Menukar logaritma kepada asas baharu. Mengeluarkan eksponen daripada logaritma

sifat utama.

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

alasan yang sama

Log6 4 + log6 9.

Sekarang mari kita merumitkan sedikit tugas.

Contoh penyelesaian logaritma

Bagaimana jika asas atau hujah logaritma ialah kuasa? Kemudian eksponen darjah ini boleh dikeluarkan dari tanda logaritma mengikut peraturan berikut:

Sudah tentu, semua peraturan ini masuk akal jika ODZ logaritma diperhatikan: a > 0, a ≠ 1, x >

Tugasan. Cari maksud ungkapan:

Peralihan kepada asas baharu

Biarkan logaritma logax diberikan. Kemudian untuk sebarang nombor c supaya c > 0 dan c ≠ 1, kesamaan adalah benar:

Tugasan. Cari maksud ungkapan:

Lihat juga:


Sifat asas logaritma

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Eksponennya ialah 2.718281828…. Untuk mengingati eksponen, anda boleh mengkaji peraturan: eksponen adalah sama dengan 2.7 dan dua kali tahun kelahiran Leo Nikolaevich Tolstoy.

Sifat asas logaritma

Mengetahui peraturan ini, anda akan mengetahui nilai sebenar eksponen dan tarikh lahir Leo Tolstoy.


Contoh untuk logaritma

Ungkapan logaritma

Contoh 1.
A). x=10ac^2 (a>0,c>0).

Menggunakan sifat 3.5 kami mengira

2.

3.

4. di mana .



Contoh 2. Cari x jika


Contoh 3. Biarkan nilai logaritma diberikan

Kira log(x) jika




Sifat asas logaritma

Logaritma, seperti mana-mana nombor, boleh ditambah, ditolak dan diubah dalam semua cara. Tetapi kerana logaritma bukan nombor biasa, terdapat peraturan di sini, yang dipanggil sifat utama.

Anda pastinya perlu mengetahui peraturan ini - tanpanya, tiada satu masalah logaritma yang serius boleh diselesaikan. Di samping itu, terdapat sangat sedikit daripada mereka - anda boleh mempelajari segala-galanya dalam satu hari. Jadi mari kita mulakan.

Menambah dan menolak logaritma

Pertimbangkan dua logaritma dengan asas yang sama: logax dan logay. Kemudian mereka boleh ditambah dan ditolak, dan:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

Jadi, jumlah logaritma adalah sama dengan logaritma hasil darab, dan perbezaannya adalah sama dengan logaritma hasil bagi. Sila ambil perhatian: perkara utama di sini ialah alasan yang sama. Jika alasannya berbeza, peraturan ini tidak berfungsi!

Formula ini akan membantu anda mengira ungkapan logaritma walaupun bahagian individunya tidak dipertimbangkan (lihat pelajaran "Apakah itu logaritma"). Lihat contoh dan lihat:

Oleh kerana logaritma mempunyai asas yang sama, kami menggunakan formula jumlah:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Tugasan. Cari nilai ungkapan: log2 48 − log2 3.

Asasnya adalah sama, kami menggunakan formula perbezaan:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Tugasan. Cari nilai ungkapan: log3 135 − log3 5.

Sekali lagi pangkalannya adalah sama, jadi kita ada:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Seperti yang anda lihat, ungkapan asal terdiri daripada logaritma "buruk", yang tidak dikira secara berasingan. Tetapi selepas transformasi, nombor normal sepenuhnya diperolehi. Banyak ujian berdasarkan fakta ini. Ya, ungkapan seperti ujian ditawarkan dalam semua kesungguhan (kadangkala hampir tiada perubahan) pada Peperiksaan Negeri Bersepadu.

Mengeluarkan eksponen daripada logaritma

Adalah mudah untuk melihat bahawa peraturan terakhir mengikuti dua yang pertama. Tetapi lebih baik untuk mengingatinya - dalam beberapa kes ia akan mengurangkan jumlah pengiraan dengan ketara.

Sudah tentu, semua peraturan ini masuk akal jika ODZ logaritma diperhatikan: a > 0, a ≠ 1, x > 0. Dan satu lagi perkara: belajar menggunakan semua formula bukan sahaja dari kiri ke kanan, tetapi juga sebaliknya , iaitu Anda boleh memasukkan nombor sebelum logaritma masuk ke dalam logaritma itu sendiri. Inilah yang paling kerap diperlukan.

Tugasan. Cari nilai ungkapan: log7 496.

Mari kita buang darjah dalam hujah menggunakan formula pertama:
log7 496 = 6 log7 49 = 6 2 = 12

Tugasan. Cari maksud ungkapan:

Ambil perhatian bahawa penyebut mengandungi logaritma, asas dan hujahnya adalah kuasa tepat: 16 = 24; 49 = 72. Kami ada:

Saya rasa contoh terakhir memerlukan beberapa penjelasan. Ke mana perginya logaritma? Sehingga saat terakhir kita bekerja hanya dengan penyebut.

Formula logaritma. Penyelesaian contoh logaritma.

Kami membentangkan asas dan hujah logaritma yang berdiri di sana dalam bentuk kuasa dan mengeluarkan eksponen - kami mendapat pecahan "tiga tingkat".

Sekarang mari kita lihat pecahan utama. Pengangka dan penyebut mengandungi nombor yang sama: log2 7. Oleh kerana log2 7 ≠ 0, kita boleh mengurangkan pecahan - 2/4 akan kekal dalam penyebut. Mengikut peraturan aritmetik, empat boleh dipindahkan ke pengangka, iaitu apa yang telah dilakukan. Hasilnya ialah jawapan: 2.

Peralihan kepada asas baharu

Bercakap tentang peraturan untuk menambah dan menolak logaritma, saya secara khusus menekankan bahawa ia hanya berfungsi dengan asas yang sama. Bagaimana jika sebabnya berbeza? Bagaimana jika mereka bukan kuasa tepat nombor yang sama?

Formula untuk peralihan kepada asas baharu datang untuk menyelamatkan. Mari kita rumuskan dalam bentuk teorem:

Biarkan logaritma logax diberikan. Kemudian untuk sebarang nombor c supaya c > 0 dan c ≠ 1, kesamaan adalah benar:

Khususnya, jika kita menetapkan c = x, kita mendapat:

Daripada formula kedua ia mengikuti bahawa asas dan hujah logaritma boleh ditukar, tetapi dalam kes ini keseluruhan ungkapan "terbalik", i.e. logaritma muncul dalam penyebut.

