4 производна на сложна функция. Производна на функция

Ако ж(х) И f(u) – диференцируеми функции на техните аргументи съответно в точки хИ u= ж(х), тогава комплексната функция също е диференцируема в точката хи се намира по формулата

Типична грешка при решаването на производни задачи е механичното прехвърляне на правилата за диференциране на прости функции към сложни функции. Нека се научим да избягваме тази грешка.

Пример 2.Намерете производната на функция

Грешно решение:изчислете натуралния логаритъм на всеки член в скоби и потърсете сбора на производните:

Правилно решение:отново определяме къде е „ябълката“ и къде е „каймата“. Тук естественият логаритъм на израза в скоби е „ябълка“, тоест функция върху междинния аргумент u, а изразът в скоби е „кайма“, тоест междинен аргумент uчрез независима променлива х.

След това (използвайки формула 14 от таблицата с производни)

В много задачи от реалния живот изразът с логаритъм може да бъде малко по-сложен, поради което има урок

Пример 3.Намерете производната на функция

Грешно решение:

Правилно решение.Още веднъж определяме къде е „ябълката“ и къде е „каймата“. Тук косинусът на израза в скоби (формула 7 в таблицата с производни) е „ябълка“, приготвя се в режим 1, който засяга само него, а изразът в скоби (производната на степента е номер 3) в таблицата с производни) е „кайма“, приготвя се по режим 2, който засяга само него. И както винаги, свързваме две производни със знака на продукта. Резултат:

Производната на сложна логаритмична функция е честа задача в тестовете, затова силно препоръчваме да посетите урока „Производна на логаритмична функция“.

Първите примери бяха за сложни функции, в които междинният аргумент на независимата променлива беше проста функция. Но в практическите задачи често е необходимо да се намери производната на сложна функция, където междинният аргумент или сам по себе си е сложна функция, или съдържа такава функция. Какво да правим в такива случаи? Намерете производни на такива функции, като използвате таблици и правила за диференциране. Когато се намери производната на междинния аргумент, тя просто се замества на правилното място във формулата. По-долу са дадени два примера как се прави това.

Освен това е полезно да знаете следното. Ако една сложна функция може да бъде представена като верига от три функции

тогава неговата производна трябва да се намери като произведение на производните на всяка от тези функции:

Много от задачите ви за домашна работа може да изискват да отворите ръководствата си в нови прозорци. Действия със сили и корениИ Действия с дроби .

Пример 4.Намерете производната на функция

Прилагаме правилото за диференциране на сложна функция, като не забравяме, че в получения продукт от производни има междинен аргумент по отношение на независимата променлива хне се променя:

Подготвяме втория множител на произведението и прилагаме правилото за диференциране на сумата:

Вторият член е коренът, така че

Така открихме, че междинният аргумент, който е сума, съдържа сложна функция като един от термините: повдигането на степен е сложна функция, а това, което се повдига на степен, е междинен аргумент по отношение на независимия променлива х.

Затова отново прилагаме правилото за диференциране на сложна функция:

Преобразуваме степента на първия фактор в корен и когато диференцираме втория фактор, не забравяйте, че производната на константата е равна на нула:

Сега можем да намерим производната на междинния аргумент, необходим за изчисляване на производната на сложна функция, изисквана в изложението на проблема г:

Пример 5.Намерете производната на функция

Първо използваме правилото за диференциране на сумата:

Получихме сумата от производните на две комплексни функции. Нека намерим първия:

Тук повишаването на синуса на степен е сложна функция, а самият синус е междинен аргумент за независимата променлива х. Следователно ще използваме правилото за диференциране на сложна функция по пътя изваждане на фактора извън скоби :

Сега намираме втория член на производните на функцията г:

Тук повдигането на косинус на степен е сложна функция f, а самият косинус е междинен аргумент в независимата променлива х. Нека отново използваме правилото за диференциране на сложна функция:

Резултатът е търсената производна:

Таблица с производни на някои сложни функции

За сложни функции, въз основа на правилото за диференциране на сложна функция, формулата за производна на проста функция приема различна форма.

