Формули на най-важните киселини. Номенклатура на киселини и киселинни остатъци

Киселините са сложни вещества, чиито молекули се състоят от водородни атоми (способни да бъдат заменени с метални атоми), свързани с киселинен остатък.

основни характеристики

Киселините се класифицират на безкислородни и кислородсъдържащи, както и на органични и неорганични.

Ориз. 1. Класификация на киселините – безкислородни и кислородсъдържащи.

Аноксичните киселини са разтвори във вода на бинарни съединения като водородни халиди или сероводород. В разтвора полярната ковалентна връзка между водорода и електроотрицателния елемент се поляризира от действието на диполни водни молекули и молекулите се разпадат на йони. наличието на водородни йони в веществото ни позволява да наричаме водни разтвори на тези бинарни съединения киселини.

Киселините се наименуват от името на бинарното съединение чрез добавяне на окончанието -naya. например HF е флуороводородна киселина. Киселинният анион се нарича с името на елемента чрез добавяне на края -ide, например Cl - хлорид.

Кислородсъдържащи киселини (оксокиселини)– това са киселинни хидроксиди, които се дисоциират според киселинния тип, тоест като протолити. Общата им формула е E(OH)mOn, където E е неметал или метал с променлива валентност в най-високата степен на окисление. при условие, че когато n е 0, тогава киселината е слаба (H 2 BO 3 - борна), ако n = 1, тогава киселината е или слаба, или със средна сила (H 3 PO 4 -ортофосфорна), ако n е по-голямо от или равно на 2, тогава киселината се счита за силна (H 2 SO 4).

Ориз. 2. Сярна киселина.

Киселинните хидроксиди съответстват на киселинни оксиди или анхидриди на киселини, например сярна киселина съответства на серен анхидрид SO 3.

Химични свойства на киселините

Киселините се характеризират с редица свойства, които ги отличават от солите и други химични елементи:

  • Действие върху индикаторите.Как киселинните протолити се дисоциират, за да образуват Н+ йони, които променят цвета на индикаторите: виолетов лакмусов разтвор става червен, а оранжев метилоранжев разтвор става розов. Многоосновните киселини се дисоциират на етапи, като всеки следващ етап е по-труден от предходния, тъй като във втория и третия етап се дисоциират все по-слаби електролити:

H 2 SO 4 =H+ +HSO 4 –

Цветът на индикатора зависи от това дали киселината е концентрирана или разредена. Така например, когато лакмусът се спусне в концентрирана сярна киселина, индикаторът става червен, но в разредена сярна киселина цветът няма да се промени.

  • Реакция на неутрализация, тоест взаимодействието на киселини с основи, което води до образуването на сол и вода, винаги се случва, ако поне един от реагентите е силен (основа или киселина). Реакцията не протича, ако киселината е слаба и основата е неразтворима. Например, реакцията не работи:

H 2 SiO 3 (слаба, неразтворима във вода киселина) + Cu(OH) 2 – реакцията не протича

Но в други случаи реакцията на неутрализация с тези реагенти протича:

H 2 SiO 3 +2KOH (алкален) = K 2 SiO 3 +2H 2 O

  • Взаимодействие с основни и амфотерни оксиди:

Fe 2 O 3 +3H 2 SO 4 =Fe 2 (SO 4) 3 +3H 2 O

  • Взаимодействие на киселини с метали, стоящ в поредицата напрежения вляво от водорода, води до процес, в резултат на който се образува сол и се отделя водород. Тази реакция протича лесно, ако киселината е достатъчно силна.

Азотната киселина и концентрираната сярна киселина реагират с метали поради редукцията не на водорода, а на централния атом:

Mg+H2SO4 +MgSO4 +H2

  • Взаимодействие на киселини със соливъзниква, когато в резултат се образува слаба киселина. Ако солта, реагираща с киселината, е разтворима във вода, тогава реакцията ще продължи и ако се образува неразтворима сол:

Na 2 SiO 3 (разтворима сол на слаба киселина) + 2HCl (силна киселина) = H 2 SiO 3 (слаба неразтворима киселина) + 2NaCl (разтворима сол)

В промишлеността се използват много киселини, например оцетната киселина е необходима за консервиране на месо и рибни продукти

