezienie siódmej liczby tego ciągu jest bardzo proste. Do piątej liczby dodajemy 3 – otrzymamy szóstą, będzie to 17. Do szóstej liczby dodamy trzy, otrzymamy siódmą liczbę – dwadzieścia.

Zdefiniujmy D dla malejącego postępu arytmetycznego:

8; 3; -2; -7; -12; .....

Przypominam, że niezależnie od znaków, należy ustalić D potrzebujesz z dowolnego numeru usuń poprzednią. Wybierz dowolny numer progresji, na przykład -7. Jego poprzednia liczba to -2. Następnie:

d = -7 - (-2) = -7 + 2 = -5

Różnicą ciągu arytmetycznego może być dowolna liczba: całkowita, ułamkowa, niewymierna, dowolna liczba.

Inne terminy i oznaczenia.

Każdy numer w serii jest wywoływany członek ciągu arytmetycznego.

Każdy członek postępu ma swój numer. Liczby są ściśle uporządkowane, bez żadnych sztuczek. Pierwszy, drugi, trzeci, czwarty itd. Na przykład w progresji 2, 5, 8, 11, 14, ... dwa to pierwszy wyraz, pięć to drugi, jedenaście to czwarty, cóż, rozumiesz...) Proszę jasno zrozumieć - same liczby może być absolutnie wszystko, całe, ułamkowe, ujemne, cokolwiek, ale numeracja liczb- ściśle w porządku!

Jak napisać progresję w formie ogólnej? Bez problemu! Każda liczba w serii jest zapisana jako litera. Do oznaczenia postępu arytmetycznego zwykle używa się litery A. Numer członkowski jest oznaczony indeksem w prawym dolnym rogu. Terminy piszemy oddzielone przecinkami (lub średnikami), w następujący sposób:

1, 2, 3, 4, 5,.....

1- to jest pierwsza liczba, 3- trzeci itd. Nic fajnego. Serię tę można w skrócie zapisać w następujący sposób: (jakiś).

Progresje się zdarzają skończone i nieskończone.

Ostateczny progresja ma ograniczoną liczbę członków. Pięć, trzydzieści osiem, nieważne. Ale to liczba skończona.

Nieskończony progresja - ma nieskończoną liczbę członków, jak można się domyślić.)

Możesz napisać końcowy postęp w serii w ten sposób, ze wszystkimi terminami i kropką na końcu:

1, 2, 3, 4, 5.

Lub w ten sposób, jeśli jest wielu członków:

1, 2, ... 14, 15.

W krótkim wpisie będziesz musiał dodatkowo wskazać liczbę członków. Na przykład (dla dwudziestu członków) w ten sposób:

(n), n = 20

Nieskończony postęp można rozpoznać po elipsie na końcu wiersza, jak w przykładach z tej lekcji.

Teraz możesz rozwiązać zadania. Zadania są proste i służą wyłącznie zrozumieniu znaczenia ciągu arytmetycznego.

Przykłady zadań z postępu arytmetycznego.

Przyjrzyjmy się szczegółowo zadaniu podanemu powyżej:

1. Wypisz pierwsze sześć wyrazów ciągu arytmetycznego (an), jeśli a 2 = 5, d = -2,5.

Przetłumaczymy zadanie na zrozumiały język. Dany jest nieskończony postęp arytmetyczny. Znana jest druga liczba tej progresji: za 2 = 5. Znana jest różnica w postępie: d = -2,5. Musimy znaleźć pierwszy, trzeci, czwarty, piąty i szósty wyraz tej progresji.

Dla jasności napiszę serię zgodnie z warunkami problemu. Pierwsze sześć terminów, gdzie drugi termin to pięć:

1,5,3,4,5,6,....

3 = 2 + D

Zastąp wyrażeniem za 2 = 5 I d = -2,5. Nie zapomnij o minusie!

3=5+(-2,5)=5 - 2,5 = 2,5

Trzecia kadencja okazała się krótsza niż druga. Wszystko jest logiczne. Jeśli liczba jest większa niż poprzednia negatywny wartość, co oznacza, że ​​​​sama liczba będzie mniejsza niż poprzednia. Postęp maleje. OK, weźmy to pod uwagę.) Liczymy czwarty wyraz naszego szeregu:

4 = 3 + D

4=2,5+(-2,5)=2,5 - 2,5 = 0

5 = 4 + D

5=0+(-2,5)= - 2,5

6 = 5 + D

6=-2,5+(-2,5)=-2,5 - 2,5 = -5

Obliczono więc terminy od trzeciego do szóstego. Rezultatem jest następująca seria:

a 1, 5, 2,5, 0, -2,5, -5, ....

