Географическое положение северо западного региона. Экономико-географическая характеристика северо-западного эр

Cтраница 1

Мощность земной коры здесь не превышает 5 — 7 км, в ее составе отсутствует гранитный слой, а мощность осадочного слоя незначительна, что резко снижает перспективы нефтегазоносное этих территорий.  

Мощность земной коры в целом уменьшается, если геотерма смещается ближе к оси температур, что обеспечивается высокой теплопроводностью, связанной с циркуляцией масс воды от свободной поверхности вплоть до нижней коры, как, например, в случае Паннонского бассейна.

Мощность земной коры в разных частях земного шара не остается постоянной. Наибольшей мощности кора достигает на континентах, и особенно под горными сооружениями (здесь толщина гранитной оболочки достигает 30 — 40 км); предполагается, чтб под океанами мощность земной коры, лишенной гранитной оболочки, не превышает 6 — 8 км.  

Мощность земной коры здесь не превышает 5 — 7 км, в ее составе отсутствует гранитный слой, а мощность осадочного слоя незначительна, что резко снижает перспективы нефтегазоносное этих территорий.

Мощность земной коры в целом уменьшается, если геотерма смещается ближе к оси температур, что обеспечивается высокой теплопроводностью, связанной с циркуляцией масс воды от свободной поверхности вплоть до нижней коры, как, например, в случае Паннонского бассейна.  

В настоящее время мощность земной коры в среднем принимается равной / о диаметра Земли.

Особенностью континентальной коры является наличие корней гор — резкого увеличения мощности земной коры под крупными горными системами.

Под Гималаями, на-мощность коры, по-ви-достигает 70 — 80 км.  

Примерно такими же были условия и в последующий, катархейский, период развития Земли, продолжавшийся, вероятно, 0 5 млрд.

лет (4 0 — 3 5 млрд. лет назад), когда постепенно увеличивалась мощность земной коры и, вероятно, происходила ее дифференциация на более мощные и стабильные и менее мощные и подвижные участки.  

Страна горы и низменности Дальнего Востока имеет условную границу: на западе и севере она совпадает с долинами рек Олек-ма, Алдан, Юдома и Охота, на востоке включает шельф Охотского и Японского морей, на юге проходит по государственной границе.

Мощность земной коры достигает 30 — 45 км и зеркально отражает основные крупные орографические единицы.  

Южное крыло Большого Кавказа (на севере и северо-востоке региона) представляет собой веерообразную складчатую асимметричную структуру, сложенную преимущественно юрскими и меловыми отложениями, и характеризуется значительной сейсмичностью. Мощность земной коры составляет 45 — 80 км.

Здесь расположены оба выделенных нами аномальных района. По данным магнитотеллурического зондирования [ Шолпо, 1978 ], слой повышенной проводимости расположен под Большим Кавказом в узкой полосе вдоль главного хребта и южного склона, но на востоке она расширяется и захватывает районы Дагестана, где развиты известняковые отложения. Этот слой имеет толщину порядка 5 — 10 км и расположен на глубине 20 — 25 км под осевой зоной мегантиклинория.

По простиранию происходит постепенное погружение этого слоя до 60 — 75 км на периклиналях. Малый Кавказ (на юго-западе региона) с морфологически отчетливо выраженными вулканическими аппаратами делится на три крупных мегаблока.

Западное крыло Малого Кавказа характеризуется развитием мезозойских вулканогенно-оса-дочных формаций и интрузий. Оно отличается пологой складчатостью.  

Для выделяемых массивов характерен континентальный тип разрезов земной коры, в системах рифтов ее мощность значительно уменьшена.

Другие расчеты [ Коган, 1975 ] оценивают мощность земной коры до 25 — 20 км в центральных частях Тунгусской и Вилюйской впадин, до 25 — 30 км в Саяно-Енисейской впадине и до 30 — 35 км — в меридиональной системе рифтов, разделяющих Анабарский и Оленек-ский массивы.  

Южно-Каспийская депрессия имеет разрез земной коры океанического типа. Гранитный слой отсутствует в пределах глубоководных частей Южного Каспия, а мощность земной коры не превышает 50 км.

В пределах СГД выявлены следующие крупные геоструктурные элементы: на море — это Апшероно-Прибалханская зона поднятий. Бакинский архипелаг, Туркменская структурная терраса и глубоководная зона Южного Каспия, а на суше — Куринская впадина, которая зоной Талыш-Вандам — ского максимума делится на Нижнекуринскую и Среднекуринскую депрессии. Апшероно-Прибалханская зона поднятий пересекает Южный Каспий в субширотном направлении.

Возникновение в результате проявления эндогенных факторов крупных горных сооружений стимулирует деятельность поверхностных, экзогенных, агентов, направленную на разрушение гор. Вместе с тем, сглаживание, выравнивание рельефа действием экзогенных факторов приводит к сокращению мощности земной коры, уменьшению ее нагрузки на более глубокие оболочки Земли и часто сопровождается всплытием, возды-манием коры.

Так, таяние мощного ледника и разрушение гор на севере Европы, по мнению ученых, является причиной ного воздымания Скандинавии.  

Мощность земной коры в разных частях земного шара не остается постоянной. Наибольшей мощности кора достигает на континентах, и особенно под горными сооружениями (здесь толщина гранитной оболочки достигает 30 — 40 км); предполагается, чтб под океанами мощность земной коры, лишенной гранитной оболочки, не превышает 6 — 8 км.

Страницы:      1    2

Строение и состав земной коры. На материках на глубине более 35-70км скорость распространения сейсмических волн скачкообразно возрастает с 6,5-7 до 8км/с

На материках на глубине более 35-70км скорость распространения сейсмических волн скачкообразно возрастает с 6,5-7 до 8км/с. Причины роста скорости волн полностью не выяснены. Полагают, что на этой глубине происходит изменение как элементарного, так и минерального состава вещества.

Глубина, на которой происходит скачкообразное изменение скорости сейсмических волн, получила название границы Мохоровичича (по имени открывшего её сербского учёного). Иногда сокращенно её именуют «границей Мохо» или М. Принято считать, что граница Мохо является нижней границей земной коры (и верхней границей мантии). Наибольшую мощность земная кора имеет под горными хребтами (до 70км), наименьшую – на дне океанов (5-15км).

В пределах земной коры скорость распространения сейсмических волн также неодинакова.

Выделена граница Конрада , отделяющая верхнюю часть земной коры, по составу близкую гранитоидам (гранитный слой), от нижнего более тяжелого базальтового слоя.

Гранитный и базальтовый слои геофизиков нетождественны по составу гранитам и базальтам. Они только похожи на эти породы по скорости распространения сейсмических волн. Некоторые учёные считают, что земная кора имеет более сложное строение. Так, в земной коре Казахстана выделяют четыре основных слоя:

1. Седиментный, или вулканогенно-осадочный, мощностью от 0 до 12км (в Прикаспии).