Изберете категорията Книги Математика Физика Контрол и управление на достъп Пожарна безопасност Полезно Доставчици на оборудване Измервателни уреди Измерване на влажност - доставчици в Руската федерация. Измерване на налягането. Измерване на разходите. Разходомери. Измерване на температура Измерване на ниво. Нивомери. Безизкопни технологии Канализационни системи. Доставчици на помпи в Руската федерация. Ремонт на помпа. Аксесоари за тръбопроводи. Хладилен агент (Хладилен агент) R22 - Дифлуорохлорометан (CF2ClH) Хладилен агент (Хладилен агент) R32 - Дифлуорометан (CH2F2). Хладилен агент (Хладилен агент) R407C - R-32 (23%) / R-125 (25%) / R-134a (52%) / Процент от теглото. други Материали - термични свойства Абразиви - песъчинки, финост, шлифовъчно оборудване. Почви, пръст, пясък и други скали. Показатели за разрохкване, свиване и плътност на почви и скали. Свиване и разхлабване, натоварвания. Ъгли на наклон, острие. Височини на первази, сметища. Дърво. дървен материал. Дървен материал. трупи. Дърва за огрев... Керамика. Лепила и лепилни съединения Лед и сняг (воден лед) Метали Алуминий и алуминиеви сплави Мед, бронз и месинг Бронз Месинг Мед (и класификация на медните сплави) Никел и сплави Съответствие на класове сплави Стомани и сплави Референтни таблици за теглата на валцуван метал и тръби . +/-5% тегло на тръбата. Метално тегло. Механични свойства на стоманите. Чугунени минерали. Азбест. Геометрични фигури. Свойства, формули: периметри, повърхнини, обеми, дължини. Триъгълници, правоъгълници и др. Градуси в радиани. Плоски фигури. Свойства, страни, ъгли, атрибути, периметри, равенства, прилики, хорди, сектори, площи и др. Площи на неправилни фигури, обеми на неправилни тела. Средна величина на сигнала. Формули и методи за изчисляване на площ. Графики. Изграждане на графики. Четене на диаграми. Интегрално и диференциално смятане. Таблични производни и интеграли. Таблица на производните. Таблица на интегралите. Таблица на антипроизводните. Намерете производната. Намерете интеграла. Дифури. Комплексни числа. Въображаема единица. Линейна алгебра. (Вектори, матрици) Математика за най-малките. Детска градина – 7 клас. Математическа логика. Решаване на уравнения. Квадратни и биквадратни уравнения. Формули. Методи. Решаване на диференциални уравнения Примери за решения на обикновени диференциални уравнения от по-висок порядък от първия. Примери за решения на най-простите = аналитично разрешими обикновени диференциални уравнения от първи ред. Координатни системи. Правоъгълна декартова, полярна, цилиндрична и сферична. Двуизмерен и триизмерен. Бройни системи. Числа и цифри (реални, комплексни, ....). Таблици за бройни системи. Степенен ред на Тейлър, Маклорен (=Макларън) и периодичен ред на Фурие. Разширяване на функциите в серии. Таблици на логаритми и основни формули Таблици на числени стойности Таблици на Bradis. Теория на вероятностите и статистика Тригонометрични функции, формули и графики. sin, cos, tg, ctg… Стойности на тригонометрични функции. Формули за редуциране на тригонометрични функции. Тригонометрични тъждества. Числени методи Техника - стандарти, размери Битова техника, битова техника. Отводнителни и дренажни системи. Контейнери, цистерни, резервоари, резервоари. КИП и автоматизация КИП и автоматизация. Измерване на температура. Конвейери, лентови транспортьори. Контейнери (линк) Крепежни елементи. Лабораторно оборудване. Помпи и помпени станции Помпи за течности и целулози. Инженерен жаргон. Речник. Интерфейси за свързване. Комуникационни протоколи (комуникации) Телефонни комуникации. Аксесоари за тръбопроводи. Кранове, кранове, кранове... Строителни дължини. Фланци и резби. Стандарти. Присъединителни размери. нишки. Обозначения, размери, приложения, типове... (референтен линк) Връзки ("хигиенни", "асептични") на тръбопроводи в хранително-вкусовата, млечната и фармацевтичната промишленост. Тръби, тръбопроводи. Диаметри на тръбите и други характеристики. Избор на диаметър на тръбопровода. Дебити. Разноски. Сила. Таблици за избор, спад на налягането. Медни тръби. Диаметри на тръбите и други характеристики. Тръби от поливинилхлорид (PVC). Диаметри на тръбите и други характеристики. Полиетиленови тръби. Диаметри на тръбите и други характеристики. HDPE полиетиленови тръби. Диаметри на тръбите и други характеристики. Стоманени тръби (включително неръждаема стомана). Диаметри на тръбите и други характеристики. Стоманена тръба. Тръбата е неръждаема. Тръби от неръждаема стомана. Диаметри на тръбите и други характеристики. Тръбата е неръждаема. Тръби от въглеродна стомана. Диаметри на тръбите и други характеристики. Стоманена тръба. Конвенционални графични представяния в проекти за отопление, вентилация, климатизация и отопление и охлаждане, съгласно стандарт ANSI/ASHRAE 134-2005. Стерилизация на оборудване и материали Топлоснабдяване Електронна промишленост Електроснабдяване Физически справочник Азбуки. Приети обозначения. Основни физични константи. Влажността бива абсолютна, относителна и специфична. Влажност на въздуха. Психрометрични таблици. Диаграми на Рамзин. Времеви вискозитет, число на Рейнолдс (Re). Единици за вискозитет. Газове. Свойства на газовете. Индивидуални газови константи. Налягане и вакуум Вакуум Дължина, разстояние, линеен размер Звук. Ултразвук. Електрически и магнитни величини Електрически диполни моменти. Диелектричната константа. Електрическа константа. Електромагнитни дължини на вълните (справочник на друг раздел) Сила на магнитното поле. Понятия и формули за електричество и магнетизъм. Електростатика.