1. Производна на сложна степенна функция, където u х
2. Производна на корена на израза
3. Производна на експоненциална функция
4. Частен случай на експоненциална функция
5. Производна на логаритмична функция с произволна положителна основа А
6. Производна на комплексна логаритмична функция, където u– диференцируема функция на аргумента х
7. Производна на синус
8. Производна на косинус
9. Производна на тангенс
10. Производна на котангенс
11. Производна на арксинус
12. Производна на аркосинус
13. Производна на арктангенс
14. Производна на аркотангенс

Ако следвате дефиницията, тогава производната на функция в точка е границата на съотношението на увеличението на функцията Δ гкъм увеличението на аргумента Δ х:

Всичко изглежда ясно. Но опитайте да използвате тази формула, за да изчислите, да речем, производната на функцията f(х) = х 2 + (2х+ 3) · д хгрях х. Ако правите всичко по дефиниция, тогава след няколко страници изчисления просто ще заспите. Следователно има по-прости и по-ефективни начини.

Като начало отбелязваме, че от цялото разнообразие от функции можем да различим така наречените елементарни функции. Това са относително прости изрази, чиито производни отдавна са изчислени и таблични. Такива функции са доста лесни за запомняне - заедно с техните производни.

Производни на елементарни функции

Елементарни функции са всички изброени по-долу. Производните на тези функции трябва да се знаят наизуст. Освен това не е никак трудно да ги запомните - затова са елементарни.

И така, производни на елементарни функции:

Име функция Производна
Константа f(х) = ° С, ° СР 0 (да, нула!)
Степен с рационален показател f(х) = х н н · х н − 1
синусите f(х) = грях х cos х
Косинус f(х) = cos х − грях х(минус синус)
Допирателна f(х) = tg х 1/cos 2 х
Котангенс f(х) = ctg х − 1/грех 2 х
Натурален логаритъм f(х) = дневник х 1/х
Произволен логаритъм f(х) = дневник а х 1/(хвътре а)
Експоненциална функция f(х) = д х д х(Нищо не се промени)

Ако една елементарна функция се умножи по произволна константа, тогава производната на новата функция също се изчислява лесно:

(° С · f)’ = ° С · f ’.

По принцип константите могат да бъдат извадени от знака на производната. Например:

(2х 3)’ = 2 · ( х 3)’ = 2 3 х 2 = 6х 2 .

Очевидно елементарните функции могат да се добавят една към друга, умножават, разделят - и много повече. Така ще се появят нови функции, вече не особено елементарни, но и диференцирани по определени правила. Тези правила са обсъдени по-долу.

Производна на сбор и разлика

Нека функциите са дадени f(х) И ж(х), чиито производни са ни известни. Например можете да вземете елементарните функции, обсъдени по-горе. След това можете да намерите производната на сбора и разликата на тези функции:

  1. (f + ж)’ = f ’ + ж
  2. (fж)’ = f ’ − ж

И така, производната на сумата (разликата) на две функции е равна на сумата (разликата) на производните. Възможно е да има повече термини. Например, ( f + ж + ч)’ = f ’ + ж ’ + ч ’.

Строго погледнато, в алгебрата няма концепция за „изваждане“. Съществува понятието „отрицателен елемент“. Следователно разликата fжможе да се пренапише като сума f+ (−1) ж, и тогава остава само една формула - производната на сумата.

f(х) = х 2 + sin x; ж(х) = х 4 + 2х 2 − 3.

функция f(х) е сумата от две елементарни функции, следователно:

f ’(х) = (х 2 + грях х)’ = (х 2)’ + (грех х)’ = 2х+ cos x;

Разсъждаваме по подобен начин за функцията ж(х). Само че вече има три термина (от гледна точка на алгебрата):

ж ’(х) = (х 4 + 2х 2 − 3)’ = (х 4 + 2х 2 + (−3))’ = (х 4)’ + (2х 2)’ + (−3)’ = 4х 3 + 4х + 0 = 4х · ( х 2 + 1).

Отговор:
f ’(х) = 2х+ cos x;
ж ’(х) = 4х · ( х 2 + 1).