Formula ini jarang ditemui dalam ungkapan berangka biasa. Adalah mungkin untuk menilai betapa mudahnya mereka hanya apabila menyelesaikan persamaan logaritma dan ketaksamaan.

Namun, terdapat masalah yang tidak dapat diselesaikan sama sekali kecuali dengan berpindah ke asas baru. Mari kita lihat beberapa perkara ini:

Tugasan. Cari nilai ungkapan: log5 16 log2 25.

Ambil perhatian bahawa hujah kedua-dua logaritma mengandungi kuasa yang tepat. Mari kita keluarkan penunjuk: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Sekarang mari kita "terbalikkan" logaritma kedua:

Oleh kerana produk tidak berubah apabila menyusun semula faktor, kami dengan tenang mendarab empat dan dua, dan kemudian menangani logaritma.

Tugasan. Cari nilai ungkapan: log9 100 lg 3.

Asas dan hujah logaritma pertama adalah kuasa yang tepat. Mari kita tulis ini dan singkirkan penunjuk:

Sekarang mari kita buang logaritma perpuluhan dengan berpindah ke pangkalan baharu:

Identiti logaritma asas

Selalunya dalam proses penyelesaian adalah perlu untuk mewakili nombor sebagai logaritma kepada asas tertentu. Dalam kes ini, formula berikut akan membantu kami:

Dalam kes pertama, nombor n menjadi eksponen dalam hujah. Nombor n boleh menjadi apa-apa sahaja, kerana ia hanyalah nilai logaritma.

Formula kedua sebenarnya adalah definisi yang diparafrasa. Itulah namanya: .

Sebenarnya, apakah yang berlaku jika nombor b dinaikkan kepada kuasa sedemikian sehingga nombor b kepada kuasa ini memberikan nombor a? Betul: hasilnya adalah nombor yang sama a. Baca perenggan ini dengan teliti sekali lagi - ramai orang terjebak padanya.

Seperti formula untuk berpindah ke pangkalan baharu, identiti logaritma asas kadangkala merupakan satu-satunya penyelesaian yang mungkin.

Tugasan. Cari maksud ungkapan:

Ambil perhatian bahawa log25 64 = log5 8 - hanya mengambil kuasa dua daripada asas dan hujah logaritma. Dengan mengambil kira peraturan untuk mendarab kuasa dengan asas yang sama, kita mendapat:

Jika ada yang tidak tahu, ini adalah tugas sebenar dari Peperiksaan Negeri Bersepadu :)

Unit logaritma dan sifar logaritma

Sebagai kesimpulan, saya akan memberikan dua identiti yang hampir tidak boleh dipanggil sifat - sebaliknya, ia adalah akibat daripada takrifan logaritma. Mereka sentiasa muncul dalam masalah dan, secara mengejutkan, mencipta masalah walaupun untuk pelajar "maju".

  1. logaa = 1 ialah. Ingat sekali dan untuk semua: logaritma kepada mana-mana asas a asas itu sendiri adalah sama dengan satu.
  2. loga 1 = 0 ialah. Asas a boleh menjadi apa-apa, tetapi jika hujah mengandungi satu, logaritma adalah sama dengan sifar! Kerana a0 = 1 adalah akibat langsung dari definisi.

Itu semua sifatnya. Pastikan anda berlatih mempraktikkannya! Muat turun helaian panduan pada permulaan pelajaran, cetaknya dan selesaikan masalah.

Lihat juga:

Logaritma b kepada asas a menandakan ungkapan. Untuk mengira logaritma bermakna mencari kuasa x () di mana kesamaan itu dipenuhi

Sifat asas logaritma

Adalah perlu untuk mengetahui sifat di atas, kerana hampir semua masalah dan contoh yang berkaitan dengan logaritma diselesaikan berdasarkan mereka. Selebihnya sifat eksotik boleh diperoleh melalui manipulasi matematik dengan formula ini

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Apabila mengira formula untuk jumlah dan perbezaan logaritma (3.4) anda sering terjumpa. Selebihnya agak rumit, tetapi dalam beberapa tugas, ia amat diperlukan untuk memudahkan ungkapan kompleks dan mengira nilainya.

Kes biasa logaritma

Beberapa logaritma biasa ialah logaritma yang asasnya ialah sepuluh, eksponen atau dua.
Logaritma kepada asas sepuluh biasanya dipanggil logaritma perpuluhan dan hanya dilambangkan dengan lg(x).

Jelas dari rakaman itu bahawa asas tidak ditulis dalam rakaman. Contohnya

Logaritma asli ialah logaritma yang tapaknya ialah eksponen (ditandakan dengan ln(x)).

Eksponennya ialah 2.718281828…. Untuk mengingati eksponen, anda boleh mengkaji peraturan: eksponen adalah sama dengan 2.7 dan dua kali tahun kelahiran Leo Nikolaevich Tolstoy. Mengetahui peraturan ini, anda akan mengetahui nilai sebenar eksponen dan tarikh lahir Leo Tolstoy.

Dan satu lagi logaritma penting kepada asas dua dilambangkan dengan

Terbitan logaritma fungsi adalah sama dengan satu dibahagikan dengan pembolehubah

Logaritma kamiran atau antiterbitan ditentukan oleh hubungan

Bahan yang diberikan sudah cukup untuk anda menyelesaikan kelas masalah yang luas berkaitan dengan logaritma dan logaritma. Untuk membantu anda memahami bahan tersebut, saya hanya akan memberikan beberapa contoh biasa daripada kurikulum sekolah dan universiti.

Contoh untuk logaritma

Ungkapan logaritma

Contoh 1.
A). x=10ac^2 (a>0,c>0).

Menggunakan sifat 3.5 kami mengira

2.
Dengan sifat perbezaan logaritma yang kita ada

3.
Menggunakan sifat 3.5 kita dapati

4. di mana .

Ungkapan yang kelihatan kompleks dipermudahkan untuk dibentuk menggunakan beberapa peraturan

Mencari nilai logaritma

Contoh 2. Cari x jika

Penyelesaian. Untuk pengiraan, kami memohon kepada penggal terakhir 5 dan 13 sifat

Kami meletakkannya dalam rekod dan berkabung

Oleh kerana asas adalah sama, kami menyamakan ungkapan

Logaritma. Tahap kemasukan.

