សមីការស្មុគស្មាញតាមអ៊ីនធឺណិត។ សមីការតាមអ៊ីនធឺណិត

សេវាកម្មដោះស្រាយសមីការអនឡាញនឹងជួយអ្នកក្នុងការដោះស្រាយសមីការណាមួយ។ ដោយប្រើគេហទំព័ររបស់យើង អ្នកនឹងទទួលបានមិនត្រឹមតែចម្លើយចំពោះសមីការប៉ុណ្ណោះទេ ប៉ុន្តែថែមទាំងឃើញដំណោះស្រាយលម្អិតផងដែរ ពោលគឺការបង្ហាញជាជំហានៗនៃដំណើរការទទួលបានលទ្ធផល។ សេវាកម្មរបស់យើងនឹងមានប្រយោជន៍សម្រាប់សិស្សវិទ្យាល័យ និងឪពុកម្តាយរបស់ពួកគេ។ សិស្សនឹងអាចរៀបចំសម្រាប់ការធ្វើតេស្ត និងការប្រឡង សាកល្បងចំណេះដឹងរបស់ពួកគេ ហើយឪពុកម្តាយនឹងអាចតាមដានដំណោះស្រាយនៃសមីការគណិតវិទ្យាដោយកូនរបស់ពួកគេ។ សមត្ថភាពក្នុងការដោះស្រាយសមីការគឺជាតម្រូវការចាំបាច់សម្រាប់សិស្សសាលា។ សេវាកម្មនឹងជួយអ្នកក្នុងការអប់រំខ្លួនឯង និងបង្កើនចំណេះដឹងរបស់អ្នកក្នុងវិស័យសមីការគណិតវិទ្យា។ ដោយមានជំនួយរបស់វា អ្នកអាចដោះស្រាយសមីការណាមួយបាន៖ ចតុកោណ គូប មិនសមហេតុផល ត្រីកោណមាត្រ។ល។ អត្ថប្រយោជន៍នៃសេវាកម្មអនឡាញគឺមានតម្លៃមិនអាចកាត់ថ្លៃបាន ពីព្រោះបន្ថែមពីលើចម្លើយត្រឹមត្រូវ អ្នកទទួលបានដំណោះស្រាយលម្អិតចំពោះសមីការនីមួយៗ។ អត្ថប្រយោជន៍នៃការដោះស្រាយសមីការតាមអ៊ីនធឺណិត។ អ្នកអាចដោះស្រាយសមីការណាមួយតាមអ៊ីនធឺណិតនៅលើគេហទំព័ររបស់យើងដោយឥតគិតថ្លៃ។ សេវាកម្មនេះគឺដោយស្វ័យប្រវត្តិទាំងស្រុង អ្នកមិនចាំបាច់ដំឡើងអ្វីនៅលើកុំព្យូទ័ររបស់អ្នកទេ អ្នកគ្រាន់តែបញ្ចូលទិន្នន័យ ហើយកម្មវិធីនឹងផ្តល់ឱ្យអ្នកនូវដំណោះស្រាយ។ រាល់កំហុសក្នុងការគណនា ឬការវាយអក្សរមិនត្រូវបានរាប់បញ្ចូលទេ។ ជាមួយយើង ការដោះស្រាយសមីការតាមអ៊ីនធឺណិតគឺងាយស្រួលណាស់ ដូច្នេះត្រូវប្រាកដថាប្រើគេហទំព័ររបស់យើងដើម្បីដោះស្រាយសមីការគ្រប់ប្រភេទ។ អ្នកគ្រាន់តែបញ្ចូលទិន្នន័យប៉ុណ្ណោះ ហើយការគណនានឹងត្រូវបានបញ្ចប់ក្នុងរយៈពេលប៉ុន្មានវិនាទី។ កម្មវិធីនេះដំណើរការដោយឯករាជ្យ ដោយគ្មានការអន្តរាគមន៍ពីមនុស្ស ហើយអ្នកទទួលបានចម្លើយត្រឹមត្រូវ និងលម្អិត។ ដំណោះស្រាយនៃសមីការក្នុងទម្រង់ទូទៅ។ នៅក្នុងសមីការបែបនេះ មេគុណអថេរ និងឫសដែលចង់បានត្រូវបានទាក់ទងគ្នាទៅវិញទៅមក។ អំណាចខ្ពស់បំផុតនៃអថេរកំណត់លំដាប់នៃសមីការបែបនេះ។ ដោយផ្អែកលើនេះ វិធីសាស្រ្ត និងទ្រឹស្តីបទផ្សេងៗត្រូវបានប្រើប្រាស់សម្រាប់សមីការដើម្បីស្វែងរកដំណោះស្រាយ។ ការដោះស្រាយសមីការនៃប្រភេទនេះមានន័យថាការស្វែងរកឫសដែលត្រូវការក្នុងទម្រង់ទូទៅ។ សេវាកម្មរបស់យើងអនុញ្ញាតឱ្យអ្នកដោះស្រាយសូម្បីតែសមីការពិជគណិតដ៏ស្មុគស្មាញបំផុតតាមអ៊ីនធឺណិត។ អ្នកអាចទទួលបានទាំងដំណោះស្រាយទូទៅចំពោះសមីការ និងមួយជាក់លាក់សម្រាប់តម្លៃលេខនៃមេគុណដែលអ្នកបញ្ជាក់។ ដើម្បីដោះស្រាយសមីការពិជគណិតនៅលើគេហទំព័រ វាគ្រប់គ្រាន់ហើយក្នុងការបំពេញវាលពីរយ៉ាងត្រឹមត្រូវ៖ ផ្នែកខាងឆ្វេង និងខាងស្តាំនៃសមីការដែលបានផ្តល់ឱ្យ។ សមីការពិជគណិតដែលមានមេគុណអថេរមានចំនួនដំណោះស្រាយគ្មានកំណត់ ហើយដោយការកំណត់លក្ខខណ្ឌមួយចំនួន ដំណោះស្រាយមួយផ្នែកត្រូវបានជ្រើសរើសពីសំណុំនៃដំណោះស្រាយ។ សមីការ​ការ៉េ។ សមីការ​ការ៉េ​មាន​ទម្រង់ ax^2+bx+c=0 សម្រាប់ a>0។ ការដោះស្រាយសមីការការ៉េពាក់ព័ន្ធនឹងការស្វែងរកតម្លៃនៃ x ដែលសមភាព ax^2+bx+c=0 កាន់។ ដើម្បីធ្វើដូច្នេះ ស្វែងរកតម្លៃរើសអើងដោយប្រើរូបមន្ត D=b^2-4ac។ ប្រសិនបើការរើសអើងមានតិចជាងសូន្យ នោះសមីការមិនមានឫសពិតទេ (ឫសគឺមកពីវាលនៃចំនួនកុំផ្លិច) ប្រសិនបើវាស្មើនឹងសូន្យ នោះសមីការមានឫសពិតប្រាកដមួយ ហើយប្រសិនបើការរើសអើងគឺធំជាងសូន្យ បន្ទាប់មកសមីការមានឫសពិតពីរ ដែលត្រូវបានរកឃើញដោយរូបមន្ត៖ D = -b+-sqrt/2a ។ ដើម្បីដោះស្រាយសមីការការ៉េតាមអ៊ីនធឺណិត អ្នកគ្រាន់តែត្រូវបញ្ចូលមេគុណនៃសមីការ (ចំនួនគត់ ប្រភាគ ឬទសភាគ)។ ប្រសិនបើមានសញ្ញាដកនៅក្នុងសមីការ អ្នកត្រូវតែដាក់សញ្ញាដកនៅពីមុខលក្ខខណ្ឌដែលត្រូវគ្នានៃសមីការ។ អ្នក​អាច​ដោះស្រាយ​សមីការ​ការ៉េ​តាម​អ៊ីនធឺណិត​អាស្រ័យ​លើ​ប៉ារ៉ាម៉ែត្រ នោះ​គឺ​អថេរ​ក្នុង​មេគុណ​នៃ​សមីការ។ សេវាកម្មអនឡាញរបស់យើងសម្រាប់ការស្វែងរកដំណោះស្រាយទូទៅអាចដោះស្រាយបានយ៉ាងល្អជាមួយនឹងកិច្ចការនេះ។ សមីការលីនេអ៊ែរ។ ដើម្បីដោះស្រាយសមីការលីនេអ៊ែរ (ឬប្រព័ន្ធនៃសមីការ) វិធីសាស្ត្រសំខាន់ៗចំនួនបួនត្រូវបានប្រើក្នុងការអនុវត្ត។ យើងនឹងរៀបរាប់លម្អិតអំពីវិធីសាស្រ្តនីមួយៗ។ វិធីសាស្រ្តជំនួស។ ការដោះស្រាយសមីការដោយប្រើវិធីសាស្ត្រជំនួសតម្រូវឱ្យបង្ហាញពីអថេរមួយក្នុងលក្ខខណ្ឌផ្សេងទៀត។ បន្ទាប់ពីនេះកន្សោមត្រូវបានជំនួសទៅក្នុងសមីការផ្សេងទៀតនៃប្រព័ន្ធ។ ដូច្នេះឈ្មោះនៃវិធីសាស្ត្រដំណោះស្រាយ នោះគឺជំនួសឱ្យអថេរ កន្សោមរបស់វាត្រូវបានជំនួសតាមរយៈអថេរដែលនៅសល់។ នៅក្នុងការអនុវត្ត វិធីសាស្ត្រទាមទារការគណនាស្មុគស្មាញ ទោះបីជាវាងាយស្រួលយល់ក៏ដោយ ដូច្នេះការដោះស្រាយសមីការបែបនេះតាមអ៊ីនធឺណិតនឹងជួយសន្សំសំចៃពេលវេលា និងធ្វើឱ្យការគណនាកាន់តែងាយស្រួល។ អ្នកគ្រាន់តែត្រូវចង្អុលបង្ហាញចំនួនមិនស្គាល់នៅក្នុងសមីការ ហើយបំពេញទិន្នន័យពីសមីការលីនេអ៊ែរ នោះសេវាកម្មនឹងធ្វើការគណនា។ វិធីសាស្រ្ត Gauss ។ វិធីសាស្រ្តគឺផ្អែកលើការផ្លាស់ប្តូរដ៏សាមញ្ញបំផុតនៃប្រព័ន្ធដើម្បីទៅដល់ប្រព័ន្ធត្រីកោណសមមូល។ ពីវាមិនស្គាល់ត្រូវបានកំណត់ម្តងមួយៗ។ នៅក្នុងការអនុវត្ត អ្នកត្រូវដោះស្រាយសមីការបែបនេះតាមអ៊ិនធរណេតជាមួយនឹងការពិពណ៌នាលម្អិត អរគុណដែលអ្នកនឹងយល់ច្បាស់អំពីវិធីសាស្ត្រ Gaussian សម្រាប់ដោះស្រាយប្រព័ន្ធនៃសមីការលីនេអ៊ែរ។ សរសេរប្រព័ន្ធនៃសមីការលីនេអ៊ែរក្នុងទម្រង់ត្រឹមត្រូវ ហើយយកទៅក្នុងគណនីចំនួនមិនស្គាល់ ដើម្បីដោះស្រាយប្រព័ន្ធបានត្រឹមត្រូវ។ វិធីសាស្រ្តរបស់ Cramer ។ វិធីសាស្រ្តនេះដោះស្រាយប្រព័ន្ធនៃសមីការក្នុងករណីដែលប្រព័ន្ធមានដំណោះស្រាយតែមួយគត់។ សកម្មភាពគណិតវិទ្យាសំខាន់នៅទីនេះគឺការគណនាកត្តាកំណត់ម៉ាទ្រីស។ ការដោះស្រាយសមីការដោយប្រើវិធីសាស្ត្រ Cramer ត្រូវបានអនុវត្តតាមអ៊ីនធឺណិត អ្នកទទួលបានលទ្ធផលភ្លាមៗជាមួយនឹងការពិពណ៌នាពេញលេញ និងលម្អិត។ វាគ្រប់គ្រាន់ហើយក្នុងការបំពេញប្រព័ន្ធដោយមេគុណហើយជ្រើសរើសចំនួនអថេរដែលមិនស្គាល់។ វិធីសាស្រ្តម៉ាទ្រីស។ វិធីសាស្រ្តនេះរួមមានការប្រមូលមេគុណនៃមិនស្គាល់នៅក្នុងម៉ាទ្រីស A មិនស្គាល់នៅក្នុងជួរឈរ X និងលក្ខខណ្ឌឥតគិតថ្លៃនៅក្នុងជួរ B ។ ដូច្នេះប្រព័ន្ធនៃសមីការលីនេអ៊ែរត្រូវបានកាត់បន្ថយទៅជាសមីការម៉ាទ្រីសនៃទម្រង់ AxX=B ។ សមីការនេះមានដំណោះស្រាយតែមួយគត់លុះត្រាតែកត្តាកំណត់នៃម៉ាទ្រីស A ខុសពីសូន្យ បើមិនដូច្នេះទេប្រព័ន្ធមិនមានដំណោះស្រាយ ឬចំនួនដំណោះស្រាយគ្មានកំណត់។ ការដោះស្រាយសមីការដោយប្រើវិធីសាស្ត្រម៉ាទ្រីសពាក់ព័ន្ធនឹងការស្វែងរកម៉ាទ្រីសបញ្ច្រាស A ។