Pozostaje znaleźć pierwszy wyraz 1 według dobrze znanego drugiego. To krok w drugą stronę, w lewo.) Czyli różnica ciągu arytmetycznego D nie należy dodawać 2, A na wynos:

1 = 2 - D

1=5-(-2,5)=5 + 2,5=7,5

Otóż ​​to. Odpowiedź na zadanie:

7,5, 5, 2,5, 0, -2,5, -5, ...

Na marginesie chciałbym zauważyć, że rozwiązaliśmy to zadanie nawracający sposób. To straszne słowo oznacza jedynie poszukiwanie członka progresji zgodnie z poprzednim (sąsiednim) numerem. Poniżej przyjrzymy się innym sposobom pracy z progresją.

Z tego prostego zadania można wyciągnąć jeden ważny wniosek.

Pamiętać:

Jeśli znamy choć jeden wyraz i różnicę ciągu arytmetycznego, to możemy znaleźć dowolny wyraz tego ciągu.

Pamiętasz? Ten prosty wniosek pozwala rozwiązać większość problemów kursu szkolnego na ten temat. Wszystkie zadania skupiają się wokół trzech głównych parametrów: element postępu arytmetycznego, różnica w postępie, numer elementu ciągu. Wszystko.

Oczywiście cała poprzednia algebra nie jest anulowana.) Nierówności, równania i inne rzeczy są powiązane z progresją. Ale zgodnie z samym postępem- wszystko kręci się wokół trzech parametrów.

Jako przykład przyjrzyjmy się niektórym popularnym zadaniom na ten temat.

2. Zapisz skończony postęp arytmetyczny w postaci szeregu, jeśli n=5, d = 0,4 i a 1 = 3,6.

Tutaj wszystko jest proste. Wszystko zostało już dane. Trzeba pamiętać, jak liczone są elementy ciągu arytmetycznego, liczyć je i zapisywać. Wskazane jest, aby nie pominąć słów w warunkach zadania: „końcowy” i „ n=5”. Aby nie liczyć, dopóki nie zrobi ci się całkowicie siny na twarzy.) W tej progresji jest tylko 5 (pięciu) członków:

za 2 = za 1 + d = 3,6 + 0,4 = 4

za 3 = za 2 + d = 4 + 0,4 = 4,4

4 = 3 + d = 4,4 + 0,4 = 4,8

5 = 4 + d = 4,8 + 0,4 = 5,2

Pozostaje zapisać odpowiedź:

3,6; 4; 4,4; 4,8; 5,2.

Kolejne zadanie:

3. Ustal, czy liczba 7 będzie członkiem ciągu arytmetycznego (an), jeśli a1 = 4,1; d = 1,2.

Hmm... Kto wie? Jak coś ustalić?

Jak-jak... Zapisz progresję w formie serii i zobacz, czy będzie tam siódemka, czy nie! Liczymy:

za 2 = za 1 + d = 4,1 + 1,2 = 5,3

za 3 = za 2 + d = 5,3 + 1,2 = 6,5

4 = 3 + d = 6,5 + 1,2 = 7,7

4,1; 5,3; 6,5; 7,7; ...

Teraz wyraźnie widać, że mamy dopiero siedem lat Prześlizgnął się między 6,5 a 7,7! Siedem nie mieściło się w naszym szeregu liczb, a zatem siedem nie będzie członkiem danej progresji.

Odpowiedź: nie.

A oto problem oparty na prawdziwej wersji GIA:

4. Zapisano kilka kolejnych wyrazów postępu arytmetycznego:

...; 15; X; 9; 6; ...

Oto seria napisana bez końca i początku. Żadnych numerów członkowskich, żadnej różnicy D. W porządku. Aby rozwiązać problem, wystarczy zrozumieć znaczenie ciągu arytmetycznego. Spójrzmy i zobaczmy, co jest możliwe wiedzieć z tej serii? Jakie są trzy główne parametry?

Numery członkowskie? Nie ma tu ani jednej liczby.