Biarkan nilai logaritma diberikan

Kira log(x) jika

Penyelesaian: Mari kita ambil logaritma pembolehubah untuk menulis logaritma melalui hasil tambah sebutannya


Ini hanyalah permulaan perkenalan kita dengan logaritma dan sifatnya. Amalkan pengiraan, perkayakan kemahiran praktikal anda - tidak lama lagi anda akan memerlukan pengetahuan yang anda peroleh untuk menyelesaikan persamaan logaritma. Setelah mempelajari kaedah asas untuk menyelesaikan persamaan tersebut, kami akan mengembangkan pengetahuan anda kepada topik lain yang sama penting - ketaksamaan logaritma...

Sifat asas logaritma

Logaritma, seperti mana-mana nombor, boleh ditambah, ditolak dan diubah dalam semua cara. Tetapi kerana logaritma bukan nombor biasa, terdapat peraturan di sini, yang dipanggil sifat utama.

Anda pastinya perlu mengetahui peraturan ini - tanpanya, tiada satu masalah logaritma yang serius boleh diselesaikan. Di samping itu, terdapat sangat sedikit daripada mereka - anda boleh mempelajari segala-galanya dalam satu hari. Jadi mari kita mulakan.

Menambah dan menolak logaritma

Pertimbangkan dua logaritma dengan asas yang sama: logax dan logay. Kemudian mereka boleh ditambah dan ditolak, dan:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

Jadi, jumlah logaritma adalah sama dengan logaritma hasil darab, dan perbezaannya adalah sama dengan logaritma hasil bagi. Sila ambil perhatian: perkara utama di sini ialah alasan yang sama. Jika alasannya berbeza, peraturan ini tidak berfungsi!

Formula ini akan membantu anda mengira ungkapan logaritma walaupun bahagian individunya tidak dipertimbangkan (lihat pelajaran "Apakah itu logaritma"). Lihat contoh dan lihat:

Tugasan. Cari nilai ungkapan: log6 4 + log6 9.

Oleh kerana logaritma mempunyai asas yang sama, kami menggunakan formula jumlah:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Tugasan. Cari nilai ungkapan: log2 48 − log2 3.

Asasnya adalah sama, kami menggunakan formula perbezaan:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Tugasan. Cari nilai ungkapan: log3 135 − log3 5.

Sekali lagi pangkalannya adalah sama, jadi kita ada:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Seperti yang anda lihat, ungkapan asal terdiri daripada logaritma "buruk", yang tidak dikira secara berasingan. Tetapi selepas transformasi, nombor normal sepenuhnya diperolehi. Banyak ujian berdasarkan fakta ini. Ya, ungkapan seperti ujian ditawarkan dalam semua kesungguhan (kadangkala hampir tiada perubahan) pada Peperiksaan Negeri Bersepadu.

Mengeluarkan eksponen daripada logaritma

Sekarang mari kita merumitkan sedikit tugas. Bagaimana jika asas atau hujah logaritma ialah kuasa? Kemudian eksponen darjah ini boleh dikeluarkan dari tanda logaritma mengikut peraturan berikut:

Adalah mudah untuk melihat bahawa peraturan terakhir mengikuti dua yang pertama. Tetapi lebih baik untuk mengingatinya - dalam beberapa kes ia akan mengurangkan jumlah pengiraan dengan ketara.

Sudah tentu, semua peraturan ini masuk akal jika ODZ logaritma diperhatikan: a > 0, a ≠ 1, x > 0. Dan satu lagi perkara: belajar menggunakan semua formula bukan sahaja dari kiri ke kanan, tetapi juga sebaliknya , iaitu Anda boleh memasukkan nombor sebelum logaritma masuk ke dalam logaritma itu sendiri.

Bagaimana untuk menyelesaikan logaritma

Inilah yang paling kerap diperlukan.

Tugasan. Cari nilai ungkapan: log7 496.

Mari kita buang darjah dalam hujah menggunakan formula pertama:
log7 496 = 6 log7 49 = 6 2 = 12

Tugasan. Cari maksud ungkapan:

Ambil perhatian bahawa penyebut mengandungi logaritma, asas dan hujahnya adalah kuasa tepat: 16 = 24; 49 = 72. Kami ada:

Saya rasa contoh terakhir memerlukan beberapa penjelasan. Ke mana perginya logaritma? Sehingga saat terakhir kita bekerja hanya dengan penyebut. Kami membentangkan asas dan hujah logaritma yang berdiri di sana dalam bentuk kuasa dan mengeluarkan eksponen - kami mendapat pecahan "tiga tingkat".

Sekarang mari kita lihat pecahan utama. Pengangka dan penyebut mengandungi nombor yang sama: log2 7. Oleh kerana log2 7 ≠ 0, kita boleh mengurangkan pecahan - 2/4 akan kekal dalam penyebut. Mengikut peraturan aritmetik, empat boleh dipindahkan ke pengangka, iaitu apa yang telah dilakukan. Hasilnya ialah jawapan: 2.

Peralihan kepada asas baharu

Bercakap tentang peraturan untuk menambah dan menolak logaritma, saya secara khusus menekankan bahawa ia hanya berfungsi dengan asas yang sama. Bagaimana jika sebabnya berbeza? Bagaimana jika mereka bukan kuasa tepat nombor yang sama?

Formula untuk peralihan kepada asas baharu datang untuk menyelamatkan. Mari kita rumuskan dalam bentuk teorem:

Biarkan logaritma logax diberikan. Kemudian untuk sebarang nombor c supaya c > 0 dan c ≠ 1, kesamaan adalah benar:

Khususnya, jika kita menetapkan c = x, kita mendapat:

Daripada formula kedua ia mengikuti bahawa asas dan hujah logaritma boleh ditukar, tetapi dalam kes ini keseluruhan ungkapan "terbalik", i.e. logaritma muncul dalam penyebut.

Formula ini jarang ditemui dalam ungkapan berangka biasa. Adalah mungkin untuk menilai betapa mudahnya mereka hanya apabila menyelesaikan persamaan logaritma dan ketaksamaan.

Namun, terdapat masalah yang tidak dapat diselesaikan sama sekali kecuali dengan berpindah ke asas baru. Mari kita lihat beberapa perkara ini:

Tugasan. Cari nilai ungkapan: log5 16 log2 25.

Ambil perhatian bahawa hujah kedua-dua logaritma mengandungi kuasa yang tepat. Mari kita keluarkan penunjuk: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Sekarang mari kita "terbalikkan" logaritma kedua:

Oleh kerana produk tidak berubah apabila menyusun semula faktor, kami dengan tenang mendarab empat dan dua, dan kemudian menangani logaritma.

Tugasan. Cari nilai ungkapan: log9 100 lg 3.