Производно на продукта

Математиката е логическа наука, така че много хора вярват, че ако производната на дадена сума е равна на сумата от производните, тогава производната на произведението стачка">равно на произведението на производните. Но майната ви! Производната на продукт се изчислява по съвсем различна формула. А именно:

(f · ж) ’ = f ’ · ж + f · ж

Формулата е проста, но често се забравя. И не само ученици, но и студенти. Резултатът е неправилно решени задачи.

Задача. Намерете производни на функции: f(х) = х 3 cos x; ж(х) = (х 2 + 7х− 7) · д х .

функция f(х) е продукт на две елементарни функции, така че всичко е просто:

f ’(х) = (х 3 cos х)’ = (х 3)’ cos х + х 3 (cos х)’ = 3х 2 cos х + х 3 (-грех х) = х 2 (3 cos ххгрях х)

функция ж(х) първият множител е малко по-сложен, но общата схема не се променя. Очевидно първият фактор на функцията ж(х) е полином и неговата производна е производната на сумата. Ние имаме:

ж ’(х) = ((х 2 + 7х− 7) · д х)’ = (х 2 + 7х− 7)’ · д х + (х 2 + 7х− 7) ( д х)’ = (2х+ 7) · д х + (х 2 + 7х− 7) · д х = д х· (2 х + 7 + х 2 + 7х −7) = (х 2 + 9х) · д х = х(х+ 9) · д х .

Отговор:
f ’(х) = х 2 (3 cos ххгрях х);
ж ’(х) = х(х+ 9) · д х .

Моля, обърнете внимание, че в последната стъпка производната се факторизира. Формално това не е необходимо да се прави, но повечето производни не се изчисляват самостоятелно, а за изследване на функцията. Това означава, че по-нататък производната ще бъде приравнена на нула, нейните знаци ще бъдат определени и т.н. За такъв случай е по-добре да имате факторизиран израз.

Ако има две функции f(х) И ж(х), и ж(х) ≠ 0 на множеството, което ни интересува, можем да дефинираме нова функция ч(х) = f(х)/ж(х). За такава функция можете също да намерите производната:

Не е слаб, а? Откъде дойде минусът? Защо ж 2? И така! Това е една от най-сложните формули - не можете да я разберете без бутилка. Затова е по-добре да го изучавате с конкретни примери.

Задача. Намерете производни на функции:

Числителят и знаменателят на всяка дроб съдържат елементарни функции, така че всичко, от което се нуждаем, е формулата за производната на частното:


Според традицията, нека разложим числителя на множители - това значително ще опрости отговора:

Сложната функция не е непременно дълга половин километър формула. Например, достатъчно е да вземете функцията f(х) = грях хи заменете променливата х, да речем, на х 2 + ин х. Ще се получи f(х) = грях ( х 2 + ин х) - това е сложна функция. Той също има производно, но няма да е възможно да го намерите с помощта на обсъдените по-горе правила.

Какво трябва да направя? В такива случаи замяната на променлива и формула за производна на сложна функция помага:

f ’(х) = f ’(T) · T', Ако хсе заменя с T(х).

По правило ситуацията с разбирането на тази формула е още по-тъжна, отколкото с производната на коефициента. Затова е по-добре да го обясните с конкретни примери, с подробно описание на всяка стъпка.

Задача. Намерете производни на функции: f(х) = д 2х + 3 ; ж(х) = грях ( х 2 + ин х)

Имайте предвид, че ако във функцията f(х) вместо израз 2 х+ 3 ще бъде лесно х, тогава получаваме елементарна функция f(х) = д х. Затова правим замяна: нека 2 х + 3 = T, f(х) = f(T) = д T. Търсим производната на сложна функция по формулата:

f ’(х) = f ’(T) · T ’ = (д T)’ · T ’ = д T · T

А сега - внимание! Извършваме обратната замяна: T = 2х+ 3. Получаваме:

f ’(х) = д T · T ’ = д 2х+ 3 (2 х + 3)’ = д 2х+ 3 2 = 2 д 2х + 3

Сега нека да разгледаме функцията ж(х). Очевидно трябва да се смени х 2 + ин х = T. Ние имаме:

ж ’(х) = ж ’(T) · T’ = (грех T)’ · T’ = cos T · T

Обратна замяна: T = х 2 + ин х. Тогава:

ж ’(х) = cos ( х 2 + ин х) · ( х 2 + ин х)’ = cos ( х 2 + ин х) · (2 х + 1/х).