Гранитный слой мощностью 8-18км.

3. Диоритовый слой мощностью 5-20км (выделяется не повсеместно).

4. Базальтовый слой мощностью 10-15км и более.

Граница Мохо залегает в Казахстане на глубине 36-60км.

В Южном Забайкалье также выделяются гранито-осадочный, диорито-метаморфический и базальтовый слои.

Распространенность химических элементов в земной коре. В 80-е годы 19-го века проблемой определения среднего состава земной коры стал систематически заниматься Ф.У.Кларк (1847-1931) – руководитель химической лаборатории американского геологического комитета в Вашингтоне.

Он в 1889г определил среднее содержание 10 химических элементов.

Он считал, что образцы горных пород дают представление о верхней оболочке Земли толщиной в 10 миль (16км). В земную кору Кларк включал также всю гидросферу (Мировой океан) и атмосферу. Однако масса гидросферы составляет лишь несколько процентов, а атмосферы – сотые доли процента от массы твёрдой земной коры, поэтому цифры Кларка в основном отражали состав последней.

Были получены следующие числа:

Кислород – 46,28

Кремний – 28,02

Алюминий – 8,14

Железо – 5,58

Кальций – 3,27

Магний – 2,77

Калий – 2,47

Натрий – 2,43

Титан – 0,33

Фосфор – 0,10…

Продолжая исследования, Кларк неуклонно увеличивал точность определений, число анализов, количество элементов. Если его первая сводка 1889г содержала лишь 10 элементов, то в последней, опубликованной в 1924г (совместно с Г.Вашингтоном), были уже данные о 50 элементах. Отдавая должное трудам Кларка, свыше 40 лет посвятившего определению среднего состава земной коры, А.Е.Ферсман в 1923г предложил термином «кларк» обозначать среднее содержание химического элемента в земной коре, какой-либо её части, Земле в целом, а также в планетах и других космических объектах.

Современные методы – радиометрия, нейтронно-активационный, атомно-абсорбционный и другие анализы позволяют с большой точностью и чувствительностью определять содержание химических элементов в горных породах и минералах.

По сравнению с началом XXв количество данных возросло во много раз.

Кларки самых распространенных изверженных кислых пород, слагающих гранитный слой земной коры, установлены достаточно точно, много данных и о кларках основных пород (базальтов и др.), осадочных пород (глин, сланцев, известняков и т.д.).

Сложнее вопрос о среднем составе земной коры, так как до сих пор точно неизвестно, каково соотношение между различными группами горных пород, особенно под океанами. А.П.Виноградов, предположив, что земная кора на ⅔ состоит из кислых пород и на ⅓ из основных, вычислил её средний состав. А.А.Беус, исходя из соотношения мощности гранитного и базальтового слоев (1:2), установил иные, кларки.

Представления о составе базальтового слоя весьма гипотетичны.

По А.А.Беусу, его средний состав (в %) близок к диоритам:

O – 46,0 Ca – 5,1

Si – 26,2 Na – 2,4

Al – 8,1 K – 1,5

Fe – 6,7 Ti – 0,7

Mg – 3,0 H – 0,1

Mn – 0,1 P – 0,1

Данные свидетельствуют о том, что почти, половина твёрдой земной коры состоит из одного элемента – кислорода.

Таким образом, земная кора – это «кислородная сфера», кислородное вещество. На втором месте стоит кремний (кларк 29,5), на третьем алюминий (8,05). В сумме эти элементы составляют 84,55%. Если к ним добавить железо (4,65), кальций (2,96), калий (2,50), натрий (2,50), магний (1,87), титан (0,45), то получится 99,48%, т.е.

практически почти вся земная кора. Остальные 80 элементов занимают менее 1%. Содержание большинства элементов в земной коре не превышает 0,01-0,0001%. Такие элементы в геохимии принято называть редкими . Если редкие элементы обладают слабой способностью к концентрации, то они именуются редкими рассеянными .

К ним относятся Br, In, Ra, I, Hf, Re, Sc и другие элементы. В геохимии употребляется также термин "микроэлементы ", под которыми понимаются элементы, содержащиеся в малых количествах (порядка 0,01% и менее) в данной системе. Так, алюминий – микроэлемент в организмах и макроэлемент в силикатных породах.

В земной коре преобладают легкие атомы, занимающие начальные клетки периодической системы, ядра которых содержат небольшое число нуклонов – протонов и нейтронов.

Действительно, после железа (№26) нет ни одного распространённого элемента. Эта закономерность была отмечена ещё Менделеевым, отмечавшим, что распространённейшие в природе простые тела имеют малую атомную массу.

Другая особенность в распространении элементов была установлена итальянцем Г.Оддо в 1914г и более детально охарактеризована американцем В.Гаркинсом в 1915-1928гг.

Они отметили, что в земной коре преобладают элементы с чётными порядковыми номерами и с чётными атомными массами. Среди соседних элементов у чётных кларки почти всегда выше, чем у нечётных. Для первых по распространённости 9 элементов массовые кларки чётных составляют в сумме 86,43%, а кларки нечётных – лишь 13,03%.

Особенно велики кларки элементов, атомная масса которых делится на 4. Это кислород, магний, кремний, кальций и т.д. Среди атомов одного и того же элемента преобладают изотопы с массовым числом, кратным 4.

Такое строение атомного ядра Ферсман обозначил символом 4q , где q – целое число.

По Ферсману, ядра типа 4q слагают 86,3% земной коры. Итак, распространённость элементов в земной коре (кларки) в основном связана со строением атомного ядра – в земной коре преобладают ядра с небольшим и чётным числом протонов и нейтронов.

Основные особенности распространения элементов в земной коре заложились ещё в звездную стадию существования земной материи и в первые этапы развития Земли как планеты, когда сформировалась земная кора, состоящая из легких элементов.

Однако из этого не следует, что кларки элементов геологически постоянны. Конечно, главные особенности состава земной коры и 3,5млрд. лет назад были те же, что и в наши дни, – в ней преобладали кислород и кремний, а золота и ртути было мало (п ·10-6 – п ·10-7%). Но кларки некоторых элементов все же изменились. Так, в результате радиоактивного распада стало меньше урана и тория и больше свинца – конечного продукта распада («радиогенный свинец» составляет часть атомов свинца земной коры).

За счёт радиоактивного распада ежегодно образуются миллионы тонн новых элементов. Хотя эти величины сами по себе очень велики, по сравнению с массой земной коры они ничтожны.

Итак, основные особенности элементарного состава земной коры не менялись за время геологической истории: самые древние архейские породы, как и самые молодые, состоят из кислорода, кремния, алюминия, железа и других распространённых элементов.

Однако процессы радиоактивного распада, космические лучи, метеориты, диссипация легких газов в мировое пространство изменили кларки ряда элементов.