Asas dan hujah logaritma pertama adalah kuasa yang tepat. Mari kita tulis ini dan singkirkan penunjuk:

Sekarang mari kita buang logaritma perpuluhan dengan berpindah ke pangkalan baharu:

Identiti logaritma asas

Selalunya dalam proses penyelesaian adalah perlu untuk mewakili nombor sebagai logaritma kepada asas tertentu. Dalam kes ini, formula berikut akan membantu kami:

Dalam kes pertama, nombor n menjadi eksponen dalam hujah. Nombor n boleh menjadi apa-apa sahaja, kerana ia hanyalah nilai logaritma.

Formula kedua sebenarnya adalah definisi yang diparafrasa. Itulah namanya: .

Sebenarnya, apakah yang berlaku jika nombor b dinaikkan kepada kuasa sedemikian sehingga nombor b kepada kuasa ini memberikan nombor a? Betul: hasilnya adalah nombor yang sama a. Baca perenggan ini dengan teliti sekali lagi - ramai orang terjebak padanya.

Seperti formula untuk berpindah ke pangkalan baharu, identiti logaritma asas kadangkala merupakan satu-satunya penyelesaian yang mungkin.

Tugasan. Cari maksud ungkapan:

Ambil perhatian bahawa log25 64 = log5 8 - hanya mengambil kuasa dua daripada asas dan hujah logaritma. Dengan mengambil kira peraturan untuk mendarab kuasa dengan asas yang sama, kita mendapat:

Jika ada yang tidak tahu, ini adalah tugas sebenar dari Peperiksaan Negeri Bersepadu :)

Unit logaritma dan sifar logaritma

Sebagai kesimpulan, saya akan memberikan dua identiti yang hampir tidak boleh dipanggil sifat - sebaliknya, ia adalah akibat daripada takrifan logaritma. Mereka sentiasa muncul dalam masalah dan, secara mengejutkan, mencipta masalah walaupun untuk pelajar "maju".

  1. logaa = 1 ialah. Ingat sekali dan untuk semua: logaritma kepada mana-mana asas a asas itu sendiri adalah sama dengan satu.
  2. loga 1 = 0 ialah. Asas a boleh menjadi apa-apa, tetapi jika hujah mengandungi satu, logaritma adalah sama dengan sifar! Kerana a0 = 1 adalah akibat langsung dari definisi.

Itu semua sifatnya. Pastikan anda berlatih mempraktikkannya! Muat turun helaian panduan pada permulaan pelajaran, cetaknya dan selesaikan masalah.

Logaritma sesuatu nombor N berdasarkan A dipanggil eksponen X , yang anda perlu bina A untuk mendapatkan nombor N

Dengan syarat itu
,
,

Daripada takrifan logaritma ia mengikutinya
, iaitu
- kesamaan ini ialah identiti logaritma asas.

Logaritma kepada asas 10 dipanggil logaritma perpuluhan. Sebaliknya
menulis
.

Logaritma kepada pangkalan e dipanggil semula jadi dan ditetapkan
.

Sifat asas logaritma.

    Logaritma satu adalah sama dengan sifar untuk sebarang asas.

    Logaritma hasil darab adalah sama dengan jumlah logaritma faktor.

3) Logaritma hasil bagi adalah sama dengan perbezaan logaritma


Faktor
dipanggil modulus peralihan daripada logaritma ke tapak a kepada logaritma di pangkalan b .

Menggunakan sifat 2-5, selalunya mungkin untuk mengurangkan logaritma ungkapan kompleks kepada hasil operasi aritmetik mudah pada logaritma.

Sebagai contoh,

Penjelmaan logaritma sedemikian dipanggil logaritma. Transformasi songsang kepada logaritma dipanggil potensiasi.

Bab 2. Unsur-unsur matematik yang lebih tinggi.

1. Had

Had fungsi
ialah nombor terhingga A jika, sebagai xx 0 bagi setiap yang telah ditetapkan
, terdapat nombor sedemikian
bahawa sebaik sahaja
, Itu
.

Fungsi yang mempunyai had berbeza daripadanya dengan jumlah yang sangat kecil:
, di mana- b.m.v., i.e.
.

Contoh. Pertimbangkan fungsinya
.

Apabila berusaha
, fungsi y cenderung kepada sifar:

1.1. Teorem asas tentang had.

    Had nilai malar adalah sama dengan nilai malar ini

.

    Had jumlah (perbezaan) bilangan terhingga fungsi adalah sama dengan jumlah (perbezaan) had fungsi ini.

    Had hasil darab bilangan terhingga fungsi adalah sama dengan hasil darab had fungsi ini.

    Had hasil bagi dua fungsi adalah sama dengan hasil bagi had fungsi ini jika had penyebutnya bukan sifar.

Had Hebat

,
, Di mana

1.2. Contoh Pengiraan Had

Walau bagaimanapun, tidak semua had dikira dengan begitu mudah. Selalunya, pengiraan had adalah untuk mendedahkan ketidakpastian jenis: atau .

.

2. Terbitan bagi fungsi

Mari kita mempunyai fungsi
, berterusan pada segmen
.

Hujah mendapat sedikit peningkatan
. Kemudian fungsi akan menerima kenaikan
.

Nilai hujah sepadan dengan nilai fungsi
.

Nilai hujah
sepadan dengan nilai fungsi.

Oleh itu, .

Mari kita cari had nisbah ini pada
. Jika had ini wujud, maka ia dipanggil derivatif bagi fungsi yang diberikan.

Definisi 3 Terbitan bagi fungsi yang diberi
dengan hujah dipanggil had nisbah pertambahan fungsi kepada pertambahan hujah, apabila kenaikan hujah secara sewenang-wenangnya cenderung kepada sifar.

Terbitan fungsi
boleh ditetapkan seperti berikut:

; ; ; .

Definisi 4Operasi mencari terbitan bagi suatu fungsi dipanggil pembezaan.

2.1. Makna mekanikal derivatif.

Mari kita pertimbangkan gerakan rectilinear beberapa badan tegar atau titik bahan.

Biarkan pada satu ketika titik bergerak
berada di kejauhan dari kedudukan permulaan
.

Selepas beberapa tempoh masa
dia bergerak jauh
. Sikap =- kelajuan purata titik material
. Mari kita cari had nisbah ini, dengan mengambil kira itu
.

Akibatnya, penentuan kelajuan serta-merta pergerakan titik material dikurangkan kepada mencari terbitan laluan berkenaan dengan masa.

2.2. Nilai geometri terbitan

Marilah kita mempunyai fungsi yang ditakrifkan secara grafik
.

nasi. 1. Makna geometri terbitan

Jika
, kemudian tunjuk
, akan bergerak di sepanjang lengkung, menghampiri titik
.