Имена на някои неорганични киселини и соли

Киселинни формулиИмена на киселиниИмена на съответните соли
HClO4 хлор перхлорати
HClO3 хипохлорен хлорати
HClO2 хлорид хлорити
HClO хипохлорен хипохлорити
H5IO6 йод периодати
HIO 3 йодна йодати
H2SO4 сярна сулфати
H2SO3 сяра сулфити
H2S2O3 тиосяра тиосулфати
H2S4O6 тетратионов тетратионати
HNO3 азот нитрати
HNO2 азотен нитрити
H3PO4 ортофосфорен ортофосфати
HPO 3 метафосфорен метафосфати
H3PO3 фосфорни фосфити
H3PO2 фосфорни хипофосфити
H2CO3 въглища карбонати
H2SiO3 силиций силикати
HMnO4 манган перманганати
H2MnO4 манган манганати
H2CrO4 хром хромати
H2Cr2O7 дихром дихромати
HF флуороводород (флуорид) флуориди
НС1 солна (солна) хлориди
HBr бромоводородна бромиди
здрасти водороден йодид йодиди
H2S водороден сулфид сулфиди
HCN циановодород цианиди
HOCN циан цианати

Нека накратко да ви напомня, като използвам конкретни примери, как трябва да се наричат ​​правилно солите.


Пример 1. Солта K 2 SO 4 се образува от остатък от сярна киселина (SO 4) и метал K. Солите на сярната киселина се наричат ​​сулфати. K 2 SO 4 - калиев сулфат.

Пример 2. FeCl 3 - солта съдържа желязо и остатък от солна киселина (Cl). Име на солта: железен (III) хлорид. Моля, обърнете внимание: в този случай трябва не само да назовем метала, но и да посочим неговата валентност (III). В предишния пример това не беше необходимо, тъй като валентността на натрия е постоянна.

Важно: името на солта трябва да показва валентността на метала само ако металът има променлива валентност!

Пример 3. Ba(ClO) 2 - солта съдържа барий и остатъка от хипохлорна киселина (ClO). Име на солта: бариев хипохлорит. Валентността на метала Ba във всички негови съединения е две; не е необходимо да се посочва.

Пример 4. (NH 4) 2 Cr 2 O 7. Групата NH4 се нарича амоний, валентността на тази група е постоянна. Име на солта: амониев дихромат (дихромат).

В горните примери се сблъскахме само с т.нар. средни или нормални соли. Тук няма да се разглеждат киселинни, основни, двойни и комплексни соли, соли на органични киселини.

7. Киселини. Сол. Връзка между класове неорганични вещества

7.1. Киселини

Киселините са електролити, при дисоциацията на които се образуват само водородни катиони H + като положително заредени йони (по-точно хидрониеви йони H 3 O +).

Друго определение: киселините са сложни вещества, състоящи се от водороден атом и киселинни остатъци (Таблица 7.1).