Предыдущая45678910111213141516171819Следующая

ПОСМОТРЕТЬ ЕЩЕ:

Земная кора под морями и океанами неодинакова по своему строению и мощности. Нижней границей земной коры считают поверхность Мохоровичича. Она выделяется по резкому возрастанию скорости продольных сейсмических волн до 8 км/с и более. В пределах земной коры скорости продольных волн ниже этой величины. Ниже поверхности Мохоровичича располагается верхняя мантия Земли.

Выделяют несколько типов земной коры.

Наиболее резкие различия отмечаются в строении земной коры материкового и океанического типов.

Земная кора материкового типа имеет среднюю мощность 35 км и состоит из 3-х слоев:

  • Осадочный слой.

    Мощность этого слоя может составлять от нескольких метров до 1-2 км. Скорость распространения упругих волн 5 км/с;

  • Гранитный слой является главным слоем этого типа земной коры. Плотность составляющего этот слой вещества равна 2,7 г/см?.

    Мощность – 15-17 км. Скорость распространения упругих волн около 6 км/с. Он состоит из гранитов, гнейсов, кварцитов и других плотных магматических и метаморфических пород кристаллического строения.

    Эти порода относятся по содержанию кремнекислоты (60%) к кислым породам;

  • Базальтовый слой. Этот слой имеет плотность 3 г/см?. Мощность – 17-20 км. Скорость распространения упругих волн 6,5-7,2 км/с. Слой состоит из базальтов, габбро. По содержанию кремнекислоты эти породы относятся к основным породам. В них содержится большое количество окислов различных металлов.

Земная кора океанического типа имеет следующее строение:

  • 1 слой – слой океанической воды.

    Средняя толщина этого слоя равна 4 км. Скорость распространения упругих волн 1,5 км/с. Плотность – 1,03 г/см?;

  • 2 слой – слой неуплотненных осадков, мощностью 0,7 км, со скоростью распространения упругих волн 2,5 км/с, средней плотностью 2,3 г/см?;
  • 3 слой – так называемый «второй слой».

    Средняя мощность данного слоя равна 1,7 км. Скорость распространения упругих волн 5,1 км/с. Плотность – 2,55 г/см?;

  • 4 слой – базальтовый слой. Этот слой не отличается от базальтового слоя, образующего нижнюю часть континентальной коры. Его средняя мощность составляет 4,2 км.

Таким образом, общая средняя мощность океанической земной коры, без слоя воды, составляет всего 6,6 км. Это примерно в 5 раз меньше мощности земной коры материкового типа.

Материковый тип земной коры в морях и океанах имеет довольно широкое распространение.

Материковая кора слагает шельф, материковый склон и в значительной части материковое подножие. Ее нижняя граница проходит на глубинах порядка 2-3,5 км.

Дно на глубине более 3640 м уже сложено океанической земной корой. Ложу океана свойственен океанический тип земной коры. Большой сложностью отличается земная кора под переходными зонами.

В глубоководной части котловины окраинного моря кора по своему составу близка к океанической.

Отличается от нее значительно большей мощностью базальтового и осадочного слоев. Особенно резко возрастает толщина осадочного слоя. «Второй слой» здесь обычно резко не выделяется, а происходит как бы постепенное уплотнение осадочного слоя с глубиной. Этот вариант строения земной коры называется субокеаническим.

Под островными дугами в одних случаях обнаруживается материковая земная кора, в других – субокеаническая, в третьих – субматериковая.

Субматериковая земная кора отличается отсутствием резкой границы между гранитным и базальтовым слоями, а также общей сокращенной мощностью. Типичная материковая кора слагает Японские острова. Южная часть Курильской островной дуги сложена субматериковой земной корой. Малые Антильские и Мариинские острова сложены субокеанической земной корой.

Сложное строение имеет земная кора под глубоководными желобами.

Глубоководный желоб представлен бортами и дном. Тот борт желоба, который одновременно является склоном островной дуги, характеризуется типом земной коры, которым сложен склон островной дуги. Противоположный борт сложен океанической корой. Дно желоба – субокеанической земной корой.

Определенный интерес представляет так же рельеф поверхности Мохоровичича в переходной зоне океана. Глубоководной котловине окраинного моря в переходной зоне соответствует выступ поверхности Мохоровичича.

Затем в сторону океана следует депрессия поверхности, которая располагается и под островной дугой и под глубоководным желобом. Максимальный прогиб поверхности Мохоровичича приходится на океанический склон островной дуги. На островных дугах нередко встречается выход ультраосновных магматических пород. Это свидетельствует о том, что магматические процессы в переходных зонах генетически связаны с процессами, протекающими в мантии – с восходящими движениями глубинного вещества верхней мантии.

Таким образом, в пределах переходной зоны отмечается большая неоднородность, мозаичность земной коры.

Эта мозаичность хорошо согласуется с резкой дифференциацией рельефа переходной зоны (глубоководная котловина окраинного моря, островная дуга, глубоководный желоб). В общей сложности тип коры под переходными зонами носит название геосинклинальный.

Переходные зона – это современные геосинклинальные области.

Под срединно-океаническми хребтами земная кора очень специфична по своему строению.

В земной коре этого типа выделяют:

  • довольно тонкий и непостоянный по простиранию слой рыхлых осадков, с мощностью от 0 и до нескольких километров;
  • «второй слой» с мощностью от нескольких сотен метров и до 2-3 км;
  • под «вторым» слоем залегают породы повышенной плотности. Скорость распространения упругих волн (7,2-7,8 км/с) в этих породах значительно больше, чем в базальтовом слое, но меньше, чем на границе Мохоровичича.

    Высказывается предположение, что под срединно-океаническими хребтами базальтовый слой частично замещают видоизмененные разуплотненные породы верхней мантии. Повышенная плотность данного слоя объясняется смешением материала базальтового слоя и верхней мантии. Мощное давление восходящих потоков вещества верхней мантии приводит к нарушению сплошной земной коры (разрывы).

    Вещество верхней мантии внедряется в вышележащие породы. Таким образом, происходит смешение материала верхней мантии и базальтового слоя.

Под срединно-океаническими хребтами земная кора не имеет четко выраженной границы. Такой тип коры носит название рифтогенального.

Таким образом, подводным окраинам материков свойственен материковый тип земной коры, переходным зонам – геосинклинальный, ложу океана – океанический, срединно-океаническим хребтам – рифтогенальный.

ЗЕМНАЯ КОРА (а. earth crust; н. Erdkruste; ф. croute terrestre; и.

соrteza terrestre) - верхняя твёрдая оболочка Земли, ограниченная снизу Мохоровичича поверхностью. Термин «земная кора» появился в 18 в. в работах М. В. Ломоносова и в 19 в. в трудах английский учёного Ч. Лайеля; с развитием контракционной гипотезы в 19 в.