ដើម្បីដោះស្រាយបញ្ហាជាមួយចំនួនកុំផ្លិច អ្នកត្រូវយល់ពីនិយមន័យជាមូលដ្ឋាន។ គោលដៅសំខាន់នៃអត្ថបទពិនិត្យនេះគឺដើម្បីពន្យល់ពីអ្វីដែលជាចំនួនកុំផ្លិច និងវិធីសាស្រ្តបច្ចុប្បន្នសម្រាប់ការដោះស្រាយបញ្ហាជាមូលដ្ឋានជាមួយនឹងចំនួនកុំផ្លិច។ ដូច្នេះចំនួនកុំផ្លិចនឹងត្រូវបានគេហៅថាចំនួននៃទម្រង់ z = a + ប៊ី, កន្លែងណា ក, ខ- ចំនួនពិត ដែលត្រូវបានគេហៅថាផ្នែកពិត និងស្រមើស្រមៃនៃចំនួនកុំផ្លិច រៀងៗខ្លួន និងបញ្ជាក់ a = Re(z), b=Im(z).
ខ្ញុំហៅថាឯកតាស្រមើលស្រមៃ។ i 2 = -1. ជាពិសេស ចំនួនពិតអាចចាត់ទុកថាស្មុគស្មាញ៖ a = a + 0iដែលជាកន្លែងដែល a គឺពិតប្រាកដ។ ប្រសិនបើ a = 0និង b ≠ 0បន្ទាប់មកលេខជាធម្មតាត្រូវបានគេហៅថាការស្រមើលស្រមៃសុទ្ធសាធ។

ឥឡូវនេះសូមណែនាំប្រតិបត្តិការលើចំនួនកុំផ្លិច។
ពិចារណាចំនួនកុំផ្លិចពីរ z 1 = a 1 + b 1 iនិង z 2 = a 2 + b 2 i.

ចូរយើងពិចារណា z = a + ប៊ី.

សំណុំនៃចំនួនកុំផ្លិចពង្រីកសំណុំនៃចំនួនពិត ដែលនៅក្នុងវេនពង្រីកសំណុំនៃលេខសនិទាន។ល។ ខ្សែសង្វាក់នៃការវិនិយោគនេះអាចត្រូវបានគេមើលឃើញនៅក្នុងរូបភាព៖ N – លេខធម្មជាតិ Z – ចំនួនគត់ Q – សនិទាន R – ពិត C – ស្មុគស្មាញ។


តំណាងនៃចំនួនកុំផ្លិច

ការសម្គាល់ពិជគណិត។

ពិចារណាចំនួនកុំផ្លិច z = a + ប៊ីទម្រង់នៃការសរសេរលេខស្មុគស្មាញនេះត្រូវបានគេហៅថា ពិជគណិត. យើង​បាន​ពិភាក្សា​អំពី​ទម្រង់​នៃ​ការ​ថត​នេះ​រួច​ហើយ​ដោយ​លម្អិត​នៅ​ក្នុង​ផ្នែក​មុន។ គំនូរដែលមើលឃើញខាងក្រោមត្រូវបានប្រើជាញឹកញាប់


ទម្រង់ត្រីកោណមាត្រ។

តាម​រូប​គេ​អាច​មើល​ឃើញ​ថា​ជា​លេខ z = a + ប៊ីអាចត្រូវបានសរសេរខុសគ្នា។ វាច្បាស់ណាស់។ a = rcos(φ), b = rsin(φ), r=|z|ដូច្នេះ z = rcos(φ) + rsin(φ)i, φ ∈ (-π; π) ត្រូវបានគេហៅថាអាគុយម៉ង់នៃចំនួនកុំផ្លិច។ តំណាងនៃចំនួនកុំផ្លិចត្រូវបានគេហៅថា ទម្រង់ត្រីកោណមាត្រ. ទម្រង់ត្រីកោណមាត្រនៃសញ្ញាណពេលខ្លះគឺងាយស្រួលណាស់។ ឧទាហរណ៍ វាងាយស្រួលប្រើដើម្បីលើកចំនួនកុំផ្លិចទៅជាចំនួនគត់ ពោលគឺប្រសិនបើ z = rcos(φ) + rsin(φ)i, នោះ។ z n = r n cos(nφ) + r n sin(nφ)i, រូបមន្តនេះត្រូវបានគេហៅថា រូបមន្តរបស់ Moivre.