Таблица 7.1

Формули и наименования на някои киселини, киселинни остатъци и соли

Киселинна формулаИме на киселинатаКиселинен остатък (анион)Име на соли (средно)
HFХидрофлуорен (флуорен)F −Флуориди
НС1Солен (солен)Cl −Хлориди
HBrБромоводороднаBr−Бромиди
здрастиХидройодидаз −йодиди
H2SВодороден сулфидS 2−Сулфиди
H2SO3сяраSO 3 2 −Сулфити
H2SO4СярнаSO 4 2 −Сулфати
HNO2АзотниNO2−Нитрити
HNO3АзотНЕ 3 −Нитрати
H2SiO3СилицийSiO 3 2 −Силикати
HPO 3МетафосфоренPO 3 −Метафосфати
H3PO4ОртофосфоренPO 4 3 −Ортофосфати (фосфати)
H4P2O7Пирофосфорен (бифосфорен)P 2 O 7 4 −Пирофосфати (дифосфати)
HMnO4МанганMnO 4 −Перманганати
H2CrO4ChromeCrO 4 2 −Хромати
H2Cr2O7ДихромCr 2 O 7 2 −Дихромати (бихромати)
H2SeO4СеленSeO 4 2 −Селенати
H3BO3БорнаяBO 3 3 −Ортоборати
HClOХипохлорноClO –Хипохлорити
HClO2ХлоридClO2−хлорити
HClO3хлористClO3−Хлорати
HClO4хлорClO 4 −Перхлорати
H2CO3ВъглищаCO 3 3 −Карбонати
CH3COOHОцетCH 3 COO −Ацетати
HCOOHМравкаHCOO −Формиати

При нормални условия киселините могат да бъдат твърди вещества (H 3 PO 4, H 3 BO 3, H 2 SiO 3) и течности (HNO 3, H 2 SO 4, CH 3 COOH). Тези киселини могат да съществуват както самостоятелно (100% форма), така и под формата на разредени и концентрирани разтвори. Например, H 2 SO 4 , HNO 3 , H 3 PO 4 , CH 3 COOH са известни както поотделно, така и в разтвори.

Редица киселини са известни само в разтвори. Това са всички халогеноводороди (HCl, HBr, HI), сероводород H 2 S, циановодород (циановодород HCN), въглеродна H 2 CO 3, сярна H 2 SO 3 киселина, които са разтвори на газове във вода. Например солната киселина е смес от HCl и H 2 O, въглеродната киселина е смес от CO 2 и H 2 O. Ясно е, че използването на израза „разтвор на солна киселина“ е неправилно.

Повечето киселини са разтворими във вода; силициевата киселина H 2 SiO 3 е неразтворима. Преобладаващата част от киселините имат молекулярна структура. Примери за структурни формули на киселини:

В повечето киселинни молекули, съдържащи кислород, всички водородни атоми са свързани с кислорода. Но има изключения:


Киселините се класифицират според редица характеристики (Таблица 7.2).

Таблица 7.2

Класификация на киселините

Знак за класификацияТип киселинаПримери
Броят на водородните йони, образувани при пълна дисоциация на киселинна молекулаМонобазаHCl, HNO3, CH3COOH
ДвуосновенH2SO4, H2S, H2CO3
ТриосновенH3PO4, H3AsO4
Наличието или отсъствието на кислороден атом в молекулаКислородсъдържащи (киселинни хидроксиди, оксокиселини)HNO2, H2SiO3, H2SO4
Без кислородHF, H2S, HCN
Степен на дисоциация (сила)Силни (напълно дисоциирани, силни електролити)HCl, HBr, HI, H2SO4 (разреден), HNO3, HClO3, HClO4, HMnO4, H2Cr2O7
Слаби (частично дисоциирани, слаби електролити)HF, HNO 2, H 2 SO 3, HCOOH, CH 3 COOH, H 2 SiO 3, H 2 S, HCN, H 3 PO 4, H 3 PO 3, HClO, HClO 2, H 2 CO 3, H 3 BO 3, H2SO4 (конц.)
Окислителни свойстваОкислители, дължащи се на H + йони (условно неокисляващи киселини)HCl, HBr, HI, HF, H 2 SO 4 (разреден), H 3 PO 4, CH 3 COOH
Окислители, дължащи се на анион (окисляващи киселини)HNO 3, HMnO 4, H 2 SO 4 (конц.), H 2 Cr 2 O 7
Анионни редуциращи агентиHCl, HBr, HI, H 2 S (но не HF)
Термична стабилностСъществуват само в решенияH 2 CO 3, H 2 SO 3, HClO, HClO 2
Лесно се разлага при нагряванеH2SO3, HNO3, H2SiO3
Термично стабиленH2SO4 (конц.), H3PO4

Всички общи химични свойства на киселините се дължат на наличието в техните водни разтвори на излишни водородни катиони Н + (Н 3 О +).