получил определенный смысл, вытекающий из идеи охлаждения Земли до тех пор, пока не образовалась кора (американский геолог Дж. Дана). В основе современных представлений о структуре, составе и других характеристиках Земной коры лежат геофизические данные о скорости распространения упругих волн (в основном продольных, Vp), которые на границе Мохоровичича скачкообразно возрастают с 7,5-7,8 до 8,1-8,2 км/с. Природа нижней границы Земной коры, по-видимому, обусловлена изменением химического состава пород (габбро - перидотит) либо фазовыми переходами (в системе габбро - эклогит).

В целом для Земной коры характерна вертикальная и горизонтальная неоднородность (анизотропия), которая отражает различный характер её эволюции в разных частях планеты, а также её существенную переработку в процессе последнего этапа развития (40-30 млн. лет), когда были сформированы основные черты современного лика Земли. Значительная часть Земной коры находится в состоянии изостатического равновесия (см.

Изостазия), которое в случае нарушения достаточно быстро (104 лет) восстанавливается благодаря наличию Астеносферы. Выделяют два главных типа Земной коры: континентальную и океаническую, различающихся по составу, строению, мощности и другим характеристикам (рис.). Мощность континентальной коры в зависимости от тектонических условий меняется в среднем от 25-45 км (на платформах) до 45-75 км (в областях горообразования), однако и в пределах каждой геоструктурной области она не остаётся строго постоянной.

В континентальной коре различают осадочный (Vp до 4,5 км/с), «гранитный» (Vp 5,1-6,4 км/с) и «базальтовый» (Vp 6,1-7,4 км/с) слои.

Мощность осадочного слоя достигает 20 км, распространён он не повсеместно. Названия «гранитного» и «базальтового» слоев условны и исторически связаны с выделением разделяющей их границы Конрада (Vp 6,2 км/с), хотя последующие исследования (в том числе сверхглубокое бурение) показали некоторую сомнительность этой границы (а по некоторым данным её отсутствие). Оба эти слоя поэтому иногда объединяют в понятие консолидированной коры.

Изучение выходов «гранитного» слоя в пределах щитов показало, что в него входят породы не только собственно гранитного состава, но и разнообразные гнейсы и другие метаморфические образования. Поэтому данный слой часто называют также гранитно-метаморфическим или гранитно-гнейсовым; его средняя плотность 2,6-2,7 т/м3. Прямое изучение «базальтового» слоя на континентах невозможно, и значениям скоростей сейсмических волн, по которым он выделен, могут удовлетворять как магматические породы основного состава (базиты), так и породы, испытавшие высокую степень метаморфизма (гранулиты, отсюда название гранулит-базитовый слой).

Средняя плотность базальтового слоя колеблется от 2,7 до 3,0 т/м3.

Основные отличия океанической коры от континентальной - отсутствие «гранитного» слоя, существенно меньшая мощность (2-10 км), более молодой возраст (юра, мел, кайнозой), большая латеральная однородность.

Океаническая кора состоит из трёх слоев. Первый слой, или осадочный, характеризуется широким диапазоном скоростей (V от 1,6 до 5,4 км/с) и мощностью до 2 км. Второй слой, или акустический фундамент, имеет в среднем мощность 1,2-1,8 км и Vp 5,1-5,5 км/с.

Детальные исследования позволили разделить его на три горизонта (2А, 2В и 2С), причём наибольшей изменчивостью обладает горизонт 2А (Vp 3,33-4,12 км/с). Глубоководным бурением установлено, что горизонт 2А сложен сильнотрещиноватыми и брекчированными базальтами, которые с увеличением возраста океанической коры становятся более консолидированными.

Мощность горизонта 2В (Vp 4,9-5,2 км/с) и 2С (Vp 5,9-6,3 км/с) не постоянна в разных океанах. Третий слой океанической коры имеет достаточно близкие значения Vp и мощности, что указывает на его однородность. Однако в его строении также отмечаются вариации как по значениям скорости (6,5-7,7 км/с), так и мощности (от 2 до 5 км).

Большинство исследователей считают, что третий слой океанической коры сложен породами в основном габброидного состава, а вариации скоростей в нём обусловлены степенью метаморфизма.

Кроме двух главных типов Земной коры, выделяют подтипы на основе соотношения толщины отдельных слоев и суммарной мощности (например, кора переходного типа - субконтинентальная в островных дугах и субокеанская на континентальных окраинах и т.д.).

Земную кору нельзя отождествлять с литосферой, устанавливаемой на основе реологии, свойств вещества.

Возраст древнейших пород Земной коры достигает 4,0-4,1 млрд. лет. Вопрос о том, каков был состав первичной Земной коры и как она формировалась в течение первых сотен млн.

лет, не ясен. В течение первых 2 млрд. лет, по-видимому, сформировалось около 50% (по некоторым оценкам, 70-80%) всей современной континентальной коры, следующие 2 млрд. лет - 40%, и лишь около 10% приходится на последние 500 млн. лет, т.е. на фанерозой. По вопросам формирования Земной коры в архее и раннем протерозое и характере её движений среди исследователей нет единого мнения.

Одни учёные считают, что формирование Земной коры происходило при отсутствии крупномасштабных горизонтальных перемещений, когда развитие рифтогенных зеленокаменных поясов сочеталось с образованием гранитно-гнейсовых куполов, послуживших ядрами роста древнейшей континентальной коры. Другие учёные считают, что начиная с архея действовала эмбриональная форма тектоники плит, а гранитоиды формировались над зонами Субдукции, хотя ещё не было крупных горизонтальных перемещений континентальной коры.

Переломный момент в развитии Земной коры наступает в позднем докембрии, когда в условиях существования крупных плит уже зрелой континентальной коры стали возможны крупномасштабные горизонтальные перемещения, сопровождаемые субдукцией и обдукцией новообразованной литосферы. С этого времени образование и развитие Земной коры происходит в геодинамической обстановке, обусловленной механизмом тектоники плит.


При изучении земной коры было обнаружено ее неодинаковое строение в разных районах. Обобщение большого фактического материала позволило выделить два типа строения земной коры - континентальный и океанический.

Континентальный тип

Для континентального типа характерна весьма значительная мощность коры и присутствие гранитного слоя. Граница верхней мантии здесь расположена на глубине 40-50 км и больше. Мощность толщи осадочных горных пород в одних местах достигает 10-15 км, в других - толща может полностью отсутствовать. Средняя мощность осадочных пород континентальной земной коры составляет 5,0 км, гранитного слоя - около 17 км (от 10-40 км), базальтового - около 22 км (до 30 км).

Как упоминалось выше, петрографический состав базальтового слоя континентальной коры пестрый и скорее всего в нем преобладают не базальты, а метаморфические породы основного состава (гранулиты, эклогиты и т.п.). По этой причине некоторые исследователи предлагали этот слой называть гранулитовым.