Ale są trzy liczby i - uwaga! - słowo "spójny" w stanie. Oznacza to, że liczby są ściśle uporządkowane, bez przerw. Czy w tym rzędzie jest dwóch? sąsiedni znane liczby? Tak, mam! Są to 9 i 6. Możemy zatem obliczyć różnicę postępu arytmetycznego! Odejmij od sześciu poprzedni numer, tj. dziewięć:

Pozostały już tylko drobnostki. Jaka liczba będzie poprzednia dla X? Piętnaście. Oznacza to, że X można łatwo znaleźć poprzez proste dodanie. Dodaj różnicę postępu arytmetycznego do 15:

To wszystko. Odpowiedź: x=12

Sami rozwiązujemy następujące problemy. Uwaga: te problemy nie są oparte na wzorach. Czysto po to, żeby zrozumieć znaczenie postępu arytmetycznego.) Po prostu zapisujemy serię cyfr i liter, patrzymy i wymyślamy.

5. Znajdź pierwszy dodatni wyraz ciągu arytmetycznego, jeśli a 5 = -3; d = 1,1.

6. Wiadomo, że liczba 5,5 należy do ciągu arytmetycznego (an), gdzie a 1 = 1,6; d = 1,3. Określ liczbę n tego wyrazu.

7. Wiadomo, że w postępie arytmetycznym a 2 = 4; za 5 = 15,1. Znajdź 3.

8. Zapisano kilka kolejnych wyrazów postępu arytmetycznego:

...; 15,6; X; 3,4; ...

Znajdź termin progresji wskazany literą x.

9. Pociąg ruszył ze stacji, równomiernie zwiększając prędkość o 30 metrów na minutę. Jaka będzie prędkość pociągu za pięć minut? Podaj odpowiedź w km/h.

10. Wiadomo, że w postępie arytmetycznym a 2 = 5; za 6 = -5. Znajdź 1.

Odpowiedzi (w nieładzie): 7,7; 7,5; 9,5; 9; 0,3; 4.

Wszystko się udało? Niesamowity! Na kolejnych lekcjach możesz opanować progresję arytmetyczną na wyższym poziomie.

Czy nie wszystko się udało? Bez problemu. W sekcji specjalnej 555 wszystkie te problemy są rozwiązywane kawałek po kawałku.) I oczywiście opisano prostą praktyczną technikę, która natychmiast jasno, wyraźnie i na pierwszy rzut oka podkreśla rozwiązanie takich zadań!

Nawiasem mówiąc, w układance pociągu są dwa problemy, o które ludzie często się potykają. Jeden dotyczy wyłącznie postępów, a drugi jest ogólny dla wszelkich problemów z matematyki, a także fizyki. Jest to tłumaczenie wymiarów z jednego na drugi. Pokazuje, jak należy te problemy rozwiązać.

Na tej lekcji przyjrzeliśmy się elementarnemu znaczeniu ciągu arytmetycznego i jego głównym parametrom. To wystarczy, aby rozwiązać prawie wszystkie problemy na ten temat. Dodać D do liczb, napisz serię, wszystko zostanie rozwiązane.

Rozwiązanie z palcami sprawdza się w przypadku bardzo krótkich fragmentów rzędu, jak w przykładach z tej lekcji. Jeżeli szereg jest dłuższy, obliczenia stają się bardziej skomplikowane. Na przykład, jeśli w zadaniu 9 w pytaniu zastępujemy "pięć minut" NA „trzydzieści pięć minut” problem znacznie się pogorszy.)

Są też zadania, które w istocie są proste, ale absurdalne pod względem obliczeniowym, na przykład:

Dany jest postęp arytmetyczny (an). Znajdź 121, jeśli a 1 = 3 i d = 1/6.

I co, będziemy dodawać 1/6 wiele, wiele razy?! Możesz się zabić!?

Możesz.) Jeśli nie znasz prostej formuły, dzięki której możesz rozwiązać takie zadania w ciągu minuty. Ta formuła będzie na następnej lekcji. I tam ten problem został rozwiązany. W minutę.)

Jeśli podoba Ci się ta strona...

Przy okazji, mam dla Ciebie jeszcze kilka ciekawych stron.)

Możesz poćwiczyć rozwiązywanie przykładów i sprawdzić swój poziom. Testowanie z natychmiastową weryfikacją. Uczmy się - z zainteresowaniem!)

Można zapoznać się z funkcjami i pochodnymi.

I. V. Jakowlew | Materiały matematyczne | MathUs.ru

Postęp arytmetyczny

Postęp arytmetyczny jest szczególnym rodzajem ciągu. Dlatego przed zdefiniowaniem postępu arytmetycznego (a następnie geometrycznego) musimy pokrótce omówić ważne pojęcie ciągu liczbowego.