1. Поради излишъка от H + йони, водните разтвори на киселини променят цвета на лакмусовото виолетово и метиловото оранжево до червено (фенолфталеинът не променя цвета си и остава безцветен). Във воден разтвор на слаба въглена киселина лакмусът не е червен, а розов; разтвор върху утайка от много слаба силициева киселина изобщо не променя цвета на индикаторите.

2. Киселините взаимодействат с основни оксиди, основи и амфотерни хидроксиди, амонячен хидрат (виж глава 6).

Пример 7.1. За извършване на трансформацията BaO → BaSO 4 можете да използвате: а) SO 2; b) H2SO4; c) Na2S04; г) SO 3.

Решение. Трансформацията може да се извърши с помощта на H 2 SO 4:

BaO + H 2 SO 4 = BaSO 4 ↓ + H 2 O

BaO + SO 3 = BaSO 4

Na 2 SO 4 не реагира с BaO и при реакцията на BaO с SO 2 се образува бариев сулфит:

BaO + SO 2 = BaSO 3

Отговор: 3).

3. Киселините реагират с амоняка и неговите водни разтвори, за да образуват амониеви соли:

HCl + NH3 = NH4Cl - амониев хлорид;

H 2 SO 4 + 2NH 3 = (NH 4) 2 SO 4 - амониев сулфат.

4. Неокисляващите киселини реагират с метали, намиращи се в серията активност до водород, за да образуват сол и да отделят водород:

H 2 SO 4 (разреден) + Fe = FeSO 4 + H 2

2HCl + Zn = ZnCl 2 = H 2

Взаимодействието на окислителните киселини (HNO 3, H 2 SO 4 (конц.)) с металите е много специфично и се разглежда при изучаване на химията на елементите и техните съединения.

5. Киселините взаимодействат със солите. Реакцията има редица характеристики:

а) в повечето случаи, когато по-силна киселина реагира със сол на по-слаба киселина, се образуват сол на слаба киселина и слаба киселина или, както се казва, по-силната киселина измества по-слабата. Серията от намаляваща сила на киселините изглежда така:

Примери за възникващи реакции:

2HCl + Na 2 CO 3 = 2NaCl + H 2 O + CO 2

H 2 CO 3 + Na 2 SiO 3 = Na 2 CO 3 + H 2 SiO 3 ↓

2CH 3 COOH + K 2 CO 3 = 2CH 3 COOK + H 2 O + CO 2

3H 2 SO 4 + 2K 3 PO 4 = 3K 2 SO 4 + 2H 3 PO 4

Не взаимодействайте помежду си, например KCl и H 2 SO 4 (разреден), NaNO 3 и H 2 SO 4 (разреден), K 2 SO 4 и HCl (HNO 3, HBr, HI), K 3 PO 4 и H2CO3, CH3COOK и H2CO3;

б) в някои случаи по-слаба киселина измества по-силна от сол:

CuSO 4 + H 2 S = CuS↓ + H 2 SO 4

3AgNO 3 (разм.) + H 3 PO 4 = Ag 3 PO 4 ↓ + 3HNO 3.

Такива реакции са възможни, когато утайките на получените соли не се разтварят в получените разредени силни киселини (H 2 SO 4 и HNO 3);

в) в случай на образуване на утайки, които са неразтворими в силни киселини, може да възникне реакция между силна киселина и сол, образувана от друга силна киселина:

BaCl 2 + H 2 SO 4 = BaSO 4 ↓ + 2HCl

Ba(NO 3) 2 + H 2 SO 4 = BaSO 4 ↓ + 2HNO 3

AgNO 3 + HCl = AgCl↓ + HNO 3

Пример 7.2. Посочете реда, съдържащ формулите на веществата, които реагират с H 2 SO 4 (разреден).

1) Zn, Al 2 O 3, KCl (p-p); 3) NaNO 3 (p-p), Na 2 S, NaF 2) Cu(OH) 2, K 2 CO 3, Ag; 4) Na 2 SO 3, Mg, Zn(OH) 2.