Това е всичко! Както се вижда от последния израз, цялата задача е сведена до изчисляване на производната сума.

Отговор:
f ’(х) = 2 · д 2х + 3 ;
ж ’(х) = (2х + 1/х) защото ( х 2 + ин х).

Много често в уроците си, вместо термина „производна“, използвам думата „просто“. Например ударът на сбора е равен на сбора от ударите. Това по-ясно ли е? Е, това е добре.

По този начин изчисляването на производната се свежда до премахване на същите тези удари съгласно правилата, обсъдени по-горе. Като последен пример, нека се върнем към производната степен с рационален показател:

(х н)’ = н · х н − 1

Малко хора знаят това в ролята нможе и да е дробно число. Например коренът е х 0,5. Ами ако има нещо фантастично под корена? Отново резултатът ще е сложна функция - те обичат да дават такива конструкции на контролни и изпити.

Задача. Намерете производната на функцията:

Първо, нека пренапишем корена като степен с рационален показател:

f(х) = (х 2 + 8х − 7) 0,5 .

Сега правим замяна: нека х 2 + 8х − 7 = T. Намираме производната по формулата:

f ’(х) = f ’(T) · T ’ = (T 0,5)’ · T’ = 0,5 · T−0,5 · T ’.

Нека направим обратната замяна: T = х 2 + 8х− 7. Имаме:

f ’(х) = 0,5 · ( х 2 + 8х− 7) −0,5 · ( х 2 + 8х− 7)’ = 0,5 · (2 х+ 8) ( х 2 + 8х − 7) −0,5 .

И накрая, обратно към корените:


Не е напълно правилно да се наричат ​​функции от сложен тип с термина „сложна функция“. Например, изглежда много впечатляващо, но тази функция не е сложна, за разлика от.

В тази статия ще разберем концепцията за сложна функция, ще научим как да я идентифицираме като част от елементарни функции, ще дадем формула за намиране на нейната производна и ще разгледаме подробно решението на типични примери.

Когато решаваме примери, ние постоянно ще използваме таблицата с производни и правилата за диференциране, така че ги дръжте пред очите си.


Комплексна функцияе функция, чийто аргумент също е функция.

От наша гледна точка това определение е най-разбираемо. Условно може да се означи като f(g(x)) . Тоест g(x) е като аргумент на функцията f(g(x)) .

Например, нека f е функцията арктангенс и g(x) = lnx е функцията натурален логаритъм, тогава комплексната функция f(g(x)) е arctan(lnx) . Друг пример: f е функцията на повдигане на четвърта степен и е цяла рационална функция (виж ), тогава .

На свой ред g(x) също може да бъде сложна функция. Например, . Условно такъв израз може да бъде означен като . Тук f е функцията синус, е функцията квадратен корен, - дробна рационална функция. Логично е да се предположи, че степента на вложеност на функциите може да бъде всяко крайно естествено число.

Често можете да чуете сложна функция, наречена състав на функциите.

Формула за намиране на производната на комплексна функция.

Пример.

Намерете производната на сложна функция.

Решение.

В този пример f е функцията за повдигане на квадрат, а g(x) = 2x+1 е линейната функция.

Ето подробното решение, използващо формулата за производна на сложна функция:

Нека намерим тази производна, като първо опростим формата на оригиналната функция.

следователно

Както можете да видите, резултатите са същите.

Опитайте се да не бъркате коя функция е f и коя g(x).

Нека илюстрираме това с пример, за да покажем вашето внимание.


Пример.

Намерете производни на сложни функции и .

Решение.

В първия случай f е функцията за повдигане на квадрат, а g(x) е функцията синус, така че
.

Във втория случай f е синусова функция и е степенна функция. Следователно по формулата за произведението на сложна функция имаме

Формулата за производна на функция има формата

Пример.