ទម្រង់បទបង្ហាញ។

ចូរយើងពិចារណា z = rcos(φ) + rsin(φ)i- ចំនួនកុំផ្លិចក្នុងទម្រង់ត្រីកោណមាត្រ សរសេរវាក្នុងទម្រង់ផ្សេងទៀត។ z = r(cos(φ) + sin(φ)i) = re iφសមភាពចុងក្រោយធ្វើតាមរូបមន្តរបស់អយល័រ ដូច្នេះយើងទទួលបានទម្រង់ថ្មីនៃការសរសេរចំនួនកុំផ្លិច៖ z=reiφដែលត្រូវបានគេហៅថា សូចនាករ. ទម្រង់នៃការសម្គាល់នេះក៏មានភាពងាយស្រួលផងដែរសម្រាប់ការបង្កើនចំនួនកុំផ្លិចទៅជាថាមពល៖ z n = r n e inφ, នៅទីនេះ មិនចាំបាច់ជាចំនួនគត់ ប៉ុន្តែអាចជាចំនួនពិតតាមអំពើចិត្ត។ ទម្រង់នៃការសម្គាល់នេះត្រូវបានគេប្រើជាញឹកញាប់ដើម្បីដោះស្រាយបញ្ហា។

ទ្រឹស្តីបទជាមូលដ្ឋាននៃពិជគណិតខ្ពស់។

ចូរស្រមៃថាយើងមានសមីការការ៉េ x 2 + x + 1 = 0 ។ ជាក់ស្តែង ការរើសអើងនៃសមីការនេះគឺអវិជ្ជមាន ហើយវាមិនមានឫសគល់ពិតប្រាកដទេ ប៉ុន្តែវាប្រែថាសមីការនេះមានឫសស្មុគស្មាញពីរផ្សេងគ្នា។ ដូច្នេះ ទ្រឹស្តីបទជាមូលដ្ឋាននៃពិជគណិតខ្ពស់ជាងនេះចែងថាពហុធានៃដឺក្រេ n មានឫសស្មុគស្មាញយ៉ាងតិចមួយ។ វាកើតឡើងពីនេះដែលពហុនាមនៃដឺក្រេ n មានឫសស្មុគ្រស្មាញយ៉ាងពិតប្រាកដ ដោយគិតគូរពីគុណរបស់វា។ ទ្រឹស្តីបទនេះគឺជាលទ្ធផលដ៏សំខាន់បំផុតនៅក្នុងគណិតវិទ្យា ហើយត្រូវបានប្រើប្រាស់យ៉ាងទូលំទូលាយ។ ការរួមផ្សំដ៏សាមញ្ញនៃទ្រឹស្តីបទនេះគឺថាមានឫសផ្សេងគ្នានៃកម្រិត n នៃឯកភាព។

ប្រភេទការងារសំខាន់ៗ

ផ្នែកនេះនឹងពិនិត្យមើលប្រភេទចម្បងនៃបញ្ហាសាមញ្ញដែលទាក់ទងនឹងចំនួនកុំផ្លិច។ តាមធម្មតា បញ្ហាទាក់ទងនឹងចំនួនកុំផ្លិចអាចត្រូវបានបែងចែកជាប្រភេទដូចខាងក្រោម។

  • អនុវត្តប្រតិបត្តិការនព្វន្ធសាមញ្ញលើចំនួនកុំផ្លិច។
  • ការស្វែងរកឫសនៃពហុនាមក្នុងចំនួនកុំផ្លិច។
  • ការបង្កើនចំនួនកុំផ្លិចទៅជាអំណាច។
  • ស្រង់ឫសពីចំនួនកុំផ្លិច។
  • ការប្រើលេខកុំផ្លិចដើម្បីដោះស្រាយបញ្ហាផ្សេងៗ។

ឥឡូវនេះសូមក្រឡេកមើលវិធីសាស្រ្តទូទៅសម្រាប់ការដោះស្រាយបញ្ហាទាំងនេះ។

ប្រតិបត្តិការនព្វន្ធសាមញ្ញបំផុតជាមួយនឹងចំនួនកុំផ្លិចត្រូវបានអនុវត្តដោយយោងទៅតាមច្បាប់ដែលបានពិពណ៌នានៅក្នុងផ្នែកទីមួយ ប៉ុន្តែប្រសិនបើចំនួនកុំផ្លិចត្រូវបានបង្ហាញជាទម្រង់ត្រីកោណមាត្រ ឬអិចស្ប៉ូណង់ស្យែល នោះក្នុងករណីនេះអ្នកអាចបំប្លែងពួកវាទៅជាទម្រង់ពិជគណិត និងអនុវត្តប្រតិបត្តិការដោយយោងទៅតាមច្បាប់ដែលគេស្គាល់។

ការស្វែងរកឫសគល់នៃពហុនាមជាធម្មតាចុះមករកឫសនៃសមីការការ៉េ។ ឧបមាថាយើងមានសមីការបួនជ្រុង ប្រសិនបើការរើសអើងរបស់វាគឺមិនអវិជ្ជមាន នោះឫសរបស់វានឹងក្លាយជាការពិត ហើយអាចរកឃើញតាមរូបមន្តដែលគេស្គាល់។ ប្រសិនបើការរើសអើងគឺអវិជ្ជមាន នោះមានន័យថា ឃ = −1∙a ២, កន្លែងណា គឺជាចំនួនជាក់លាក់ បន្ទាប់មកអ្នករើសអើងអាចត្រូវបានតំណាងថាជា D = (ia) ២ដូច្នេះ √D = i|a|ហើយបន្ទាប់មកអ្នកអាចប្រើរូបមន្តដែលគេស្គាល់រួចហើយសម្រាប់ឫសនៃសមីការការ៉េ។

ឧទាហរណ៍. ចូរយើងត្រលប់ទៅសមីការការ៉េដែលបានរៀបរាប់ខាងលើ x 2 + x + 1 = 0 ។
រើសអើង - D = 1 - 4 ∙ 1 = -3 = -1(√3) 2 = (i√3) 2.
ឥឡូវនេះយើងអាចរកឃើញឫសយ៉ាងងាយស្រួល៖

ការបង្កើនលេខស្មុគ្រស្មាញដល់អំណាចអាចត្រូវបានអនុវត្តតាមវិធីជាច្រើន។ ប្រសិនបើអ្នកត្រូវការបង្កើនចំនួនកុំផ្លិចក្នុងទម្រង់ពិជគណិតទៅជាថាមពលតូចមួយ (2 ឬ 3) បន្ទាប់មកអ្នកអាចធ្វើវាបានដោយការគុណដោយផ្ទាល់ ប៉ុន្តែប្រសិនបើថាមពលធំជាង (ក្នុងបញ្ហាវាច្រើនតែធំជាង) នោះអ្នកត្រូវ សរសេរលេខនេះជាទម្រង់ត្រីកោណមាត្រ ឬអិចស្ប៉ូណង់ស្យែល ហើយប្រើវិធីសាស្ត្រដែលគេស្គាល់រួចហើយ។

ឧទាហរណ៍. ពិចារណា z = 1 + i ហើយលើកវាទៅថាមពលទីដប់។
ចូរសរសេរ z ក្នុងទម្រង់អិចស្ប៉ូណង់ស្យែល៖ z = √2 e iπ/4 ។
បន្ទាប់មក z 10 = (√2 អ៊ី iπ/4) 10 = 32 អ៊ី 10iπ/4.
ចូរយើងត្រឡប់ទៅទម្រង់ពិជគណិតវិញ៖ z 10 = -32i ។

ការស្រង់ឫសពីចំនួនកុំផ្លិច គឺជាប្រតិបត្តិការបញ្ច្រាសនៃនិទស្សន្ត ហើយដូច្នេះត្រូវបានអនុវត្តតាមរបៀបស្រដៀងគ្នា។ ដើម្បីស្រង់ឫស ទម្រង់អិចស្ប៉ូណង់ស្យែលនៃការសរសេរលេខត្រូវបានប្រើជាញឹកញាប់។

ឧទាហរណ៍. ចូរយើងស្វែងរកឫសគល់ទាំងអស់នៃសញ្ញាបត្រទី 3 នៃការរួបរួម។ ដើម្បីធ្វើដូចនេះយើងនឹងរកឃើញឫសទាំងអស់នៃសមីការ z 3 = 1 យើងនឹងរកមើលឫសក្នុងទម្រង់អិចស្ប៉ូណង់ស្យែល។
ចូរជំនួសសមីការ៖ r 3 e 3iφ = 1 ឬ r 3 e 3iφ = e 0 ។
ដូច្នេះ៖ r = 1, 3φ = 0 + 2πk ដូច្នេះ φ = 2πk/3 ។
ឫសផ្សេងគ្នាត្រូវបានទទួលនៅφ = 0, 2π/3, 4π/3 ។
ដូច្នេះ 1, e i2π/3, e i4π/3 គឺជាឫស។
ឬក្នុងទម្រង់ពិជគណិត៖

ប្រភេទចុងក្រោយនៃបញ្ហារួមមានបញ្ហាជាច្រើនប្រភេទ ហើយមិនមានវិធីសាស្រ្តទូទៅសម្រាប់ដោះស្រាយវាទេ។ នេះជាឧទាហរណ៍សាមញ្ញនៃកិច្ចការបែបនេះ៖

ស្វែងរកបរិមាណ sin(x) + sin(2x) + sin(2x) + ... + sin(nx).