Решение. Всички вещества от ред 4 взаимодействат с H 2 SO 4 (разм.):

Na 2 SO 3 + H 2 SO 4 = Na 2 SO 4 + H 2 O + SO 2

Mg + H 2 SO 4 = MgSO 4 + H 2

Zn(OH) 2 + H 2 SO 4 = ZnSO 4 + 2H 2 O

В ред 1) реакцията с KCl (p-p) не е осъществима, в ред 2) - с Ag, в ред 3) - с NaNO 3 (p-p).

Отговор: 4).

6. Концентрираната сярна киселина се държи много специфично при реакции със соли. Това е нелетлива и термично стабилна киселина, поради което измества всички силни киселини от твърди (!) соли, тъй като те са по-летливи от H2SO4 (конц):

KCl (tv) + H 2 SO 4 (конц.) KHSO 4 + HCl

2KCl (s) + H 2 SO 4 (конц.) K 2 SO 4 + 2HCl

Солите, образувани от силни киселини (HBr, HI, HCl, HNO 3, HClO 4), реагират само с концентрирана сярна киселина и само когато са в твърдо състояние

Пример 7.3. Концентрираната сярна киселина, за разлика от разредената, реагира:

3) KNO 3 (телевизор);

Решение. И двете киселини реагират с KF, Na 2 CO 3 и Na 3 PO 4 и само H 2 SO 4 (конц.) реагира с KNO 3 (твърдо).

Отговор: 3).

Методите за производство на киселини са много разнообразни.

Аноксични киселиниполучавам:

  • чрез разтваряне на съответните газове във вода:

HCl (g) + H 2 O (l) → HCl (p-p)

H 2 S (g) + H 2 O (l) → H 2 S (разтвор)

  • от соли чрез заместване с по-силни или по-малко летливи киселини:

FeS + 2HCl = FeCl 2 + H 2 S

KCl (tv) + H 2 SO 4 (конц.) = KHSO 4 + HCl

Na 2 SO 3 + H 2 SO 4 Na 2 SO 4 + H 2 SO 3

Кислородсъдържащи киселиниполучавам:

  • чрез разтваряне на съответните киселинни оксиди във вода, докато степента на окисление на киселинно образуващия елемент в оксида и киселината остава същата (с изключение на NO 2):

N2O5 + H2O = 2HNO3

SO 3 + H 2 O = H 2 SO 4

P 2 O 5 + 3H 2 O 2H 3 PO 4

  • окисляване на неметали с окислителни киселини:

S + 6HNO 3 (конц.) = H 2 SO 4 + 6NO 2 + 2H 2 O

  • чрез изместване на силна киселина от сол на друга силна киселина (ако се утаи утайка, неразтворима в получените киселини):

Ba(NO 3) 2 + H 2 SO 4 (разреден) = BaSO 4 ↓ + 2HNO 3

AgNO 3 + HCl = AgCl↓ + HNO 3

  • чрез изместване на летлива киселина от нейните соли с по-малко летлива киселина.

За тази цел най-често се използва нелетлива, термично стабилна концентрирана сярна киселина:

NaNO 3 (tv) + H 2 SO 4 (конц.) NaHSO 4 + HNO 3

KClO 4 (tv) + H 2 SO 4 (конц.) KHSO 4 + HClO 4

  • изместване на по-слаба киселина от нейните соли с по-силна киселина:

Ca 3 (PO 4) 2 + 3H 2 SO 4 = 3CaSO 4 ↓ + 2H 3 PO 4

NaNO 2 + HCl = NaCl + HNO 2

K 2 SiO 3 + 2HBr = 2KBr + H 2 SiO 3 ↓

Киселиниса сложни вещества, чиито молекули включват водородни атоми, които могат да бъдат заменени или заменени с метални атоми и киселинен остатък.

Въз основа на наличието или отсъствието на кислород в молекулата киселините се делят на кислородсъдържащи(H 2 SO 4 сярна киселина, H 2 SO 3 сярна киселина, HNO 3 азотна киселина, H 3 PO 4 фосфорна киселина, H 2 CO 3 въглеродна киселина, H 2 SiO 3 силициева киселина) и без кислород(HF флуороводородна киселина, HCl солна киселина (солна киселина), HBr бромоводородна киселина, HI йодоводородна киселина, H2S хидросулфидна киселина).