Oleh itu
, iaitu nilai terbitan untuk nilai argumen tertentu secara berangka sama dengan tangen sudut yang dibentuk oleh tangen pada titik tertentu dengan arah positif paksi
.

2.3. Jadual formula pembezaan asas.

Fungsi kuasa

Fungsi eksponen

Fungsi logaritma

Fungsi trigonometri

Fungsi trigonometri songsang

2.4. Peraturan pembezaan.

Terbitan daripada

Terbitan hasil tambah (perbezaan) fungsi


Terbitan hasil darab dua fungsi


Terbitan hasil bagi dua fungsi


2.5. Terbitan fungsi kompleks.

Biarkan fungsi diberikan
supaya ia boleh diwakili dalam bentuk

Dan
, di mana pembolehubah adalah hujah perantaraan, maka

Terbitan bagi fungsi kompleks adalah sama dengan hasil derivatif fungsi yang diberikan berkenaan dengan hujah perantaraan dan terbitan hujah perantaraan berkenaan dengan x.

Contoh 1.

Contoh 2.

3. Fungsi pembezaan.

Biarlah ada
, boleh dibezakan pada beberapa selang
dan biarkan di fungsi ini mempunyai terbitan

,

barulah kita boleh menulis

(1),

di mana - kuantiti yang tidak terhingga,

sejak bila

Mendarab semua sebutan kesamaan (1) dengan
kami ada:

di mana
- b.m.v. susunan yang lebih tinggi.

Magnitud
dipanggil pembezaan fungsi
dan ditetapkan

.

3.1. Nilai geometri pembezaan.

Biarkan fungsi diberikan
.

Rajah.2. Makna geometri pembezaan.

.

Jelas sekali, perbezaan fungsi
adalah sama dengan kenaikan ordinat tangen pada titik tertentu.

3.2. Derivatif dan pembezaan pelbagai pesanan.

Jika ada
, Kemudian
dipanggil terbitan pertama.

Terbitan terbitan pertama dipanggil terbitan tertib kedua dan ditulis
.

Terbitan susunan ke-n bagi fungsi
dipanggil derivatif tertib (n-1) dan ditulis:

.

Pembezaan pembezaan fungsi dipanggil pembezaan kedua atau pembezaan tertib kedua.

.

.

3.3 Menyelesaikan masalah biologi menggunakan pembezaan.

Tugasan 1. Kajian telah menunjukkan bahawa pertumbuhan koloni mikroorganisma mematuhi undang-undang
, Di mana N – bilangan mikroorganisma (dalam ribuan), t – masa (hari).

b) Adakah penduduk koloni akan bertambah atau berkurang dalam tempoh ini?

Jawab. Saiz koloni akan bertambah.

Tugasan 2. Air di tasik diuji secara berkala untuk memantau kandungan bakteria patogen. Melalui t hari selepas ujian, kepekatan bakteria ditentukan oleh nisbah

.

Bilakah tasik akan mempunyai kepekatan minimum bakteria dan adakah mungkin untuk berenang di dalamnya?

Penyelesaian: Fungsi mencapai maks atau min apabila terbitannya ialah sifar.

,

Mari tentukan maks atau min dalam masa 6 hari. Untuk melakukan ini, mari kita ambil derivatif kedua.


Jawapan: Selepas 6 hari akan ada kepekatan minimum bakteria.

Arahan

Tulis ungkapan logaritma yang diberi. Jika ungkapan menggunakan logaritma 10, maka tatatandanya dipendekkan dan kelihatan seperti ini: lg b ialah logaritma perpuluhan. Jika logaritma mempunyai nombor e sebagai asasnya, maka tulis ungkapan: ln b – logaritma asli. Difahamkan bahawa hasil mana-mana adalah kuasa yang mana nombor asas mesti dinaikkan untuk mendapatkan nombor b.

Apabila mencari jumlah dua fungsi, anda hanya perlu membezakannya satu demi satu dan menambah keputusan: (u+v)" = u"+v";

Apabila mencari terbitan hasil darab dua fungsi, adalah perlu untuk mendarabkan terbitan bagi fungsi pertama dengan kedua dan menambah terbitan bagi fungsi kedua didarab dengan fungsi pertama: (u*v)" = u"*v +v"*u;

Untuk mencari terbitan hasil bagi dua fungsi, adalah perlu untuk menolak daripada hasil darab terbitan dividen yang didarab dengan fungsi pembahagi hasil darab terbitan pembahagi didarab dengan fungsi dividen, dan bahagikan. semua ini dengan fungsi pembahagi kuasa dua. (u/v)" = (u"*v-v"*u)/v^2;

Jika fungsi kompleks diberikan, maka perlu untuk mendarabkan derivatif fungsi dalaman dan terbitan luaran. Biarkan y=u(v(x)), kemudian y"(x)=y"(u)*v"(x).

Menggunakan hasil yang diperoleh di atas, anda boleh membezakan hampir semua fungsi. Jadi mari kita lihat beberapa contoh:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2 *x));
Terdapat juga masalah yang melibatkan pengiraan derivatif pada satu titik. Biarkan fungsi y=e^(x^2+6x+5) diberikan, anda perlu mencari nilai fungsi pada titik x=1.
1) Cari terbitan bagi fungsi: y"=e^(x^2-6x+5)*(2*x +6).

2) Kira nilai fungsi pada titik tertentu y"(1)=8*e^0=8

Video mengenai topik

Nasihat yang berguna

Ketahui jadual terbitan asas. Ini akan menjimatkan masa dengan ketara.

Sumber:

  • terbitan pemalar

Jadi, apakah perbezaan antara persamaan tidak rasional dan persamaan rasional? Jika pembolehubah yang tidak diketahui berada di bawah tanda punca kuasa dua, maka persamaan itu dianggap tidak rasional.

Arahan

Kaedah utama untuk menyelesaikan persamaan tersebut ialah kaedah membina kedua-dua belah persamaan ke dalam segi empat sama. Namun begitu. ini adalah semula jadi, perkara pertama yang anda perlu lakukan ialah menyingkirkan tanda itu. Kaedah ini tidak sukar secara teknikal, tetapi kadangkala ia boleh membawa kepada masalah. Sebagai contoh, persamaan ialah v(2x-5)=v(4x-7). Dengan mengkuadratkan kedua-dua belah anda mendapat 2x-5=4x-7. Menyelesaikan persamaan sedemikian tidak sukar; x=1. Tetapi nombor 1 tidak akan diberikan persamaan. kenapa? Gantikan satu ke dalam persamaan dan bukannya nilai x Dan bahagian kanan dan kiri akan mengandungi ungkapan yang tidak masuk akal, iaitu. Nilai ini tidak sah untuk punca kuasa dua. Oleh itu, 1 ialah punca luar, dan oleh itu persamaan ini tidak mempunyai punca.