ទោះបីជាការបង្កើតបញ្ហានេះមិនពាក់ព័ន្ធនឹងលេខស្មុគស្មាញក៏ដោយ វាអាចត្រូវបានដោះស្រាយយ៉ាងងាយស្រួលជាមួយនឹងជំនួយរបស់ពួកគេ។ ដើម្បីដោះស្រាយវា តំណាងខាងក្រោមត្រូវបានប្រើ៖


ប្រសិនបើឥឡូវនេះយើងជំនួសតំណាងនេះទៅជាផលបូក នោះបញ្ហាត្រូវបានកាត់បន្ថយទៅជាការបូកសរុបដំណើរការធរណីមាត្រធម្មតា។

សេចក្តីសន្និដ្ឋាន

លេខកុំផ្លិចត្រូវបានគេប្រើយ៉ាងទូលំទូលាយក្នុងគណិតវិទ្យា អត្ថបទពិនិត្យឡើងវិញនេះបានពិនិត្យប្រតិបត្តិការជាមូលដ្ឋានលើចំនួនកុំផ្លិច ពិពណ៌នាអំពីបញ្ហាស្តង់ដារជាច្រើន និងបានពិពណ៌នាសង្ខេបអំពីវិធីសាស្រ្តទូទៅសម្រាប់ដោះស្រាយពួកវាសម្រាប់ការសិក្សាលម្អិតបន្ថែមទៀតអំពីសមត្ថភាពនៃចំនួនកុំផ្លិច ប្រើអក្សរសិល្ប៍ឯកទេស។

អក្សរសិល្ប៍

កន្សោម សមីការ និងប្រព័ន្ធនៃសមីការ
ជាមួយនឹងលេខស្មុគស្មាញ

ថ្ងៃនេះនៅក្នុងថ្នាក់រៀន យើងនឹងអនុវត្តប្រតិបត្តិការធម្មតាជាមួយនឹងចំនួនកុំផ្លិច ហើយថែមទាំងធ្វើជាម្ចាស់នៃបច្ចេកទេសនៃការដោះស្រាយកន្សោម សមីការ និងប្រព័ន្ធនៃសមីការដែលមានលេខទាំងនេះ។ សិក្ខាសាលានេះគឺជាការបន្តនៃមេរៀន ដូច្នេះហើយប្រសិនបើអ្នកមិនទាន់យល់ច្បាស់អំពីប្រធានបទនោះ សូមធ្វើតាមតំណខាងលើ។ ជាការប្រសើរណាស់, សម្រាប់អ្នកអានដែលបានរៀបចំបន្ថែមទៀតខ្ញុំស្នើឱ្យអ្នកក្តៅឡើងភ្លាម:

ឧទាហរណ៍ ១

សម្រួលការបញ្ចេញមតិ , ប្រសិនបើ . តំណាង​លទ្ធផល​ក្នុង​ទម្រង់​ត្រីកោណមាត្រ ហើយ​គូសវាស​លើ​ប្លង់​ស្មុគស្មាញ។

ដំណោះស្រាយ៖ ដូច្នេះ អ្នកត្រូវជំនួសប្រភាគទៅជាប្រភាគ "ដ៏គួរឱ្យភ័យខ្លាច" អនុវត្តភាពសាមញ្ញ និងបំប្លែងលទ្ធផល ចំនួនកុំផ្លិចទម្រង់ត្រីកោណមាត្រ. បូកគំនូរមួយ។

តើ​អ្វី​ជា​វិធី​ល្អ​បំផុត​ក្នុង​ការ​ធ្វើ​ការ​សម្រេច​ចិត្ត​ជា​ផ្លូវ​ការ? វាមានផលចំណេញច្រើនក្នុងការដោះស្រាយជាមួយកន្សោមពិជគណិត "ស្មុគ្រស្មាញ" មួយជំហានម្តងៗ។ ទីមួយ ការយកចិត្តទុកដាក់មិនសូវមានការរំខាន ហើយទីពីរ ប្រសិនបើកិច្ចការមិនត្រូវបានទទួលយកទេ វានឹងកាន់តែងាយស្រួលក្នុងការស្វែងរកកំហុស។

1) ជាដំបូង ចូរយើងធ្វើឱ្យសាមញ្ញនៃភាគយក។ ចូរជំនួសតម្លៃទៅក្នុងវា បើកតង្កៀប និងជួសជុលស្ទីលម៉ូដសក់៖

... បាទ Quasimodo បែបនេះបានមកពីចំនួនកុំផ្លិច...

ខ្ញុំសូមរំលឹកអ្នកថា ក្នុងអំឡុងពេលនៃការផ្លាស់ប្តូរ វត្ថុសាមញ្ញទាំងស្រុងត្រូវបានប្រើប្រាស់ - ច្បាប់នៃការគុណពហុនាម និងសមភាពដែលបានក្លាយជា banal រួចទៅហើយ។ រឿងចំបងគឺត្រូវប្រុងប្រយ័ត្ននិងមិនច្រឡំដោយសញ្ញា។

2) ឥឡូវនេះមកភាគបែង។ ប្រសិនបើ នោះ៖

សូមកត់សម្គាល់នៅក្នុងការបកស្រាយមិនធម្មតាដែលវាត្រូវបានប្រើ រូបមន្តផលបូកការ៉េ. ជាជម្រើស អ្នកអាចធ្វើការរៀបចំឡើងវិញនៅទីនេះ រូបមន្តរង លទ្ធផលនឹងដូចគ្នាដោយធម្មជាតិ។

3) ហើយទីបំផុតការបញ្ចេញមតិទាំងមូល។ ប្រសិនបើ នោះ៖

ដើម្បីកម្ចាត់ប្រភាគ គុណភាគយក និងភាគបែងដោយកន្សោមរួមនៃភាគបែង។ ក្នុងពេលជាមួយគ្នានេះសម្រាប់គោលបំណងនៃការដាក់ពាក្យ រូបមន្តភាពខុសគ្នាការ៉េត្រូវតែដំបូង (ហើយចាំបាច់!)ដាក់ផ្នែកពិតអវិជ្ជមាននៅទី 2៖

ហើយឥឡូវនេះច្បាប់សំខាន់៖

យើងមិនប្រញាប់ទេ។! វាជាការប្រសើរជាងក្នុងការលេងវាដោយសុវត្ថិភាព និងបោះជំហានបន្ថែម។
នៅក្នុងកន្សោម សមីការ និងប្រព័ន្ធដែលមានចំនួនកុំផ្លិច ការគណនាពាក្យសំដីសន្មត កាន់តែសាហាវជាងពេលណាៗទាំងអស់។!

មានការកាត់បន្ថយដ៏ល្អនៅក្នុងជំហានចុងក្រោយ ហើយនោះគ្រាន់តែជាសញ្ញាដ៏អស្ចារ្យប៉ុណ្ណោះ។

ចំណាំ ៖ និយាយយ៉ាងតឹងរឹង នៅទីនេះ ការបែងចែកចំនួនកុំផ្លិចដោយចំនួនកុំផ្លិច 50 បានកើតឡើង (ចាំថា)។ ខ្ញុំ​នៅ​ស្ងៀម​អំពី​ភាព​ខុស​គ្នា​នេះ​រហូត​មក​ដល់​ពេល​នេះ ហើយ​យើង​នឹង​និយាយ​អំពី​វា​បន្តិច​ក្រោយ​មក។

ចូរបង្ហាញពីសមិទ្ធផលរបស់យើងជាមួយនឹងលិខិត

ចូរយើងបង្ហាញលទ្ធផលដែលទទួលបានក្នុងទម្រង់ត្រីកោណមាត្រ។ និយាយជាទូទៅ នៅទីនេះអ្នកអាចធ្វើបានដោយគ្មានគំនូរ ប៉ុន្តែដោយសារវាត្រូវបានទាមទារ វាជាការសមហេតុផលបន្តិចក្នុងការធ្វើវាឥឡូវនេះ៖