Диференциална функция .

Решение.

В този пример сложната функция може да бъде условно написана като , където е съответно функцията синус, функцията на трета степен, функцията логаритъм с основа e, функцията на аркутангенса и линейната функция.

Според формулата за производна на сложна функция

Сега намираме

Нека съберем получените междинни резултати:

Няма нищо страшно, анализирайте сложни функции като кукли.

Това може да е краят на статията, ако не беше едно...

Препоръчително е ясно да се разбере кога да се прилагат правилата за диференциране и таблицата с производни и кога да се прилага формулата за производна на сложна функция.

БЪДЕТЕ ИЗКЛЮЧИТЕЛНО ВНИМАТЕЛНИ СЕГА. Ще говорим за разликата между сложни функции и сложни функции. Вашият успех в намирането на производни ще зависи от това доколко виждате тази разлика.

Да започнем с прости примери. функция може да се разглежда като комплекс: g(x) = tgx, . Следователно можете веднага да приложите формулата за производна на сложна функция

И ето я функцията Вече не може да се нарече комплекс.

Тази функция е сумата от три функции, 3tgx и 1. Въпреки че - е сложна функция: - степенна функция (квадратична парабола), а f е тангенс функция. Следователно, първо прилагаме формулата за диференциране на сумата:

Остава да се намери производната на комплексната функция:

Ето защо .

Надяваме се да схванете същината.

Ако погледнем по-широко, може да се твърди, че функциите от сложен тип могат да бъдат част от сложни функции и сложните функции могат да бъдат компоненти на функции от сложен тип.

Като пример, нека анализираме функцията на нейните съставни части .

Първо, това е сложна функция, която може да бъде представена като , където f е логаритъм с основа 3, а g(x) е сумата от две функции И . Това е, .

Второ, нека разгледаме функцията h(x) . Представлява отношение към .

Това е сумата от две функции и , Където - сложна функция с числен коефициент 3. - кубична функция, - косинусова функция, - линейна функция.

Това е сумата от две функции и , където - комплексна функция, - експоненциална функция, - степенна функция.

По този начин, .

трето, отидете на , което е продукт на сложна функция и цялата рационална функция

Функцията за повдигане на квадрат е функцията логаритъм при основа e.

Следователно, .

Нека обобщим:

Сега структурата на функцията е ясна и стана ясно кои формули и в каква последователност да се прилагат при нейното диференциране.

В раздела за диференциране на функция (намиране на производната) можете да се запознаете с решението на подобни задачи.

Много лесен за запомняне.

Е, нека не отиваме далеч, нека веднага разгледаме обратната функция. Коя функция е обратна на експоненциалната функция? Логаритъм:

В нашия случай основата е числото:

Такъв логаритъм (т.е. логаритъм с основа) се нарича „естествен“ и ние използваме специална нотация за него: пишем вместо това.

На какво е равно? Разбира се, .

Производната на естествения логаритъм също е много проста:

Примери:

  1. Намерете производната на функцията.
  2. Каква е производната на функцията?

Отговори: Експоненциалният и естественият логаритъм са уникално прости функции от производна гледна точка. Експоненциалните и логаритмичните функции с всяка друга основа ще имат различна производна, която ще анализираме по-късно, след като преминем през правилата за диференциране.

Правила за диференциране

Правила на какво? Пак нов мандат, пак?!...

Диференциацияе процесът на намиране на производната.

Това е всичко. Как иначе можете да наречете този процес с една дума? Не производна... Математиците наричат ​​диференциала същото нарастване на функция при. Този термин идва от латинския differentia - разлика. Тук.

Когато извличаме всички тези правила, ще използваме две функции, например и. Ще ни трябват и формули за техните увеличения:

Има общо 5 правила.

Константата се изважда от знака за производна.

Ако - някакво постоянно число (константа), тогава.

Очевидно това правило работи и за разликата: .

Нека го докажем. Нека бъде или по-просто.

Примери.

Намерете производните на функциите:

  1. в точка;
  2. в точка;
  3. в точка;
  4. в точката.