Jadi, persamaan tidak rasional diselesaikan menggunakan kaedah mengkuadratkan kedua-dua belahnya. Dan setelah menyelesaikan persamaan, adalah perlu untuk memotong akar luar. Untuk melakukan ini, gantikan punca yang ditemui ke dalam persamaan asal.

Pertimbangkan satu lagi.
2х+vх-3=0
Sudah tentu, persamaan ini boleh diselesaikan menggunakan persamaan yang sama seperti yang sebelumnya. Gerakkan Sebatian persamaan, yang tidak mempunyai punca kuasa dua, ke sebelah kanan dan kemudian gunakan kaedah kuasa dua. selesaikan persamaan dan punca rasional yang terhasil. Tetapi juga satu lagi, lebih elegan. Masukkan pembolehubah baharu; vх=y. Sehubungan itu, anda akan menerima persamaan bentuk 2y2+y-3=0. Iaitu, persamaan kuadratik biasa. Cari akarnya; y1=1 dan y2=-3/2. Seterusnya, selesaikan dua persamaan vх=1; vх=-3/2. Persamaan kedua tidak mempunyai punca; dari yang pertama kita dapati bahawa x=1. Jangan lupa periksa akarnya.

Menyelesaikan identiti agak mudah. Untuk melakukan ini, perlu melakukan transformasi yang sama sehingga matlamat dicapai. Oleh itu, dengan bantuan operasi aritmetik mudah, masalah yang ditimbulkan akan diselesaikan.

Anda akan perlukan

  • - kertas;
  • - pen.

Arahan

Penjelmaan yang paling mudah ialah pendaraban singkatan algebra (seperti kuasa dua jumlah (perbezaan), perbezaan kuasa dua, jumlah (perbezaan), kubus jumlah (perbezaan)). Di samping itu, terdapat banyak formula trigonometri, yang pada asasnya adalah identiti yang sama.

Sesungguhnya, kuasa dua hasil tambah dua sebutan adalah sama dengan kuasa dua tambah pertama dua kali hasil darab yang pertama dengan kedua dan ditambah kuasa dua kedua, iaitu, (a+b)^2= (a+ b)(a+b)=a^2+ab +ba+b ^2=a^2+2ab+b^2.

Permudahkan kedua-duanya

Prinsip umum penyelesaian

Ulang daripada buku teks tentang analisis matematik atau matematik yang lebih tinggi tentang kamiran pasti. Seperti yang diketahui, penyelesaian kepada kamiran pasti ialah fungsi yang terbitannya akan memberikan kamiran. Fungsi ini dipanggil antiderivatif. Berdasarkan prinsip ini, kamiran utama dibina.
Tentukan mengikut jenis kamiran dan kamiran jadual yang manakah sesuai dalam kes ini. Ia tidak selalu mungkin untuk menentukan ini dengan segera. Selalunya, bentuk jadual menjadi ketara hanya selepas beberapa transformasi untuk memudahkan integrand.

Kaedah Penggantian Pembolehubah

Jika integrand ialah fungsi trigonometri yang hujahnya ialah polinomial, maka cuba gunakan kaedah perubahan pembolehubah. Untuk melakukan ini, gantikan polinomial dalam hujah integrand dengan beberapa pembolehubah baharu. Berdasarkan hubungan antara pembolehubah baharu dan lama, tentukan had pengamiran baharu. Dengan membezakan ungkapan ini, cari pembezaan baharu dalam . Oleh itu, anda akan mendapat bentuk baru kamiran sebelumnya, hampir atau sepadan dengan beberapa jadual.

Menyelesaikan kamiran jenis kedua

Jika kamiran ialah kamiran jenis kedua, bentuk vektor kamiran, maka anda perlu menggunakan peraturan untuk peralihan daripada kamiran ini kepada kamiran berskala. Satu peraturan sedemikian ialah hubungan Ostrogradsky-Gauss. Undang-undang ini membenarkan kita bergerak daripada fluks pemutar bagi fungsi vektor tertentu kepada kamiran tiga kali ganda atas perbezaan medan vektor tertentu.

Penggantian had integrasi

Selepas mencari antiterbitan, adalah perlu untuk menggantikan had penyepaduan. Pertama, gantikan nilai had atas ke dalam ungkapan untuk antiterbitan. Anda akan mendapat beberapa nombor. Seterusnya, tolak daripada nombor yang terhasil nombor lain yang diperoleh daripada had bawah ke dalam antiterbitan. Jika salah satu had penyepaduan ialah infiniti, maka apabila menggantikannya ke dalam fungsi antiterbitan, adalah perlu untuk pergi ke had dan mencari maksud ungkapan itu.
Jika kamiran ialah dua dimensi atau tiga dimensi, maka anda perlu mewakili had kamiran secara geometri untuk memahami cara menilai kamiran. Malah, dalam kes, katakan, kamiran tiga dimensi, had penyepaduan boleh menjadi keseluruhan satah yang mengehadkan isipadu yang disepadukan.

Logaritma, seperti mana-mana nombor, boleh ditambah, ditolak dan diubah dalam semua cara. Tetapi kerana logaritma bukan nombor biasa, terdapat peraturan di sini, yang dipanggil sifat utama.

Anda pastinya perlu mengetahui peraturan ini - tanpanya, tiada satu masalah logaritma yang serius boleh diselesaikan. Di samping itu, terdapat sangat sedikit daripada mereka - anda boleh mempelajari segala-galanya dalam satu hari. Jadi mari kita mulakan.

Menambah dan menolak logaritma

Pertimbangkan dua logaritma dengan asas yang sama: log a x dan log a y. Kemudian mereka boleh ditambah dan ditolak, dan:

  1. log a x+ log a y=log a (x · y);
  2. log a x− log a y=log a (x : y).

Jadi, jumlah logaritma adalah sama dengan logaritma hasil darab, dan perbezaannya adalah sama dengan logaritma hasil bagi. Sila ambil perhatian: perkara utama di sini ialah alasan yang sama. Jika alasannya berbeza, peraturan ini tidak berfungsi!

Formula ini akan membantu anda mengira ungkapan logaritma walaupun bahagian individunya tidak dipertimbangkan (lihat pelajaran "Apakah itu logaritma"). Lihat contoh dan lihat:

Log 6 4 + log 6 9.