Мощность континентальной земной коры увеличивается на площади горно-складчатых сооружений. Например, на Восточно-Европейской равнине мощность коры около 40 км (15 км - гранитный слой и более 20 км - базальтовый), а на Памире - в полтора раза больше (около 30 км в сумме составляют толща осадочных пород и гранитный слой и столько же базальтовый слой). Особенно большой мощности достигает континентальная кора в горных областях, расположенных по краям материков. Например, в Скалистых горах (Северная Америка) мощность коры значительно превышает 50 км. Совершенно иным строением обладает земная кора, слагающая дно океанов. Здесь мощность коры резко сокращается и вещество мантии подходит близко к поверхности.

Гранитный слой отсутствует, мощность осадочной толщи сравнительно небольшая. Выделяются верхний слой неуплотненных осадков с плотностью 1,5-2 г/см 3 и мощностью около 0,5 км, вулканогенно-осадочный слой (переслаивание рыхлых осадков с базальтами) мощностью 1-2 км и базальтовый слой, среднюю мощность которого оценивают в 5-6 км. На дне Тихого океана земная кора имеет суммарную мощность 5-6 км; на дне Атлантического океана под осадочной толщей в 0,5-1,0 км располагается базальтовый слой мощностью 3-4 км. Отметим, что с увеличением глубины океана мощность коры не уменьшается.

В настоящее время выделяют также переходные субконтинентальный и субокеанический тип коры, отвечающие подводной окраине материков. В пределах коры субконтинентального типа сильно сокращается гранитный слой, который замещается толщей осадков, а затем по направлению к ложу Океана начинается уменьшение мощности базальтового слоя. Мощность этой переходной зоны земной коры обычно 15-20 км. Граница между океанической и субконтинентальной корой проходит в пределах материкового склона в интервале глубин 1 -3,5 км.

Океанический тип

Хотя кора океанического типа занимает большую площадь, чем континентальная и субконтинентальная, в силу ее небольшой мощности в ней сосредоточен лишь 21% объема земной коры. Сведения об объеме и массе разных типов земной коры приведены на рис.1.

Рис.1. Объем, мощность и масса горизонтов разных типов земной коры

Земная кора залегает на подкорковом мантийном субстрате и составляет всего 0,7% от массы мантии. В случае малой мощности коры (например, на океаническом ложе) самая верхняя часть мантии будет находиться также в твердом состоянии, обычном для горных пород земной коры. Поэтому, как отмечено выше, наряду с понятием о земной коре как об оболочке с определенными показателями плотности и упругих свойств, имеется понятие о литосфере - каменной оболочке, толще твердого вещества, покрывающего поверхность Земли.

Структуры типов земной коры

Типы земной коры различаются также своими структурами. Для земной коры океанического типа характерны разнообразные структуры. По центральной части дна океанов протягиваются мощные горные системы - срединно-океанические хребты. В осевой части эти хребты рассечены глубокими и узкими рифтовыми долинами с крутыми бортами. Эти образования представляют собой зоны активной тектонической деятельности. Вдоль островных дуг и горных сооружений по окраинам материков располагаются глубоководные желоба. Наряду с этими образованиями имеются глубоководные равнины, занимающие огромные площади.

Столь же неоднородна континентальная земная кора. В ее пределах можно выделить молодые горноскладчатые сооружения, где мощность коры в целом и каждого из ее горизонтов сильно возрастает. Выделяются также площади, где кристаллические горные породы гранитного слоя представляют древние складчатые области, выровненные на протяжении длительного геологического времени. Здесь мощность коры значительно меньше. Эти обширные участки континентальной коры называются платформами. Внутри платформ различают щиты - районы, где кристаллический фундамент выходит непосредственно на поверхность, и плиты, кристаллическое основание которых покрыто толщей горизонтально залегающих отложений. Примером щита является территория Финляндии и Карелии (Балтийский щит), в то время как на Восточно-Европейской равнине складчатый фундамент глубоко опущен и перекрыт осадочными отложениями. Средняя мощность осадков на платформах около 1,5 км. Для горноскладчатых сооружений характерна значительно большая мощность толщи осадочных пород, средняя величина которой оценивается в 10 км. Накопление таких мощных отложений достигается длительным постепенным опусканием, прогибанием отдельных участков континентальной коры с последующим их подъемом и складкообразованием. Такие участки называются геосинклиналями. Это наиболее активные зоны континентальной коры. К ним приурочено около 72% всей массы осадочных пород, в то время как на платформах сосредоточено около 28%.

Проявления магматизма на платформах и геосинклиналях резко различается. В периоды прогибания геосинклиналей по глубинным разломам поступает магма основного и ультраосновного состава. В процессе превращения геосинклинали в складчатую область происходит образование и внедрение огромных масс гранитной магмы. Для поздних этапов характерны вулканические излияния лав среднего и кислого состава. На платформах магматические процессы выражены значительно слабее и представлены преимущественно излияниями базальтов или лав щелочно-основного состава. Среди осадочных пород континентов преобладают глины и глинистые сланцы. На дне океанов увеличивается содержание известковых осадков. Итак, земная кора состоит из трех слоев. Ее верхний слой сложен осадочными породами и продуктами выветривания. Объем этого слоя составляет около 10% общего объема земной коры. Большая часть вещества находится на континентах и переходной зоне, в пределах океанической коры его не более 22% объема слоя.

В так называемом гранитном слое наиболее распространенными породами являются гранитоиды, гнейсы и кристаллические сланцы. На породы более основного состава приходится около 10% этого горизонта. Это обстоятельство хорошо отражается на среднем химическом составе гранитного слоя. При сопоставлении величин среднего состава обращает на себя внимание ясное различие этого слоя и осадочной толщи (рис. 2).


Рис.2. Химический состав земной коры (в весовых процентах)

Состав базальтового слоя в двух основных типах земной коры неодинаков. На континентах эта толща характеризуется разнообразием горных пород. Здесь присутствуют глубоко метаморфизованные и магматические породы основного и даже кислого состава. Основные породы составляют около 70% всего объема этого слоя. Базальтовый слой океанической коры значительно более однороден. Преобладающим типом пород являются так называемые толеитовые базальты, отличающиеся от континентальных базальтов низким содержанием калия, рубидия, стронция, бария, урана, тория, циркония и высоким отношением Na/K. Это связано с меньшей интенсивностью процессов дифференциации при их вплавлении из мантии. В глубоких рифовых разломах выходят ультраосновные породы верхней мантии. Распространенность горных пород в земной коре, сгруппированных для определения соотношения их объема и масс, приведена на рис.3.


Рис.3. Распространенность горных пород в земной коре

Формирование земной коры

Земная кора континентов состоит из кристаллических пород базальтового и гранитного геофизических слоев (59,2% и 29,8% соответственно от общего объема земной коры), перекрытых оса- дочной оболочкой (стратисферой). Площадь материков и островов составляет 149 млн. км 2 . Осадочная оболочка покрывает 119 млн. км 2 , т.е. 80% общей площади суши, выклиниваясь в направлении к древним щитам платформ. Сложена она преимущественно позднепротерозойскими и фанерозойскими осадочными и вулканогенными породами, хотя в ее составе присутствуют в незначительном количестве и более древние средне и раннепротерозойские слабо метаморфизованные отложения протоплатформ. Площади выходов осадочных пород с увеличением возраста убывают, а кристаллических пород – растут.