ចូរយើងគណនាម៉ូឌុលនៃចំនួនកុំផ្លិច៖

ប្រសិនបើអ្នកគូរលើមាត្រដ្ឋាននៃ 1 ឯកតា។ = 1 សង់ទីម៉ែត្រ (2 កោសិកាសៀវភៅកត់ត្រា) បន្ទាប់មកតម្លៃដែលទទួលបានអាចត្រូវបានពិនិត្យយ៉ាងងាយស្រួលដោយប្រើបន្ទាត់ធម្មតា។

ចូរយើងស្វែងរកអាគុយម៉ង់។ ចាប់តាំងពីលេខមានទីតាំងនៅត្រីមាសទី 2 កូអរដោណេបន្ទាប់មក៖

មុំអាចត្រូវបានពិនិត្យយ៉ាងងាយស្រួលជាមួយ protractor ។ នេះគឺជាអត្ថប្រយោជន៍ដែលមិនគួរឱ្យសង្ស័យនៃគំនូរ។

ដូច្នេះ៖ - ចំនួនដែលត្រូវការក្នុងទម្រង់ត្រីកោណមាត្រ។

តោះពិនិត្យ៖
ដែលជាអ្វីដែលចាំបាច់ត្រូវផ្ទៀងផ្ទាត់។

វាងាយស្រួលក្នុងការស្វែងរកតម្លៃដែលមិនធ្លាប់ស្គាល់នៃស៊ីនុស និងកូស៊ីនុសដោយប្រើ តារាងត្រីកោណមាត្រ.

ចម្លើយ:

ឧទាហរណ៍ស្រដៀងគ្នាសម្រាប់ដំណោះស្រាយឯករាជ្យ៖

ឧទាហរណ៍ ២

សម្រួលការបញ្ចេញមតិ , កន្លែងណា . គូរលេខលទ្ធផលនៅលើប្លង់ស្មុគស្មាញ ហើយសរសេរវាជាទម្រង់អិចស្ប៉ូណង់ស្យែល។

ព្យាយាមមិនរំលងឧទាហរណ៍នៃការបង្រៀន។ ពួកវាហាក់ដូចជាសាមញ្ញ ប៉ុន្តែបើគ្មានការហ្វឹកហ្វឺន "ការចូលទៅក្នុងស្រះទឹក" មិនមែនគ្រាន់តែងាយស្រួលនោះទេ ប៉ុន្តែងាយស្រួលណាស់។ ដូច្នេះ យើង​«​ចាប់​ដៃ​លើ​វា​»។

ជារឿយៗបញ្ហាមានដំណោះស្រាយច្រើនជាងមួយ៖

ឧទាហរណ៍ ៣

គណនាប្រសិនបើ,

ដំណោះស្រាយ៖ ជាដំបូង ចូរយើងយកចិត្តទុកដាក់លើលក្ខខណ្ឌដើម - លេខមួយត្រូវបានបង្ហាញជាពិជគណិត និងមួយទៀតជាទម្រង់ត្រីកោណមាត្រ និងសូម្បីតែដឺក្រេ។ តោះ​សរសេរ​វា​ឡើង​វិញ​ភ្លាមៗ​ក្នុង​ទម្រង់​ដែល​ធ្លាប់​ស្គាល់​ជាង៖ .

តើការគណនាគួរត្រូវបានអនុវត្តក្នុងទម្រង់បែបណា? កន្សោមជាក់ស្តែងពាក់ព័ន្ធនឹងការគុណដំបូង និងការបង្កើនបន្ថែមទៀតដល់អំណាចទី 10 រូបមន្តរបស់ Moivreដែលត្រូវបានបង្កើតឡើងសម្រាប់ទម្រង់ត្រីកោណមាត្រនៃចំនួនកុំផ្លិច។ ដូច្នេះវាហាក់ដូចជាឡូជីខលជាងក្នុងការបំប្លែងលេខទីមួយ។ ចូរយើងស្វែងរកម៉ូឌុល និងអាគុយម៉ង់របស់វា៖

យើងប្រើក្បួនសម្រាប់គុណចំនួនកុំផ្លិចក្នុងទម្រង់ត្រីកោណមាត្រ៖
ប្រសិនបើ នោះ

ការធ្វើឱ្យប្រភាគត្រឹមត្រូវយើងឈានដល់ការសន្និដ្ឋានថាយើងអាច "បង្វិល" 4 វេន (រីករាយ។ ):

ដំណោះស្រាយទីពីរគឺដើម្បីបំប្លែងលេខទី 2 ទៅជាទម្រង់ពិជគណិត អនុវត្តការគុណជាទម្រង់ពិជគណិត បម្លែងលទ្ធផលទៅជាទម្រង់ត្រីកោណមាត្រ ហើយប្រើរូបមន្តរបស់ Moivre ។

ដូចដែលអ្នកអាចឃើញមានសកម្មភាព "បន្ថែម" មួយ។ អ្នក​ដែល​ប្រាថ្នា​អាច​ធ្វើ​តាម​ការ​សម្រេច​ចិត្ត ហើយ​ប្រាកដ​ថា​លទ្ធផល​គឺ​ដូច​គ្នា។

លក្ខខណ្ឌមិននិយាយអ្វីអំពីទម្រង់នៃចំនួនកុំផ្លិចចុងក្រោយ ដូច្នេះ៖

ចម្លើយ:

ប៉ុន្តែ "សម្រាប់ភាពស្រស់ស្អាត" ឬតាមតម្រូវការ លទ្ធផលគឺងាយស្រួលក្នុងការស្រមៃក្នុងទម្រង់ពិជគណិត:

ដោយខ្លួនឯង៖

ឧទាហរណ៍ 4

សម្រួលការបញ្ចេញមតិ

នៅទីនេះយើងត្រូវចងចាំ សកម្មភាពជាមួយដឺក្រេទោះបីជាមិនមានច្បាប់មានប្រយោជន៍មួយនៅក្នុងសៀវភៅដៃក៏ដោយ វានៅទីនេះ៖ .

ហើយចំណាំសំខាន់មួយទៀត៖ ឧទាហរណ៍អាចត្រូវបានដោះស្រាយជាពីររចនាប័ទ្ម។ ជម្រើសដំបូងគឺធ្វើការជាមួយ ពីរលេខ ហើយមិនអីទេជាមួយប្រភាគ។ ជម្រើសទីពីរគឺតំណាងឱ្យលេខនីមួយៗជា កូតានៃលេខពីរ: និង កម្ចាត់រចនាសម្ព័ន្ធបួនជាន់. តាមទស្សនៈផ្លូវការ វាមិនសំខាន់ថាអ្នកសម្រេចចិត្តបែបណានោះទេ ប៉ុន្តែវាមានភាពខុសគ្នាខ្លាំង! សូម​គិត​ឲ្យ​បាន​ច្បាស់​អំពី៖
គឺជាចំនួនកុំផ្លិច;
គឺ​ជា​ផលគុណ​នៃ​ចំនួន​កុំផ្លិច​ពីរ ( និង ) ប៉ុន្តែ​អាស្រ័យ​លើ​បរិបទ អ្នក​ក៏​អាច​និយាយ​បាន​ដែរ​ថា​៖ លេខ​ដែល​តំណាង​ឱ្យ​ជា​កូតានៃ​ចំនួន​កុំផ្លិច​ពីរ។

ដំណោះស្រាយខ្លីៗ និងចម្លើយនៅចុងបញ្ចប់នៃមេរៀន។

កន្សោមគឺល្អ ប៉ុន្តែសមីការគឺល្អជាង៖

សមីការដែលមានមេគុណស្មុគស្មាញ

តើពួកវាខុសគ្នាពីសមីការ "ធម្មតា" យ៉ាងដូចម្តេច? ហាងឆេង =)

ដោយគិតពីមតិខាងលើ សូមចាប់ផ្តើមជាមួយឧទាហរណ៍នេះ៖

ឧទាហរណ៍ 5

ដោះស្រាយសមីការ

និងបុព្វកថាភ្លាមៗ "ក្តៅនៅលើកែងជើង"៖ ដំបូងផ្នែកខាងស្តាំនៃសមីការត្រូវបានដាក់ជាកូតានៃចំនួនកុំផ្លិចពីរ (និង 13) ហើយដូច្នេះវានឹងជាទម្រង់អាក្រក់ក្នុងការសរសេរលក្ខខណ្ឌឡើងវិញជាមួយនឹងលេខ។ (ទោះបីជាវានឹងមិនបង្កឱ្យមានកំហុសក៏ដោយ). ដោយវិធីនេះ ភាពខុសគ្នានេះអាចមើលឃើញយ៉ាងច្បាស់នៅក្នុងប្រភាគ - ប្រសិនបើនិយាយដោយទាក់ទងគ្នា នោះតម្លៃនេះត្រូវបានយល់ជាចម្បងថាជា ឫសស្មុគ្រស្មាញ "ពេញលេញ" នៃសមីការហើយមិនមែនជាផ្នែកនៃលេខទេ ហើយជាពិសេសមិនមែនជាផ្នែកនៃលេខ!