Решения:

  1. (производната е една и съща във всички точки, тъй като е линейна функция, помните ли?);

Производно на продукта

Тук всичко е подобно: нека въведем нова функция и да намерим нейното увеличение:

Производна:

Примери:

  1. Намерете производните на функциите и;
  2. Намерете производната на функцията в точка.

Решения:

Производна на експоненциална функция

Сега знанията ви са достатъчни, за да научите как да намирате производната на всяка експоненциална функция, а не само на експоненти (забравили ли сте вече какво е това?).

И така, къде е някакво число.

Вече знаем производната на функцията, така че нека се опитаме да намалим нашата функция до нова основа:

За целта ще използваме едно просто правило: . Тогава:

Е, проработи. Сега опитайте да намерите производната и не забравяйте, че тази функция е сложна.

Се случи?

Ето, проверете сами:

Формулата се оказа много подобна на производната на експонента: както беше, остава същата, само се появи фактор, който е просто число, но не и променлива.

Примери:
Намерете производните на функциите:

Отговори:

Това е просто число, което не може да се изчисли без калкулатор, тоест не може да се запише в по-прост вид. Затова го оставяме в този вид в отговора.

    Имайте предвид, че тук е частното на две функции, така че прилагаме съответното правило за диференциране:

    В този пример продуктът на две функции:

Производна на логаритмична функция

Тук е подобно: вече знаете производната на естествения логаритъм:

Следователно, за да намерите произволен логаритъм с различна основа, например:

Трябва да намалим този логаритъм до основата. Как се променя основата на логаритъм? Надявам се, че помните тази формула:

Само сега вместо това ще напишем:

Знаменателят е просто константа (постоянно число, без променлива). Производната се получава много просто:

Производни на експоненциални и логаритмични функции почти никога не се срещат в Единния държавен изпит, но няма да е излишно да ги знаете.

Производна на сложна функция.

Какво е "сложна функция"? Не, това не е логаритъм и не е арктангенс. Тези функции могат да бъдат трудни за разбиране (въпреки че ако намирате логаритъма за труден, прочетете темата „Логаритми“ и ще се оправите), но от математическа гледна точка думата „комплексен“ не означава „труден“.

Представете си малка конвейерна лента: двама души седят и извършват някакви действия с някакви предмети. Например, първият увива шоколадово блокче в обвивка, а вторият го завързва с панделка. Резултатът е съставен обект: шоколадово блокче, увито и завързано с панделка. За да изядете блокче шоколад, трябва да направите обратните стъпки в обратен ред.

Нека създадем подобен математически конвейер: първо ще намерим косинуса на число и след това ще повдигнем на квадрат полученото число. И така, получаваме число (шоколад), аз намирам неговия косинус (обвивка), а след това вие повдигате на квадрат полученото (завързвате го с панделка). Какво стана? функция. Това е пример за сложна функция: когато, за да намерим нейната стойност, извършваме първото действие директно с променливата и след това второ действие с това, което е резултат от първото.

С други думи, сложна функция е функция, чийто аргумент е друга функция: .

За нашия пример,.

Можем лесно да направим същите стъпки в обратен ред: първо го повдигате на квадрат, а аз след това търся косинуса на полученото число: . Лесно е да се досетите, че резултатът почти винаги ще бъде различен. Важна характеристика на сложните функции: когато редът на действията се промени, функцията се променя.

Втори пример: (същото нещо). .

Действието, което извършваме последно, ще бъде извикано "външна" функция, а първо извършеното действие - съотв "вътрешна" функция(това са неофициални имена, използвам ги само за да обясня материала на прост език).

Опитайте се да определите сами коя функция е външна и коя вътрешна:

Отговори:Разделянето на вътрешни и външни функции е много подобно на промяната на променливи: например във функция

  1. Какво действие ще извършим първо? Първо, нека изчислим синуса и едва след това го кубираме. Това означава, че това е вътрешна функция, но външна.
    И първоначалната функция е тяхната композиция: .
  2. Вътрешен: ; външен: .
    Преглед: .
  3. Вътрешен: ; външен: .
    Преглед: .
  4. Вътрешен: ; външен: .
    Преглед: .
  5. Вътрешен: ; външен: .
    Преглед: .