Oleh kerana logaritma mempunyai asas yang sama, kami menggunakan formula jumlah:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Tugasan. Cari nilai ungkapan: log 2 48 − log 2 3.

Asasnya adalah sama, kami menggunakan formula perbezaan:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Tugasan. Cari nilai ungkapan: log 3 135 − log 3 5.

Sekali lagi pangkalannya adalah sama, jadi kita ada:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Seperti yang anda lihat, ungkapan asal terdiri daripada logaritma "buruk", yang tidak dikira secara berasingan. Tetapi selepas transformasi, nombor normal sepenuhnya diperolehi. Banyak ujian berdasarkan fakta ini. Ya, ungkapan seperti ujian ditawarkan dalam semua kesungguhan (kadangkala hampir tiada perubahan) pada Peperiksaan Negeri Bersepadu.

Mengeluarkan eksponen daripada logaritma

Sekarang mari kita merumitkan sedikit tugas. Bagaimana jika asas atau hujah logaritma ialah kuasa? Kemudian eksponen darjah ini boleh dikeluarkan dari tanda logaritma mengikut peraturan berikut:

Adalah mudah untuk melihat bahawa peraturan terakhir mengikuti dua yang pertama. Tetapi lebih baik untuk mengingatinya - dalam beberapa kes ia akan mengurangkan jumlah pengiraan dengan ketara.

Sudah tentu, semua peraturan ini masuk akal jika ODZ logaritma diperhatikan: a > 0, a ≠ 1, x> 0. Dan satu lagi perkara: belajar menggunakan semua formula bukan sahaja dari kiri ke kanan, tetapi juga sebaliknya, i.e. Anda boleh memasukkan nombor sebelum logaritma masuk ke dalam logaritma itu sendiri. Inilah yang paling kerap diperlukan.

Tugasan. Cari nilai ungkapan: log 7 49 6 .

Mari kita buang darjah dalam hujah menggunakan formula pertama:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Tugasan. Cari maksud ungkapan:

[Kapsyen untuk gambar]

Perhatikan bahawa penyebutnya mengandungi logaritma, asas dan hujahnya adalah kuasa tepat: 16 = 2 4 ; 49 = 7 2. Kami ada:

[Kapsyen untuk gambar]

Saya rasa contoh terakhir memerlukan beberapa penjelasan. Ke mana perginya logaritma? Sehingga saat terakhir kita bekerja hanya dengan penyebut. Kami membentangkan asas dan hujah logaritma yang berdiri di sana dalam bentuk kuasa dan mengeluarkan eksponen - kami mendapat pecahan "tiga tingkat".

Sekarang mari kita lihat pecahan utama. Pengangka dan penyebut mengandungi nombor yang sama: log 2 7. Oleh kerana log 2 7 ≠ 0, kita boleh mengurangkan pecahan - 2/4 akan kekal dalam penyebut. Mengikut peraturan aritmetik, empat boleh dipindahkan ke pengangka, iaitu apa yang telah dilakukan. Hasilnya ialah jawapan: 2.

Peralihan kepada asas baharu

Bercakap tentang peraturan untuk menambah dan menolak logaritma, saya secara khusus menekankan bahawa ia hanya berfungsi dengan asas yang sama. Bagaimana jika sebabnya berbeza? Bagaimana jika mereka bukan kuasa tepat nombor yang sama?

Formula untuk peralihan kepada asas baharu datang untuk menyelamatkan. Mari kita rumuskan dalam bentuk teorem:

Biarkan log logaritma diberikan a x. Kemudian untuk sebarang nombor c sedemikian rupa c> 0 dan c≠ 1, kesamaan adalah benar:

[Kapsyen untuk gambar]

Khususnya, jika kita meletakkan c = x, kita dapat:

[Kapsyen untuk gambar]

Daripada formula kedua ia mengikuti bahawa asas dan hujah logaritma boleh ditukar, tetapi dalam kes ini keseluruhan ungkapan "terbalik", i.e. logaritma muncul dalam penyebut.

Formula ini jarang ditemui dalam ungkapan berangka biasa. Adalah mungkin untuk menilai betapa mudahnya mereka hanya apabila menyelesaikan persamaan logaritma dan ketaksamaan.

Namun, terdapat masalah yang tidak dapat diselesaikan sama sekali kecuali dengan berpindah ke asas baru. Mari kita lihat beberapa perkara ini:

Tugasan. Cari nilai ungkapan: log 5 16 log 2 25.

Ambil perhatian bahawa hujah kedua-dua logaritma mengandungi kuasa yang tepat. Mari kita keluarkan penunjuk: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

Sekarang mari kita "terbalikkan" logaritma kedua:

[Kapsyen untuk gambar]

Oleh kerana produk tidak berubah apabila menyusun semula faktor, kami dengan tenang mendarab empat dan dua, dan kemudian menangani logaritma.

Tugasan. Cari nilai ungkapan: log 9 100 lg 3.

Asas dan hujah logaritma pertama adalah kuasa yang tepat. Mari kita tulis ini dan singkirkan penunjuk:

[Kapsyen untuk gambar]

Sekarang mari kita buang logaritma perpuluhan dengan berpindah ke pangkalan baharu:

[Kapsyen untuk gambar]

Identiti logaritma asas

Selalunya dalam proses penyelesaian adalah perlu untuk mewakili nombor sebagai logaritma kepada asas tertentu. Dalam kes ini, formula berikut akan membantu kami:

Dalam kes pertama, nombor n menjadi penunjuk darjah berdiri dalam hujah. Nombor n boleh jadi apa sahaja, kerana ia hanyalah nilai logaritma.

Formula kedua sebenarnya adalah definisi yang diparafrasa. Itulah yang dipanggil: identiti logaritma asas.

Malah, apa yang akan berlaku jika nombor b meningkatkan kuasa sehingga bilangan b kepada kuasa ini memberikan nombor a? Betul: anda mendapat nombor yang sama ini a. Baca perenggan ini dengan teliti sekali lagi - ramai orang terjebak padanya.

Seperti formula untuk berpindah ke pangkalan baharu, identiti logaritma asas kadangkala merupakan satu-satunya penyelesaian yang mungkin.