Осадочная оболочка земной коры океанов, занимающих 58% общей площади Земли, залегает на базальтовом слое. Возраст ее отложений по данным глубоководного бурения охватывает интервал времени от верхней юры до четвертичного периода включительно. Средняя мощность осадочной оболочки Земли оценивается в 2,2 км, что соответствует 1/3000 радиуса планеты. Общий объем слагающих ее образований примерно 1100 млн. км 3 , что составляет 10,9% от общего объема земной коры и 0,1% от общего объема Земли. Общий объем океанских осадков оценивается в 280 млн. км3. Средняя мощность земной коры оценивается в 37,9 км, что составляет 0,94% от общего объема Земли. Вулканические породы составляют 4,4% на платформах и 19,4% в складчатых областях от общего объема осадочной оболочки. В платформенных областях и, особенно, в океанах широко распространены базальтовые покровы, занимающие более чем две трети поверхности Земли.

Земная кора, атмосфера и гидросфера Земли сформированы вследствие геохимической дифференциации нашей планеты, сопровождавшейся плавлением и дегазацией глубинного вещества. Формирование земной коры обусловлено взаимодействием эндогенных (магматических, флюидно-энергетических) и экзогенных (физическое и химическое выветривание, разрушение, разложение пород, интенсивное терригенное осадконакопление) факторов. Большое значение при этом имеет изотопная систематика магматических пород, поскольку именно магматизм несет в себе информацию о геологическом времени и вещественной специфике поверхностных тектонических и глубинных мантийных процессов, ответственных за формирование океанов и континентов и отражает важнейшие особенности процессов превращения глубинного вещества Земли в земную кору. Наиболее обоснованным считается последовательное образование за счет деплетированной мантии океанской коры, которая в зонах конвергентного взаимодействия плит формирует кору переходного типа островных дуг, а последняя после ряда структурно-вещественных преобразований превращается в континентальную земную кору.



Поверхностная толща земной коры, где гравитационные воды зимой превращаются в лед, различают толщи кратковременного, сезонного и многолетнего промерзания. Syn.: толща промерзания … Словарь по географии

Мощность (значения) - Мощность: Мощность (в физике и технике) отношение работы, выполняемой за некоторый промежуток времени, к этому промежутку времени. Мощность множества (в математике) число элементов множества. Вычислительная мощность компьютера число операций,… … Википедия

ГИПОТЕЗА БАЗИФИКАЦИИ МАТЕРИКОВОЙ КОРЫ - развивается В. В. Белоусовым и др. геологами. Предполагается, что до конца палеозоя начала мезозоя на месте океанов существовала материковая кора. В результате погружений ее обширных участков возникли океаны. При этом происходил процесс… … Геологическая энциклопедия

Земля, планета - Описание З. разделено в настоящей статье на три главные части: астрономическую (З. как планета), геологическую и физико географическую. I. З. как планета. З. представляет огромный и по фигуре близкий к шару сфероид, свободно движущийся в… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

СССР. Рельеф суши - Орография. По преобладающему характеру рельефа поверхность суши СССР подразделяется на большую по площади (66%), относительно пониженную, открытую к С. область с господством равнин, плато, плоскогорий и обрамляющий эту область с Ю. и В.… …

материк - (континент), крупный массив земной коры, большая часть которого выступает над уровнем Мирового океана в виде суши, а периферическая часть погружена под уровень океана. Земная кора материков характеризуется присутствием «гранитного» слоя и ср.… … Географическая энциклопедия

Чёрное море - средиземное море Атлантического океана, между Европой и М. Азией. Физико географический очерк. Общие сведения. Ч. м. омывает берега СССР, Румынии, Болгарии и Турции. На С. В. Керченским проливом соединяется с Азовским морем, на Ю … Большая советская энциклопедия

Индийский океан - бассейн Мирового ок., расположенный в осн. в Юж. полушарии, между берегами Азии, Африки, Австралии и Антарктиды. Зап. граница между Атлантич. ок. и И. о. проходит по 20° в. д., восточная на Ю. от юж. оконечности о. Тасмания к Антарктиде… … Геологическая энциклопедия

Коэсит - Формула SiO2 Сингония Моноклинная Цвет Белый, бесцветный Цвет черты Белая Блеск Стеклянный Твёрдость 7,5 8 Плотность 2,95 3 г/см³ Коэсит (англ. Coesite) высокобарическая модификация кремнезёма … Википедия

Армянская Советская Социалистическая Республика - (Aйкакан Cоветакан Cоциалистакан Aнрапетутюн), Армения, расположена на Ю. Закавказья. Ha C. граничит c Груз. CCP, на B. c Aзерб. CCP, на Ю. c Ираном, на З. c Tурцией. Пл. 29,8 тыс. км2. Hac. 3222 тыс. чел. (1983, перепись). Cтолица Eреван … Геологическая энциклопедия

Монголия - (Монгол Улс), Монгольская Народная Республикa (Бугд Найрамдах Монгол Ард Улс), гос во в Центр. Азии. Пл. 1566,5 тыс. км2. Hac. 1,9 млн. чел. (1985). Офиц. язык монгольский. Столица Улан Батор. Страна делится на 18 аймаков (областей), к… … Геологическая энциклопедия

Характерная черта эволюции Земли — дифференциация вещества, выражением которой служит оболочечное строение нашей планеты. Литосфера, гидросфера, атмосфера, биосфера образуют основные оболочки Земли, отличающиеся химическим составом, мощностью и состоянием вещества.

Внутреннее строение Земли

Химический состав Земли (рис. 1) схож с составом других планет земной группы, например Венеры или Марса.

В целом преобладают такие элементы, как железо, кислород, кремний, магний, никель. Содержание легких элементов невелико. Средняя плотность вещества Земли 5,5 г/см 3 .

О внутреннем строении Земли достоверных данных весьма мало. Рассмотрим рис. 2. Он изображает внутреннее строение Земли. Земля состоит из земной коры, мантии и ядра.

Рис. 1. Химический состав Земли

Рис. 2. Внутреннее строение Земли

Ядро

Ядро (рис. 3) расположено в центре Земли, его радиус составляет около 3,5 тыс км. Температура ядра достигает 10 000 К, т. е. она выше, чем температура внешних слоев Солнца, а его плотность составляет 13 г/см 3 (сравните: вода — 1 г/см 3). Ядро предположительно состоит из сплавов железа и никеля.

Внешнее ядро Земли имеет большую мощность, чем внутреннее (радиус 2200 км) и находится в жидком (расплавленном) состоянии. Внутреннее ядро подвержено колоссальному давлению. Вещества, слагающие его, находятся в твердом состоянии.