Podciąg

Wyobraźmy sobie urządzenie, na ekranie którego wyświetlane są jedna po drugiej określone liczby. powiedzmy 2; 7; 13; 1; 6; 0; 3; : : : Ten zbiór liczb jest właśnie przykładem ciągu.

Definicja. Ciąg liczb to zbiór liczb, w którym każdej liczbie można przypisać unikatową liczbę (tzn. powiązać ją z pojedynczą liczbą naturalną)1. Liczbę n nazywa się n-tym wyrazem ciągu.

Zatem w powyższym przykładzie pierwszą liczbą jest 2, jest to pierwszy element ciągu, który można oznaczyć przez a1; liczba pięć ma liczbę 6 jest piątym wyrazem ciągu, który można oznaczyć przez a5. Ogólnie rzecz biorąc, n-ty wyraz ciągu jest oznaczany przez an (lub bn, cn itp.).

Bardzo wygodną sytuacją jest sytuacja, gdy n-ty wyraz ciągu można określić jakimś wzorem. Na przykład wzór an = 2n 3 określa sekwencję: 1; 1; 3; 5; 7; : : : Wzór an = (1)n określa sekwencję: 1; 1; 1; 1; : : :

Nie każdy zbiór liczb jest sekwencją. Zatem segment nie jest sekwencją; zawiera „zbyt wiele” liczb, aby można je było przenumerować. Zbiór R wszystkich liczb rzeczywistych również nie jest ciągiem. Fakty te potwierdza się w toku analizy matematycznej.

Postęp arytmetyczny: podstawowe definicje

Teraz jesteśmy gotowi zdefiniować postęp arytmetyczny.

Definicja. Postęp arytmetyczny to ciąg, w którym każdy wyraz (począwszy od drugiego) jest równy sumie poprzedniego wyrazu i pewnej ustalonej liczby (zwanej różnicą postępu arytmetycznego).

Na przykład sekwencja 2; 5; 8; jedenaście; : : : jest postępem arytmetycznym z pierwszym wyrazem 2 i różnicą 3. Sekwencja 7; 2; 3; 8; : : : jest postępem arytmetycznym z pierwszym wyrazem 7 i różnicą 5. Sekwencja 3; 3; 3; : : : jest postępem arytmetycznym z różnicą równą zero.

Definicja równoważna: ciąg an nazywa się postępem arytmetycznym, jeśli różnica an+1 an jest wartością stałą (niezależną od n).

Postęp arytmetyczny nazywa się rosnącym, jeśli jego różnica jest dodatnia, i malejącym, jeśli jego różnica jest ujemna.

1 Ale tutaj jest bardziej zwięzła definicja: ciąg jest funkcją zdefiniowaną na zbiorze liczb naturalnych. Na przykład ciąg liczb rzeczywistych jest funkcją f: N ! R.

Domyślnie sekwencje są uważane za nieskończone, to znaczy zawierające nieskończoną liczbę liczb. Ale nikt nie przeszkadza nam rozważać ciągów skończonych; w rzeczywistości każdy skończony zbiór liczb można nazwać ciągiem skończonym. Na przykład sekwencja końcowa to 1; 2; 3; 4; Liczba 5 składa się z pięciu liczb.

Wzór na n-ty wyraz ciągu arytmetycznego

Łatwo zrozumieć, że postęp arytmetyczny jest całkowicie określony przez dwie liczby: pierwszy wyraz i różnicę. Powstaje zatem pytanie: jak znając pierwszy wyraz i różnicę znaleźć dowolny wyraz ciągu arytmetycznego?

Znalezienie wymaganego wzoru na n-ty wyraz ciągu arytmetycznego nie jest trudne. Niech

postęp arytmetyczny z różnicą d. Mamy:

an+1 = an + re (n = 1; 2; : : :):

W szczególności piszemy:

a2 = a1 + re;

a3 = a2 + d = (a1 + d) + d = a1 + 2d;

a4 = a3 + d = (a1 + 2d) + d = a1 + 3d;

i teraz staje się jasne, że wzór na an jest następujący:

an = a1 + (n 1)d:

Zadanie 1. W postępie arytmetycznym 2; 5; 8; jedenaście; : : : znajdź wzór na n-ty wyraz i oblicz setny wyraz.

Rozwiązanie. Zgodnie ze wzorem (1) mamy:

an = 2 + 3(n 1) = 3n 1:

a100 = 3 100 1 = 299:

Własność i znak postępu arytmetycznego

Własność postępu arytmetycznego. W postępie arytmetycznym an dla dowolnego

Inaczej mówiąc, każdy element ciągu arytmetycznego (zaczynając od drugiego) jest średnią arytmetyczną sąsiadujących z nim elementów.