В зависимост от броя на водородните атоми в киселинната молекула, киселините биват едноосновни (с 1 Н атом), двуосновни (с 2 Н атома) и триосновни (с 3 Н атома). Например, азотната киселина HNO 3 е едноосновна, тъй като нейната молекула съдържа един водороден атом, сярна киселина H 2 SO 4 двуосновен и др.

Има много малко неорганични съединения, съдържащи четири водородни атома, които могат да бъдат заменени с метал.

Частта от киселинна молекула без водород се нарича киселинен остатък.

Киселинни остатъцимогат да се състоят от един атом (-Cl, -Br, -I) - това са прости киселинни остатъци или могат да се състоят от група атоми (-SO 3, -PO 4, -SiO 3) - това са сложни остатъци.

Във водни разтвори, по време на реакции на обмен и заместване, киселинните остатъци не се разрушават:

H 2 SO 4 + CuCl 2 → CuSO 4 + 2 HCl

Думата анхидридозначава безводен, т.е. киселина без вода. Например,

H 2 SO 4 – H 2 O → SO 3. Аноксичните киселини нямат анхидриди.

Киселините получават името си от името на киселинообразуващия елемент (киселинно образуващ агент) с добавяне на окончанията „naya” и по-рядко „vaya”: H 2 SO 4 - сярна; H 2 SO 3 – въглища; H 2 SiO 3 – силиций и др.

Елементът може да образува няколко кислородни киселини. В този случай посочените окончания в имената на киселините ще бъдат, когато елементът проявява по-висока валентност (молекулата на киселината съдържа високо съдържание на кислородни атоми). Ако елементът проявява по-ниска валентност, окончанието в името на киселината ще бъде „празно“: HNO 3 - азотна, HNO 2 - азотна.

Киселини могат да бъдат получени чрез разтваряне на анхидриди във вода.Ако анхидридите са неразтворими във вода, киселината може да се получи чрез действието на друга по-силна киселина върху солта на необходимата киселина. Този метод е характерен както за кислородните, така и за безкислородните киселини. Безкислородните киселини също се получават чрез директен синтез от водород и неметал, последвано от разтваряне на полученото съединение във вода:

H2 + Cl2 → 2 HCl;

H 2 + S → H 2 S.

Разтворите на получените газообразни вещества HCl и H 2 S са киселини.

При нормални условия киселините съществуват както в течно, така и в твърдо състояние.

Химични свойства на киселините

Киселинните разтвори действат върху индикаторите. Всички киселини (с изключение на силициевата) са силно разтворими във вода. Специални вещества - индикатори ви позволяват да определите наличието на киселина.

Индикаторите са вещества със сложна структура. Те променят цвета си в зависимост от взаимодействието им с различни химикали. В неутралните разтвори имат един цвят, в разтворите на основите имат друг цвят. При взаимодействие с киселина те променят цвета си: индикаторът на метилоранж става червен, а индикаторът на лакмус също става червен.

Взаимодействайте с бази с образуването на вода и сол, която съдържа непроменен киселинен остатък (реакция на неутрализация):

H 2 SO 4 + Ca(OH) 2 → CaSO 4 + 2 H 2 O.

Взаимодействат с основни оксиди с образуването на вода и сол (реакция на неутрализация). Солта съдържа киселинния остатък от киселината, която е била използвана в реакцията на неутрализация:

H 3 PO 4 + Fe 2 O 3 → 2 FePO 4 + 3 H 2 O.

Взаимодействайте с метали. За да могат киселините да взаимодействат с металите, трябва да бъдат изпълнени определени условия:

1. металът трябва да бъде достатъчно активен по отношение на киселини (в редицата на активност на металите той трябва да бъде разположен преди водорода). Колкото по-наляво е даден метал в серията активност, толкова по-интензивно той взаимодейства с киселини;

2. киселината трябва да е достатъчно силна (т.е. способна да отдава водородни йони H +).

Когато протичат химични реакции на киселина с метали, се образува сол и се отделя водород (с изключение на взаимодействието на метали с азотна и концентрирана сярна киселина):

Zn + 2HCl → ZnCl2 + H2;

Cu + 4HNO 3 → CuNO 3 + 2 NO 2 + 2 H 2 O.

Все още имате въпроси? Искате ли да знаете повече за киселините?
За да получите помощ от преподавател, регистрирайте се.
Първият урок е безплатен!

уебсайт, при пълно или частично копиране на материал се изисква връзка към източника.