Мантия

Мантия — геосфера Земли, которая окружает ядро и составляет 83 % от объема нашей планеты (см. рис. 3). Нижняя ееграница располагается на глубине 2900 км. Мантия разделяется на менее плотную и пластичную верхнюю часть (800-900 км), из которой образуется магма (в переводе с греческого означает «густая мазь»; это расплавленное вещество земных недр — смесь химических соединений и элементов, в том числе газов, в особом полужидком состоянии); и кристаллическую нижнюю, тол- шиной около 2000 км.

Рис. 3. Строение Земли: ядро, мантия и земная кора

Земная кора

Земная кора - внешняя оболочка литосферы (см. рис. 3). Ее плотность примерно в два раза меньше, чем средняя плотность Земли, — 3 г/см 3 .

От мантии земную кору отделяет граница Мохоровичича (ее часто называют границей Мохо), характеризующаяся резким нарастанием скоростей сейсмических волн. Она была установлена в 1909 г. хорватским ученым Андреем Мохоровичичем (1857- 1936).

Поскольку процессы, происходящие в самой верхней части мантии, влияют на движения вещества в земной коре, их объединяют под общим названием литосфера (каменная оболочка). Мощность литосферы колеблется от 50 до 200 км.

Ниже литосферы располагается астеносфера — менее твердая и менее вязкая, но более пластичная оболочка с температурой 1200 °С. Она может пересекать границу Мохо, внедряясь в земную кору. Астеносфера — это источник вулканизма. В ней находятся очаги расплавленной магмы, которая внедряется в земную кору или изливается на земную поверхность.

Состав и строение земной коры

По сравнению с мантией и ядром земная кора представляет собой очень тонкий, жесткий и хрупкий слой. Она сложена более легким веществом, в составе которого в настоящее время обнаружено около 90 естественных химических элементов. Эти элементы не одинаково представлены в земной коре. На семь элементов — кислород, алюминий, железо, кальций, натрий, калий и магний — приходится 98 % массы земной коры (см. рис. 5).

Своеобразные сочетания химических элементов образуют различные горные породы и минералы. Возраст самых древних из них насчитывает не менее 4,5 млрд лет.

Рис. 4. Строение земной коры

Рис. 5. Состав земной коры

Минерал — это относительно однородное по своему составу и свойствам природное тело, образующееся как в глубинах, так и на поверхности литосферы. Примерами минералов служат алмаз, кварц, гипс, тальк и др. (Характеристику физических свойств различных минералов вы найдете в приложении 2.) Состав минералов Земли приведен на рис. 6.

Рис. 6. Общий минеральный состав Земли

Горные породы состоят из минералов. Они могут слагаться как из одного, так и из нескольких минералов.

Осадочные горные породы - глина, известняк, мел, песчаник и др. — образовались путем осаждения веществ в водной среде и на суше. Они лежат пластами. Геологи называют их страницами истории Земли, так как но ним можно узнать о природных условиях, существовавших на нашей планете в давние времена.

Среди осадочных горных пород выделяют органогенные и неорганогенные (обломочные и хемогенные).

Органогенные горные породы образуются в результате накопления останков животных и растений.

Обломочные горные породы образуются в результате выветривания, псрсотложсния с помощью воды, льда или ветра продуктов разрушения ранее возникших горных пород (табл. 1).

Таблица 1. Обломочные горные породы в зависимости от размеров обломков

Название породы

Размер облом кон (частиц)

Более 50 см

5 мм — 1 см

1 мм — 5 мм

Песок и песчаники

0,005 мм — 1 мм

Менее 0,005 мм

Хемогенные горные породы формируются в результате осаждения из вод морей и озер растворенных в них веществ.

В толще земной коры из магмы образуются магматические горные породы (рис. 7), например гранит и базальт.

Осадочные и магматические породы при погружении на большие глубины под влиянием давления и высоких температур подвергаются значительным изменениям, превращаясь в метаморфические горные породы. Так, например, известняк превращается в мрамор, кварцевый песчаник — в кварцит.

В строении земной коры выделяют три слоя: осадочный, «гранитный», «базальтовый».

Осадочный слой (см. рис. 8) образован в основном осадочными горными породами. Здесь преобладают глины и глинистые сланцы, широко представлены песчаные, карбонатные и вулканогенные породы. В осадочном слое встречаются залежи таких полезных ископаемых, как каменный уголь, газ, нефть. Все они органического происхождения. Например, каменный уголь -это продукт преобразования растений древних времен. Мощность осадочного слоя колеблется в широких пределах — от полного отсутствия в некоторых районах суши до 20-25 км в глубоких впадинах.

Рис. 7. Классификация горных пород по происхождению

«Гранитный» слой состоит из метаморфических и магматических пород, близких по своим свойствам к граниту. Наиболее распространены здесь гнейсы, граниты, кристаллические сланцы и др. Встречается гранитный слой не везде, но на континентах, где он хорошо выражен, его максимальная мощность может достигать нескольких десятков километров.

«Базальтовый» слой образован горными породами, близкими к базальтам. Это метаморфизованные магматические породы, более плотные по сравнению с породами «гранитного» слоя.

Мощность и вертикальная структура земной коры различны. Выделяют несколько типов земной коры (рис. 8). Согласно наиболее простой классификации различают океаническую и материковую земную кору.

Континентальная и океаническая кора различны по толщине. Так, максимальная толщина земной коры наблюдается под горными системами. Она составляет около 70 км. Под равнинами мощность земной коры составляет 30-40 км, а под океанами она наиболее тонкая — всего 5-10 км.

Рис. 8. Типы земной коры: 1 — вода; 2- осадочный слой; 3 — переслаивание осадочных пород и базальтов; 4 — базальты и кристаллические ультраосновные породы; 5 — гранитно-метаморфический слой; 6 — гранулитово-базитовый слой; 7 — нормальная мантия; 8 — разуплотненная мантия

Различие континентальной и океанической земной коры по составу пород проявляется в том, что гранитный слой в океанической коре отсутствует. Да и базальтовый слой океанической коры весьма своеобразен. По составу пород он отличен от аналогичного слоя континентальной коры.

Граница суши и океана (нулевая отметка) не фиксирует перехода континентальной земной коры в океаническую. Замещение континентальной коры океанической происходит в океане примерно на глубине 2450 м.

Рис. 9. Строение материковой и океанической земной коры

Выделяют и переходные типы земной коры — субокеаническую и субконтинентальную.

Субокеаническая кора расположена вдоль континентальных склонов и подножий, может встречаться в окраинных и средиземных морях. Она представляет собой континентальную кору мощностью до 15-20 км.

Субконтинентальная кора расположена, например, на вулканических островных дугах.