Tugasan. Cari maksud ungkapan:

[Kapsyen untuk gambar]

Perhatikan bahawa log 25 64 = log 5 8 - hanya mengambil kuasa dua daripada asas dan hujah logaritma. Dengan mengambil kira peraturan untuk mendarab kuasa dengan asas yang sama, kita mendapat:

[Kapsyen untuk gambar]

Jika ada yang tidak tahu, ini adalah tugas sebenar dari Peperiksaan Negeri Bersepadu :)

Unit logaritma dan sifar logaritma

Sebagai kesimpulan, saya akan memberikan dua identiti yang hampir tidak boleh dipanggil sifat - sebaliknya, ia adalah akibat daripada takrifan logaritma. Mereka sentiasa muncul dalam masalah dan, secara mengejutkan, mencipta masalah walaupun untuk pelajar "maju".

  1. log a a= 1 ialah unit logaritma. Ingat sekali dan untuk semua: logaritma kepada mana-mana asas a dari asas ini adalah sama dengan satu.
  2. log a 1 = 0 ialah sifar logaritma. Pangkalan a boleh jadi apa-apa, tetapi jika hujah mengandungi satu, logaritma adalah sama dengan sifar! Kerana a 0 = 1 adalah akibat langsung daripada definisi.

Itu semua sifatnya. Pastikan anda berlatih mempraktikkannya! Muat turun helaian panduan pada permulaan pelajaran, cetaknya dan selesaikan masalah.

  1. Semak sama ada terdapat nombor negatif atau satu di bawah tanda logaritma. Kaedah ini boleh digunakan untuk ungkapan borang log b ⁡ (x) log b ⁡ (a) (\displaystyle (\frac (\log _(b)(x))(\log _(b)(a)))). Walau bagaimanapun, ia tidak sesuai untuk beberapa kes khas:

    • Logaritma nombor negatif tidak ditentukan dalam mana-mana asas (contohnya, log ⁡ (− 3) (\displaystyle \log(-3)) atau log 4 ⁡ (− 5) (\displaystyle \log _(4)(-5))). Dalam kes ini tulis "tiada penyelesaian".
    • Logaritma sifar kepada sebarang asas juga tidak ditentukan. Jika anda tertangkap ln ⁡ (0) (\displaystyle \ln(0)), tuliskan "tiada penyelesaian".
    • Logaritma satu kepada sebarang asas ( log ⁡ (1) (\displaystyle \log(1))) sentiasa sifar, kerana x 0 = 1 (\displaystyle x^(0)=1) untuk semua nilai x. Tulis 1 sebagai ganti logaritma ini dan jangan gunakan kaedah di bawah.
    • Jika logaritma mempunyai asas yang berbeza, contohnya l o g 3 (x) l o g 4 (a) (\displaystyle (\frac (log_(3)(x))(log_(4)(a)))), dan tidak dikurangkan kepada integer, nilai ungkapan tidak boleh ditemui secara manual.
  2. Tukarkan ungkapan kepada satu logaritma. Jika ungkapan itu tidak digunakan untuk kes khas di atas, ia boleh dinyatakan sebagai logaritma tunggal. Gunakan formula berikut untuk ini: log b ⁡ (x) log b ⁡ (a) = log a ⁡ (x) (\displaystyle (\frac (\log _(b)(x))(\log _(b)(a)))=\ log_(a)(x)).

    • Contoh 1: Pertimbangkan ungkapan log ⁡ 16 log ⁡ 2 (\displaystyle (\frac (\log (16))(\log (2)))).
      Pertama, mari kita wakili ungkapan sebagai logaritma tunggal menggunakan formula di atas: log ⁡ 16 log ⁡ 2 = log 2 ⁡ (16) (\displaystyle (\frac (\log (16))(\log (2)))=\log _(2)(16)).
    • Formula untuk "menggantikan asas" logaritma ini diperoleh daripada sifat asas logaritma.
  3. Jika boleh, nilaikan nilai ungkapan secara manual. Untuk mencari log a ⁡ (x) (\displaystyle \log _(a)(x)), bayangkan ungkapan " a? = x (\gaya paparan a^(?)=x)", iaitu, tanya soalan berikut: "Kepada kuasa apa yang perlu anda bangkitkan a untuk mendapatkan x?. Menjawab soalan ini mungkin memerlukan kalkulator, tetapi jika anda bernasib baik, anda mungkin dapat mencarinya secara manual.

    • Contoh 1 (bersambung): Tulis semula sebagai 2? = 16 (\displaystyle 2^(?)=16). Anda perlu mencari nombor apa yang sepatutnya menggantikan tanda "?" Ini boleh dilakukan melalui percubaan dan kesilapan:
      2 2 = 2 ∗ 2 = 4 (\displaystyle 2^(2)=2*2=4)
      2 3 = 4 ∗ 2 = 8 (\gaya paparan 2^(3)=4*2=8)
      2 4 = 8 ∗ 2 = 16 (\gaya paparan 2^(4)=8*2=16)
      Jadi nombor yang kami cari ialah 4: log 2 ⁡ (16) (\displaystyle \log _(2)(16)) = 4 .
  4. Biarkan jawapan anda dalam bentuk logaritma jika anda tidak dapat memudahkannya. Banyak logaritma sangat sukar untuk dikira dengan tangan. Dalam kes ini, untuk mendapatkan jawapan yang tepat, anda memerlukan kalkulator. Walau bagaimanapun, jika anda menyelesaikan masalah di dalam kelas, kemungkinan besar guru akan berpuas hati dengan jawapan dalam bentuk logaritma. Kaedah yang dibincangkan di bawah digunakan untuk menyelesaikan contoh yang lebih kompleks:

    • contoh 2: apa yang sama dengan log 3 ⁡ (58) log 3 ⁡ (7) (\displaystyle (\frac (\log _(3)(58))(\log _(3)(7))))?
    • Mari tukar ungkapan ini kepada satu logaritma: log 3 ⁡ (58) log 3 ⁡ (7) = log 7 ⁡ (58) (\displaystyle (\frac (\log _(3)(58))(\log _(3)(7)))=\ log_(7)(58)). Ambil perhatian bahawa asas 3 sepunya kepada kedua-dua logaritma hilang; ini adalah benar untuk sebarang sebab.
    • Mari kita tulis semula ungkapan dalam bentuk 7? = 58 (\displaystyle 7^(?)=58) dan mari cuba cari nilainya?:
      7 2 = 7 ∗ 7 = 49 (\gaya paparan 7^(2)=7*7=49)
      7 3 = 49 ∗ 7 = 343 (\gaya paparan 7^(3)=49*7=343)
      Kerana 58 berada di antara dua nombor ini, ia tidak dinyatakan sebagai nombor bulat.
    • Kami meninggalkan jawapan dalam bentuk logaritma: log 7 ⁡ (58) (\displaystyle \log _(7)(58)).