ដំណោះស្រាយជាគោលការណ៍ក៏អាចត្រូវបានធ្វើមួយជំហានម្តង ៗ ប៉ុន្តែក្នុងករណីនេះហ្គេមមិនសមនឹងទៀនទេ។ ភារកិច្ចដំបូងគឺធ្វើឱ្យអ្វីៗទាំងអស់ដែលមិនមាន "z" មិនស្គាល់ដែលបណ្តាលឱ្យសមីការត្រូវបានកាត់បន្ថយទៅជាទម្រង់:

យើងធ្វើឱ្យប្រភាគកណ្តាលសាមញ្ញដោយទំនុកចិត្ត៖

យើងផ្ទេរលទ្ធផលទៅផ្នែកខាងស្តាំ ហើយស្វែងរកភាពខុសគ្នា៖

ចំណាំ ៖ ហើយម្តងទៀត ខ្ញុំទាញចំណាប់អារម្មណ៍របស់អ្នកទៅចំណុចដ៏មានអត្ថន័យ - នៅទីនេះយើងមិនបានដកលេខចេញពីចំនួនមួយទេ ប៉ុន្តែបាននាំប្រភាគទៅជាភាគបែងធម្មតា! វាគួរតែត្រូវបានកត់សម្គាល់ថារួចហើយនៅក្នុង PROGRESS នៃការដោះស្រាយវាមិនត្រូវបានហាមឃាត់មិនឱ្យធ្វើការជាមួយលេខ: ទោះយ៉ាងណាក៏ដោយ នៅក្នុងឧទាហរណ៍ដែលកំពុងពិចារណារចនាប័ទ្មនេះគឺមានគ្រោះថ្នាក់ជាងមានប្រយោជន៍ =)

យោងទៅតាមក្បួនសមាមាត្រយើងបង្ហាញ "zet":

ឥឡូវនេះ អ្នកអាចបែងចែក និងគុណដោយ conjugate ម្តងទៀត ប៉ុន្តែចំនួនដែលស្រដៀងគ្នាគួរឱ្យសង្ស័យនៅក្នុងភាគបែង និងភាគបែងបង្ហាញចលនាបន្ទាប់៖

ចម្លើយ:

ដើម្បីពិនិត្យ សូមជំនួសតម្លៃលទ្ធផលទៅផ្នែកខាងឆ្វេងនៃសមីការដើម ហើយអនុវត្តការធ្វើឱ្យសាមញ្ញ៖

- ផ្នែកខាងស្តាំនៃសមីការដើមត្រូវបានទទួល ដូច្នេះឫសត្រូវបានរកឃើញត្រឹមត្រូវ។

...ឥឡូវនេះ... ខ្ញុំនឹងស្វែងរកអ្វីដែលគួរឱ្យចាប់អារម្មណ៍សម្រាប់អ្នក... នៅទីនេះអ្នកទៅ៖

ឧទាហរណ៍ ៦

ដោះស្រាយសមីការ

សមីការនេះកាត់បន្ថយទៅជាទម្រង់ ដែលមានន័យថាវាជាលីនេអ៊ែរ។ ខ្ញុំគិតថាគន្លឹះគឺច្បាស់ - ទៅរកវា!

ពិតណាស់...តើអ្នកអាចរស់នៅដោយគ្មានគាត់ដោយរបៀបណា?

សមីការ quadratic ជាមួយមេគុណស្មុគស្មាញ

នៅមេរៀន លេខស្មុគស្មាញសម្រាប់អត់ចេះសោះយើងបានដឹងថាសមីការបួនជ្រុងជាមួយមេគុណពិតអាចមានឫសស្មុគ្រស្មាញ បន្ទាប់មកសំណួរឡូជីខលកើតឡើង៖ ហេតុអ្វីបានជាការពិត មេគុណខ្លួនឯងមិនអាចស្មុគស្មាញ? អនុញ្ញាតឱ្យខ្ញុំបង្កើតករណីទូទៅមួយ៖

សមីការបួនជ្រុងជាមួយមេគុណស្មុគស្មាញតាមអំពើចិត្ត (ជាពិសេស 1 ឬ 2 ដែលឬទាំងបីអាចមានសុពលភាព)វា​មាន ពីរនិងពីរប៉ុណ្ណោះ។ឫសស្មុគស្មាញ (ប្រហែលជាមួយ ឬទាំងពីរមានសុពលភាព). ទន្ទឹមនឹងនេះឫស (ទាំងផ្នែកពិត និងគ្មានសូន្យ)អាចស្របគ្នា (ជាគុណ)។

សមីការការ៉េដែលមានមេគុណស្មុគស្មាញត្រូវបានដោះស្រាយដោយប្រើគ្រោងការណ៍ដូចគ្នា។ សមីការ "សាលា"ជាមួយនឹងភាពខុសគ្នាមួយចំនួននៅក្នុងបច្ចេកទេសគណនា៖

ឧទាហរណ៍ ៧

ស្វែងរកឫសនៃសមីការការ៉េ

ដំណោះស្រាយ៖ ឯកតាស្រមើលស្រមៃមកមុន ហើយជាគោលការណ៍ អ្នកអាចកម្ចាត់វាបាន (គុណទាំងសងខាងដោយ)ទោះយ៉ាងណាក៏ដោយ មិនមានតម្រូវការពិសេសសម្រាប់រឿងនេះទេ។

ដើម្បីភាពងាយស្រួល យើងសរសេរមេគុណ៖

តោះកុំឲ្យខាត “ដក” សមាជិកឥតគិតថ្លៃ! ... វាប្រហែលជាមិនច្បាស់សម្រាប់អ្នករាល់គ្នាទេ - ខ្ញុំនឹងសរសេរសមីការឡើងវិញក្នុងទម្រង់ស្តង់ដារ :

ចូរយើងគណនាការរើសអើង៖

ហើយនេះគឺជាឧបសគ្គចម្បង៖

ការអនុវត្តរូបមន្តទូទៅសម្រាប់ការស្រង់ឫស (សូមមើលកថាខណ្ឌចុងក្រោយនៃអត្ថបទ លេខស្មុគស្មាញសម្រាប់អត់ចេះសោះ) ស្មុគស្មាញដោយការលំបាកធ្ងន់ធ្ងរដែលទាក់ទងនឹងអាគុយម៉ង់ចំនួនស្មុគស្មាញរ៉ាឌីកាល់ (មើលដោយខ្លួនឯង). ប៉ុន្តែមានវិធី "ពិជគណិត" មួយទៀត! យើងនឹងស្វែងរកឫសក្នុងទម្រង់៖

ចូរយើងធ្វើការ៉េទាំងសងខាង៖

ចំនួនកុំផ្លិចពីរគឺស្មើគ្នា ប្រសិនបើផ្នែកពិត និងស្រមើលស្រមៃរបស់ពួកគេស្មើគ្នា។ ដូច្នេះយើងទទួលបានប្រព័ន្ធដូចខាងក្រោមៈ

ប្រព័ន្ធគឺងាយស្រួលដោះស្រាយដោយជ្រើសរើស (វិធីដ៏ហ្មត់ចត់ជាងនេះ គឺបង្ហាញពីសមីការទី 2 - ជំនួសទី 1 ទទួលបាន និងដោះស្រាយសមីការ biquadratic). ដោយសន្មត់ថាអ្នកនិពន្ធនៃបញ្ហាមិនមែនជាបិសាចទេ យើងដាក់សម្មតិកម្មនោះ ហើយជាចំនួនគត់។ ពីសមីការទី 1 វាធ្វើតាមថា "x" ម៉ូឌុលច្រើនជាង "Y" ។ លើសពីនេះទៀតផលិតផលវិជ្ជមានប្រាប់យើងថាអ្វីដែលមិនស្គាល់គឺជាសញ្ញាដូចគ្នា។ ដោយផ្អែកលើសមីការខាងលើ ហើយផ្តោតលើសមីការទី 2 យើងសរសេរគូទាំងអស់ដែលត្រូវនឹងវា៖

វាច្បាស់ណាស់ថាសមីការទី 1 នៃប្រព័ន្ធត្រូវបានពេញចិត្តដោយពីរគូចុងក្រោយ ដូច្នេះ៖

ការត្រួតពិនិត្យកម្រិតមធ្យមនឹងមិនឈឺចាប់ទេ៖

ដែលជាអ្វីដែលចាំបាច់ត្រូវត្រួតពិនិត្យ។

អ្នកអាចជ្រើសរើសជា root "ធ្វើការ" ណាមួយ។អត្ថន័យ។ វាច្បាស់ណាស់ថាវាជាការប្រសើរជាងក្នុងការយកកំណែដោយគ្មាន "គុណវិបត្តិ"៖

យើង​រក​ឃើញ​ឫស​មិន​ភ្លេច ដោយ​វិធី​នេះ​ថា ៖

ចម្លើយ:

សូមពិនិត្យមើលថាតើឫសដែលបានរកឃើញបំពេញសមីការ :

1) ចូរជំនួស:

សមភាពពិត។

2) ចូរជំនួស៖

សមភាពពិត។

ដូច្នេះដំណោះស្រាយត្រូវបានរកឃើញត្រឹមត្រូវ។

ផ្អែកលើបញ្ហាដែលយើងទើបតែពិភាក្សា៖

ឧទាហរណ៍ ៨

ស្វែងរកឫសគល់នៃសមីការ

វាគួរតែត្រូវបានកត់សម្គាល់ថាឫសការ៉េនៃ ស្មុគស្មាញសុទ្ធសាធលេខអាចត្រូវបានស្រង់ចេញយ៉ាងងាយស្រួលដោយប្រើរូបមន្តទូទៅ , កន្លែងណា ដូច្នេះវិធីសាស្រ្តទាំងពីរត្រូវបានបង្ហាញនៅក្នុងគំរូ។ ការកត់សម្គាល់មានប្រយោជន៍ទីពីរទាក់ទងនឹងការពិតដែលថាការទាញយកបឋមនៃឫសនៃថេរមិនធ្វើឱ្យដំណោះស្រាយងាយស្រួលទាល់តែសោះ។

ឥឡូវនេះអ្នកអាចសម្រាកបាន - ក្នុងឧទាហរណ៍នេះអ្នកនឹងរួចផុតពីការភ័យខ្លាចបន្តិច :)

ឧទាហរណ៍ ៩

ដោះស្រាយសមីការ និងពិនិត្យ

ដំណោះស្រាយ និងចម្លើយនៅចុងបញ្ចប់នៃមេរៀន។

កថាខណ្ឌចុងក្រោយនៃអត្ថបទត្រូវបានឧទ្ទិសដល់

ប្រព័ន្ធនៃសមីការជាមួយចំនួនកុំផ្លិច

សូមសម្រាក ហើយ... កុំតានតឹងឡើង =) ចូរយើងពិចារណាករណីសាមញ្ញបំផុត - ប្រព័ន្ធនៃសមីការលីនេអ៊ែរពីរដែលមិនស្គាល់ពីរ៖

ឧទាហរណ៍ 10

ដោះស្រាយប្រព័ន្ធសមីការ។ បង្ហាញចម្លើយជាទម្រង់ពិជគណិត និងអិចស្ប៉ូណង់ស្យែល ពិពណ៌នាអំពីឫសនៅក្នុងគំនូរ។

ដំណោះស្រាយ៖ លក្ខខណ្ឌខ្លួនវាបង្ហាញថាប្រព័ន្ធមានដំណោះស្រាយតែមួយគត់ នោះគឺយើងត្រូវស្វែងរកលេខពីរដែលពេញចិត្ត ដល់គ្នា។សមីការនៃប្រព័ន្ធ។

ប្រព័ន្ធនេះពិតជាអាចត្រូវបានដោះស្រាយតាមរបៀប "ក្មេង" (បង្ហាញអថេរមួយក្នុងលក្ខខណ្ឌមួយទៀត) ទោះយ៉ាងណាក៏ដោយវាកាន់តែងាយស្រួលប្រើ រូបមន្តរបស់ Cramer. ចូរយើងគណនា កត្តាកំណត់សំខាន់ប្រព័ន្ធ៖

ដែលមានន័យថាប្រព័ន្ធមានដំណោះស្រាយតែមួយគត់។

ខ្ញុំនិយាយម្តងទៀតថា វាជាការប្រសើរក្នុងការចំណាយពេលរបស់អ្នក ហើយសរសេរជំហានឱ្យបានលម្អិតតាមដែលអាចធ្វើទៅបាន៖

យើងគុណភាគយក និងភាគបែងដោយឯកតាស្រមើលស្រមៃ ហើយទទួលបានឫសទី 1៖

ដូចគ្នានេះដែរ៖

ផ្នែកខាងស្តាំដែលត្រូវគ្នាត្រូវបានទទួល។ល។

តោះធ្វើគំនូរ៖

ចូរតំណាងឱ្យឫសក្នុងទម្រង់អិចស្ប៉ូណង់ស្យែល។ ដើម្បីធ្វើដូច្នេះ អ្នកត្រូវស្វែងរកម៉ូឌុល និងអាគុយម៉ង់របស់ពួកគេ៖

1) - អាកតង់សង់នៃ "ពីរ" ត្រូវបានគណនា "មិនល្អ" ដូច្នេះយើងទុកវាដូចនេះ:

ទីភ្នាក់ងារសហព័ន្ធសម្រាប់ការអប់រំ

វិទ្យាស្ថានអប់រំរដ្ឋ

ការអប់រំវិជ្ជាជីវៈកម្រិតខ្ពស់

"សាកលវិទ្យាល័យគរុកោសល្យរដ្ឋ VORONEZH"

នាយកដ្ឋាន AGLEBRA និងធរណីមាត្រ

លេខស្មុគស្មាញ

(កិច្ចការដែលបានជ្រើសរើស)

ការងារមានគុណវុឌ្ឍិ

ឯកទេស 050201.65 គណិតវិទ្យា

(ជាមួយនឹងជំនាញបន្ថែម 050202.65 វិទ្យាសាស្ត្រកុំព្យូទ័រ)

បញ្ចប់ដោយ៖ និស្សិតឆ្នាំទី៥

រូបវិទ្យា និងគណិតវិទ្យា

មហាវិទ្យាល័យ

ទីប្រឹក្សាវិទ្យាសាស្ត្រ៖

VORONEZH - ឆ្នាំ ២០០៨


1 ។ សេចក្ដីណែនាំ……………………………………………………...…………..…

2. ចំនួនកុំផ្លិច (បញ្ហាដែលបានជ្រើសរើស)

២.១. ចំនួនកុំផ្លិចក្នុងទម្រង់ពិជគណិត………………………….

២.២. ការបកស្រាយធរណីមាត្រនៃចំនួនកុំផ្លិច……………

២.៣. ទម្រង់ត្រីកោណមាត្រនៃចំនួនកុំផ្លិច

២.៤. ការអនុវត្តទ្រឹស្តីនៃចំនួនកុំផ្លិច ទៅនឹងដំណោះស្រាយនៃសមីការនៃដឺក្រេទី 3 និងទី 4 …………………………………………………………………………

២.៥. ចំនួនកុំផ្លិច និងប៉ារ៉ាម៉ែត្រ……………………………………………….

3. សេចក្តីសន្និដ្ឋាន……………………………………………………………………………….

4. បញ្ជីឯកសារយោង…………………………………………………………………


1 ។ សេចក្ដីណែនាំ

នៅក្នុងកម្មវិធីសិក្សាគណិតវិទ្យារបស់សាលា ទ្រឹស្ដីលេខត្រូវបានណែនាំដោយប្រើឧទាហរណ៍នៃសំណុំនៃចំនួនធម្មជាតិ ចំនួនគត់ សនិទានភាព មិនសមហេតុផល i.e. នៅលើសំណុំនៃចំនួនពិត រូបភាពដែលបំពេញបន្ទាត់លេខទាំងមូល។ ប៉ុន្តែរួចទៅហើយនៅក្នុងថ្នាក់ទី 8 មិនមានការផ្គត់ផ្គង់គ្រប់គ្រាន់នៃចំនួនពិត, ការដោះស្រាយសមីការបួនជ្រុងជាមួយនឹងការរើសអើងអវិជ្ជមានមួយ។ ដូច្នេះ វាចាំបាច់ក្នុងការបំពេញភាគហ៊ុននៃចំនួនពិត ដោយមានជំនួយពីចំនួនកុំផ្លិច ដែលឫសការ៉េនៃចំនួនអវិជ្ជមានមានន័យ។

ជម្រើសនៃប្រធានបទ "ចំនួនកុំផ្លិច" ជាប្រធានបទនៃការងារគុណវុឌ្ឍិចុងក្រោយរបស់ខ្ញុំគឺថា គោលគំនិតនៃចំនួនកុំផ្លិច ពង្រីកចំណេះដឹងរបស់សិស្សអំពីប្រព័ន្ធលេខ អំពីការដោះស្រាយបញ្ហាជាច្រើនប្រភេទនៃខ្លឹមសារពិជគណិត និងធរណីមាត្រ អំពីការដោះស្រាយពិជគណិត សមីការនៃសញ្ញាបត្រណាមួយ និងអំពីការដោះស្រាយបញ្ហាជាមួយប៉ារ៉ាម៉ែត្រ។