По материалам сейсмического зондирования - скорости прохождения сейсмических волн — мы получаем данные о глубинном строении земной коры. Так, Кольская сверхглубокая скважина, впервые позволившая увидеть образцы пород с глубины более 12 км, принесла много неожиданного. Предполагалось, что на глубине 7 км должен начаться «базальтовый» слой. В действительности же он обнаружен не был, а среди горных пород преобладали гнейсы.

Изменение температуры земной коры с глубиной. Приповерхностный слой земной коры имеет температуру, определяемую солнечным теплом. Это гелиометрический слой (от греч. гелио — Солнце), испытывающий сезонные колебания температуры. Средняя его мощность — около 30 м.

Ниже расположен еще более тонкий слой, характерной чертой которого является постоянная температура, соответствующая среднегодовой температуре места наблюдений. Глубина этого слоя увеличивается в условиях континентального климата.

Еще глубже в земной коре выделяется геотермический слой, температура которого определяется внутренним теплом Земли и с глубиной возрастает.

Увеличение температуры происходит главным образом за счет распада радиоактивных элементов, входящих в состав горных пород, прежде всего радия и урана.

Величину нарастания температуры горных пород с глубиной называют геотермическим градиентом. Он колеблется в довольно широких пределах — от 0,1 до 0,01 °С/м — и зависит от состава горных пород, условий их залегания и ряда других факторов. Под океанами температура с глубиной нарастает быстрее, чем на континентах. В среднем с каждыми 100 м глубины становится теплее на 3 °С.

Величина, обратная геотермическому градиенту, называется геотермической ступенью. Она измеряется в м/°С.

Тепло земной коры — важный энергетический источник.

Часть земной коры, простирающаяся ло глубин, доступных для геологического изучения, образует недра Земли. Недра Земли требуют особой охраны и разумного использования.

На вопрос Какие типы географической коры бывают? заданный автором Анастасия Власова лучший ответ это Различают 2 основных вида земной коры: континентальный и океанический и 2 переходных типа - субконтинентальный и субокеанический.
Континентальный тип земной коры имеет мощность от 35 до 75 км. , в области шельфа – 20 – 25 км. , а на материковом склоне выклинивается. Выделяют 3 слоя континентальной коры:
1 – ый – верхний, сложенный осадочными горными породами мощностью от 0 до 10 км. на платформах и 15 – 20 км. в тектонических прогибах горных сооружений.
2 – ой – средний «гранитно – гнейсовый» или «гранитный» - 50 % граниты и 40 % гнейсы и др. метаморфизированные породы. Его средняя мощность – 15 – 20 км. (в горных сооружениях до 20 – 25 км.) .
3 – ий – нижний, «базальтовый» или «гранитно - базальтовый» , по составу близок к базальту. Мощность от 15 – 20 до 35 км. Граница между «гранитовым» и «базальтовым» слоями – раздел Конрада.
По современным данным океанический тип земной коры также имеет трехслойное строение мощностью от 5 до 9 (12) км. , чаще 6 –7 км.
1 – ый слой – верхний, осадочный, состоит из рыхлых осадков. Его мощность – от нескольких сот метров до 1 км.
2 – ой слой – базальты с прослоями карбонатных и кремниевых пород. Мощность от 1 – 1,5 до 2,5 – 3 км.
3 – ий слой – нижний, бурением не вскрыт. Сложен основными магматическими породами типа габрро с подчиненными, ультраосновными породами (серпентинитами, пироксенитами) .
Субконтинентальный тип земной поверхности по строению аналогичен континентальному, но не имеет четко выраженного раздела Конрада. Этот тип коры связан обычно с островными дугами – Курильскими, Алеутскими и окраинами материков.
1 – ый слой – верхний, осадочно – вулканогенный, мощность – 0,5 – 5 км. (в среднем 2 – 3 км.) .
2 – ой слой – островодужный, «гранитный» , мощность 5 – 10 км.
3 – ий слой – «базальтовый» , на глубинах 8 – 15 км. , мощностью от 14 – 18 до 20 – 40 км.
Субокеанический тип земной коры приурочен к котловинным частям окраинных и внутриконтинентальных морей (Охотское, Японское, Средиземное, Черное и др.) . По строению близок к океаническому, но отличается повышенной мощностью осадочного слоя.
1 – ый верхний – 4 – 10 и более км. , располагается непосредственно на третьем океаническом слое мощностью 5 – 10 км.
Суммарная мощность земной коры – 10 – 20 км. , местами до 25 – 30 км. за счет увеличения осадочного слоя.
Своеобразное строение земной коры отмечается в центральных рифтовых зонах срединно – океанических хребтов (срединно – атлантический) . Здесь, под вторым океаническим слоем располагается линза (или выступ) низкоскоростного вещества (V = 7,4 – 7,8 км / с) . Предполагают, что это либо выступ аномально разогретой мантии, или смесь корового и мантийного вещества.

Ответ от Невропатолог [гуру]
ни одного


Ответ от Порося [гуру]
Виды земной коры.
Оболочка Земли включает земную кору и верхнюю часть мантии. Поверхность земной коры имеет большие неровности, главные из которых - выступы материков и их понижения - огромные океанические впадины. Существование и взаимное расположение материков и океанических впадин связано с различиями в строении земной коры.
Материковая земная кора. Она состоит из нескольких слоев. Верхний - слой осадочных горных пород. Мощность этого слоя до 10-15 км. Под ним залегает гранитный слой. Горные породы, которые его слагают, по своим физическим свойствам сходны с гранитом. Толщина этого слоя от 5 до 15 км. Под гранитным слоем располагается базальтовый слой, состоящий из базальта и горных пород, физические свойства которых напоминают базальт. Толщина этого слоя от 10 км до 35 км. Таким образом, общая толщина материковой земной коры достигает 30-70 км.
Океаническая земная кора. Она отличается от материковой коры тем, что не имеет гранитного слоя или он очень тонок, поэтому толщина океанической земной коры всего лишь 6-15 км.
Для определения химического состава земной коры доступны только ее верхние части - до глубины не более 15-20 км. 97,2% от всего состава земной коры приходится на: кислород - 49,13%, алюминий - 7,45%, кальций - 3,25%, кремний - 26%, железо - 4,2%, калий - 2,35%, магний - 2,35%, натрий - 2,24%.
Строение материковой и океанической земной коры.
На другие элементы таблицы Менделеева приходится от десятых до сотых долей процента.
Большинство ученых полагают, что сначала на нашей планете появилась кора океанического типа. Под влиянием процессов, происходивших внутри Земли, в земной коре образовались складки, то есть горные участки. Толщина коры увеличивалась. Так образовались выступы материков, то есть начала формироваться материковая земная кора.
В последние годы в связи с исследованиями земной коры океанического и материкового типа создана теория строения земной коры, которая основана на представлении о литосферных плитах. Теория в своем развитии опиралась на гипотезу дрейфа материков, созданную в начале XX века немецким ученым А. Вегенером.