Dowód. Mamy:

za n 1+ i n+1

(i d) + (an + d)

czyli to, co było wymagane.

Mówiąc bardziej ogólnie, postęp arytmetyczny an spełnia równość

za n = za n k+ za n+k

dla dowolnego n > 2 i dowolnego naturalnego k< n. Попробуйте самостоятельно доказать эту формулу тем же самым приёмом, что и формулу (2 ).

Okazuje się, że wzór (2) jest nie tylko warunkiem koniecznym, ale i wystarczającym, aby ciąg był ciągiem arytmetycznym.

Znak postępu arytmetycznego. Jeśli równość (2) zachodzi dla wszystkich n > 2, to ciąg an jest postępem arytmetycznym.

Dowód. Przepiszmy wzór (2) w następujący sposób:

za na n 1= za n+1a n:

Widzimy z tego, że różnica an+1 an nie zależy od n, a to dokładnie oznacza, że ​​ciąg an jest postępem arytmetycznym.

Własność i znak postępu arytmetycznego można sformułować w postaci jednego stwierdzenia; Dla wygody zrobimy to dla trzech liczb (jest to sytuacja, która często pojawia się w problemach).

Charakterystyka postępu arytmetycznego. Trzy liczby a, b, c tworzą ciąg arytmetyczny wtedy i tylko wtedy, gdy 2b = a + c.

Zadanie 2. (MSU, Wydział Ekonomiczny, 2007) Trzy liczby 8x, 3x2 i 4 we wskazanej kolejności tworzą malejący postęp arytmetyczny. Znajdź x i wskaż różnicę tego postępu.

Rozwiązanie. Z własności postępu arytmetycznego mamy:

2(3 x2 ) = 8x 4 , 2x2 + 8x 10 = 0 , x2 + 4x 5 = 0 , x = 1; x = 5:

Jeśli x = 1, to otrzymamy postęp malejący 8, 2, 4 z różnicą 6. Jeśli x = 5, to otrzymamy postęp rosnący 40, 22, 4; ten przypadek nie jest odpowiedni.

Odpowiedź: x = 1, różnica wynosi 6.

Suma pierwszych n wyrazów ciągu arytmetycznego

Legenda głosi, że pewnego dnia nauczyciel kazał dzieciom znaleźć sumę liczb od 1 do 100 i spokojnie usiadł, aby przeczytać gazetę. Jednak w ciągu kilku minut jeden chłopiec oznajmił, że rozwiązał problem. Był to 9-letni Carl Friedrich Gauss, późniejszy jeden z najwybitniejszych matematyków w historii.

Pomysł małego Gaussa był następujący. Pozwalać

S = 1 + 2 + 3 + : : : + 98 + 99 + 100:

Zapiszmy tę kwotę w odwrotnej kolejności:

S = 100 + 99 + 98 + : : : + 3 + 2 + 1;

i dodaj te dwie formuły:

2S = (1 + 100) + (2 + 99) + (3 + 98) + : : : + (98 + 3) + (99 + 2) + (100 + 1):

Każdy wyraz w nawiasie jest równy 101, a zatem w sumie jest 100 takich wyrazów

2S = 101 100 = 10100;

Używamy tego pomysłu do wyprowadzenia wzoru na sumę

S = a1 + a2 + : : : + an + za n n: (3)

Przydatną modyfikację wzoru (3) uzyskamy, jeśli podstawimy do niego wzór n-tego wyrazu an = a1 + (n 1)d:

2a1 + (n 1)d

Zadanie 3. Znajdź sumę wszystkich dodatnich liczb trzycyfrowych podzielnych przez 13.

Rozwiązanie. Liczby trzycyfrowe będące wielokrotnościami 13 tworzą ciąg arytmetyczny, w którym pierwszy wyraz wynosi 104, a różnica wynosi 13; N-ty wyraz tego ciągu ma postać:

an = 104 + 13(n 1) = 91 + 13n:

Przekonajmy się, ile terminów zawiera nasza progresja. W tym celu rozwiązujemy nierówność:

6 999; 91 + 13n 6 999;

n 6 908 13 = 6911 13 ; n 6 69:

Zatem w naszym postępie jest 69 członków. Korzystając ze wzoru (4) znajdujemy wymaganą ilość:

S = 2 104 + 68 13 69 = 37674: 2