និក្ខេបបទនេះពិនិត្យដំណោះស្រាយចំពោះបញ្ហាចំនួន ៨២។

ផ្នែកដំបូងនៃផ្នែកសំខាន់ "ចំនួនកុំផ្លិច" ផ្តល់នូវដំណោះស្រាយចំពោះបញ្ហាជាមួយនឹងចំនួនកុំផ្លិចក្នុងទម្រង់ពិជគណិត កំណត់ប្រតិបត្តិការនៃការបូក ដក គុណ ចែក ប្រតិបត្តិការផ្សំសម្រាប់លេខស្មុគស្មាញក្នុងទម្រង់ពិជគណិត ថាមពលនៃឯកតាស្រមើលស្រមៃ។ , ម៉ូឌុលនៃចំនួនកុំផ្លិច ហើយក៏កំណត់ក្បួនដកឫសការេនៃចំនួនកុំផ្លិច។

នៅផ្នែកទីពីរ បញ្ហាលើការបកស្រាយធរណីមាត្រនៃចំនួនកុំផ្លិចក្នុងទម្រង់ជាចំនុច ឬវ៉ិចទ័រនៃប្លង់ស្មុគស្មាញត្រូវបានដោះស្រាយ។

ផ្នែកទីបីពិនិត្យប្រតិបត្តិការលើចំនួនកុំផ្លិចក្នុងទម្រង់ត្រីកោណមាត្រ។ រូបមន្តដែលប្រើគឺ៖ Moivre និងស្រង់ឫសនៃចំនួនកុំផ្លិច។

ផ្នែកទី 4 ត្រូវបានឧទ្ទិសដល់ការដោះស្រាយសមីការនៃដឺក្រេទី 3 និងទី 4 ។

នៅពេលដោះស្រាយបញ្ហានៅផ្នែកចុងក្រោយ "ចំនួនកុំផ្លិច និងប៉ារ៉ាម៉ែត្រ" ព័ត៌មានដែលបានផ្តល់ឱ្យនៅក្នុងផ្នែកមុនត្រូវបានប្រើ និងរួមបញ្ចូលគ្នា។ ស៊េរីនៃបញ្ហានៅក្នុងជំពូកត្រូវបានឧទ្ទិសដល់ការកំណត់គ្រួសារនៃបន្ទាត់នៅក្នុងប្លង់ស្មុគស្មាញដែលបានកំណត់ដោយសមីការ (វិសមភាព) ជាមួយនឹងប៉ារ៉ាម៉ែត្រមួយ។ នៅក្នុងផ្នែកនៃលំហាត់ អ្នកត្រូវដោះស្រាយសមីការជាមួយប៉ារ៉ាម៉ែត្រ (លើវាល C)។ មានភារកិច្ចដែលអថេរស្មុគស្មាញក្នុងពេលដំណាលគ្នាបំពេញលក្ខខណ្ឌមួយចំនួន។ លក្ខណៈពិសេសពិសេសនៃការដោះស្រាយបញ្ហានៅក្នុងផ្នែកនេះគឺការកាត់បន្ថយនៃពួកគេជាច្រើនទៅនឹងដំណោះស្រាយនៃសមីការ (វិសមភាពប្រព័ន្ធ) នៃដឺក្រេទីពីរមិនសមហេតុផលត្រីកោណមាត្រដែលមានប៉ារ៉ាម៉ែត្រមួយ។

លក្ខណៈពិសេសនៃការបង្ហាញនៃសម្ភារៈនៅក្នុងផ្នែកនីមួយៗគឺការណែនាំដំបូងនៃមូលដ្ឋានគ្រឹះទ្រឹស្តី ហើយក្រោយមកការអនុវត្តជាក់ស្តែងរបស់ពួកគេក្នុងការដោះស្រាយបញ្ហា។

នៅចុងបញ្ចប់នៃនិក្ខេបបទមានបញ្ជីឯកសារយោងដែលត្រូវបានប្រើ។ ភាគច្រើននៃពួកគេបង្ហាញពីសម្ភារៈទ្រឹស្តីនៅក្នុងលម្អិតគ្រប់គ្រាន់ និងក្នុងលក្ខណៈដែលអាចចូលដំណើរការបាន ពិភាក្សាអំពីដំណោះស្រាយចំពោះបញ្ហាមួយចំនួន និងផ្តល់កិច្ចការជាក់ស្តែងសម្រាប់ដំណោះស្រាយឯករាជ្យ។ ខ្ញុំចង់យកចិត្តទុកដាក់ជាពិសេសចំពោះប្រភពដូចជា៖

1. Gordienko N.A., Belyaeva E.S., Firstov V.E., Serebryakova I.V. លេខស្មុគស្មាញ និងកម្មវិធីរបស់ពួកគេ៖ សៀវភៅសិក្សា។ . សម្ភារៈនៃសៀវភៅសិក្សាត្រូវបានបង្ហាញជាទម្រង់នៃការបង្រៀន និងលំហាត់ជាក់ស្តែង។

2. Shklyarsky D.O., Chentsov N.N., Yaglom I.M. បញ្ហាដែលបានជ្រើសរើស និងទ្រឹស្តីបទនៃគណិតវិទ្យាបឋម។ នព្វន្ធ និងពិជគណិត។ សៀវភៅនេះមាន 320 បញ្ហាដែលទាក់ទងនឹង ពិជគណិត នព្វន្ធ និងទ្រឹស្តីលេខ។ កិច្ចការទាំងនេះមានភាពខុសគ្នាយ៉ាងខ្លាំងនៅក្នុងធម្មជាតិពីកិច្ចការសាលាស្តង់ដារ។


2. ចំនួនកុំផ្លិច (បញ្ហាដែលបានជ្រើសរើស)

២.១. លេខស្មុគស្មាញក្នុងទម្រង់ពិជគណិត

ដំណោះស្រាយនៃបញ្ហាជាច្រើនក្នុងគណិតវិទ្យា និងរូបវិទ្យាមកដោះស្រាយសមីការពិជគណិត ពោលគឺឧ។ សមីការនៃទម្រង់

,

ដែល a0, a1, …, an គឺជាចំនួនពិត។ ដូច្នេះហើយ ការសិក្សាអំពីសមីការពិជគណិតគឺជាបញ្ហាសំខាន់បំផុតមួយនៅក្នុងគណិតវិទ្យា។ ជាឧទាហរណ៍ សមីការការ៉េដែលមានការរើសអើងអវិជ្ជមានមិនមានឫសគល់ពិតប្រាកដទេ។ សមីការ​បែប​នេះ​សាមញ្ញ​បំផុត​គឺ​សមីការ

.

ដើម្បីឱ្យសមីការនេះមានដំណោះស្រាយ វាចាំបាច់ក្នុងការពង្រីកសំណុំនៃចំនួនពិតដោយបន្ថែមទៅវានូវឫសនៃសមីការ។

.

អនុញ្ញាតឱ្យយើងសម្គាល់ឫសនេះដោយ

. ដូច្នេះតាមនិយមន័យ ឬ

ហេតុនេះ

. ហៅថាឯកតាស្រមើលស្រមៃ។ ដោយមានជំនួយរបស់វា និងដោយមានជំនួយពីលេខពិតមួយ កន្សោមនៃទម្រង់ត្រូវបានចងក្រង។

កន្សោមលទ្ធផលត្រូវបានគេហៅថាចំនួនកុំផ្លិច ពីព្រោះពួកវាមានទាំងផ្នែកពិត និងផ្នែកស្រមើលស្រមៃ។

ដូច្នេះ ចំនួនកុំផ្លិច គឺជាកន្សោមនៃទម្រង់

និងជាចំនួនពិត និងជានិមិត្តសញ្ញាជាក់លាក់ដែលបំពេញលក្ខខណ្ឌ។ លេខត្រូវបានគេហៅថាផ្នែកពិតនៃចំនួនកុំផ្លិច ហើយចំនួនគឺជាផ្នែកស្រមើលស្រមៃរបស់វា។ និមិត្តសញ្ញា, ត្រូវបានប្រើដើម្បីសម្គាល់ពួកគេ។

លេខស្មុគស្មាញនៃទម្រង់

គឺជាចំនួនពិត ហើយដូច្នេះ សំណុំនៃចំនួនកុំផ្លិច មានសំណុំនៃចំនួនពិត។

លេខស្មុគស្មាញនៃទម្រង់

ត្រូវបានគេហៅថាការស្រមើលស្រមៃសុទ្ធសាធ។ ចំនួនកុំផ្លិចពីរនៃទម្រង់ ហើយត្រូវបានគេនិយាយថាស្មើគ្នា ប្រសិនបើផ្នែកពិត និងស្រមើលស្រមៃរបស់ពួកគេស្មើគ្នា ពោលគឺឧ។ ប្រសិនបើសមភាព។

ការសម្គាល់ពិជគណិតនៃចំនួនកុំផ្លិចអនុញ្ញាតឲ្យប្រតិបត្តិការលើពួកវាដោយយោងតាមច្បាប់ធម្មតានៃពិជគណិត។