Променяме променливи и получаваме функция.

Е, сега ще извлечем нашето шоколадово блокче и ще потърсим производната. Процедурата винаги е обратна: първо търсим производната на външната функция, след това умножаваме резултата по производната на вътрешната функция. По отношение на оригиналния пример изглежда така:

Друг пример:

И така, нека най-накрая формулираме официалното правило:

Алгоритъм за намиране на производната на сложна функция:

Изглежда просто, нали?

Нека проверим с примери:

Решения:

1) Вътрешен: ;

Външен: ;

2) Вътрешен: ;

(Само не се опитвайте да го отрежете досега! Нищо не излиза изпод косинуса, помните ли?)

3) Вътрешен: ;

Външен: ;

Веднага става ясно, че това е сложна функция на три нива: в крайна сметка това вече е сложна функция сама по себе си и ние също извличаме корена от нея, тоест извършваме третото действие (поставете шоколада в обвивка и с панделка в куфарчето). Но няма причина да се страхувате: ние все пак ще „разопаковаме“ тази функция в същия ред, както обикновено: от края.

Тоест, първо диференцираме корена, след това косинуса и едва след това израза в скоби. И след това умножаваме всичко.

В такива случаи е удобно действията да се номерират. Тоест нека си представим това, което знаем. В какъв ред ще извършим действия за изчисляване на стойността на този израз? Да разгледаме един пример:

Колкото по-късно се извърши действието, толкова по-„външна“ ще бъде съответната функция. Последователността на действията е същата като преди:

Тук гнезденето обикновено е 4-степенно. Да определим хода на действие.

1. Радикален израз. .

2. Корен. .

3. Синус. .

4. Квадрат. .

5. Събираме всичко заедно:

ПРОИЗВОДНО. НАКРАТКО ЗА ГЛАВНОТО

Производна на функция- отношението на нарастването на функцията към увеличението на аргумента за безкрайно малко увеличение на аргумента:

Основни производни:

Правила за диференциация:

Константата се изважда от знака за производна:

Производна на сумата:

Производно на продукта:

Производна на коефициента:

Производна на сложна функция:

Алгоритъм за намиране на производната на сложна функция:

  1. Дефинираме „вътрешната“ функция и намираме нейната производна.
  2. Дефинираме „външната“ функция и намираме нейната производна.
  3. Умножаваме резултатите от първа и втора точка.

Функциите от сложен тип не винаги отговарят на определението за сложна функция. Ако има функция от вида y = sin x - (2 - 3) · a r c t g x x 5 7 x 10 - 17 x 3 + x - 11, тогава тя не може да се счита за сложна, за разлика от y = sin 2 x.

Тази статия ще покаже концепцията за сложна функция и нейната идентификация. Нека работим с формули за намиране на производната с примери за решения в заключението. Използването на таблицата за производни и правилата за диференциране значително намалява времето за намиране на производната.

Основни определения

Определение 1

Сложна функция е тази, чийто аргумент също е функция.

Означава се така: f (g (x)). Имаме, че функцията g (x) се счита за аргумент f (g (x)).

Определение 2

Ако има функция f и тя е функция котангенс, тогава g(x) = ln x е функцията натурален логаритъм. Откриваме, че комплексната функция f (g (x)) ще бъде записана като arctg(lnx). Или функция f, която е функция, повдигната на 4-та степен, където g (x) = x 2 + 2 x - 3 се счита за цяла рационална функция, получаваме, че f (g (x)) = (x 2 + 2 x - 3) 4 .

Очевидно g(x) може да бъде комплексно. От примера y = sin 2 x + 1 x 3 - 5 става ясно, че стойността на g има корен кубичен от дробта. Този израз може да се означи като y = f (f 1 (f 2 (x))). Откъдето имаме, че f е синусова функция и f 1 е функция, разположена под корен квадратен, f 2 (x) = 2 x + 1 x 3 - 5 е дробна рационална функция.

Определение 3

Степента на вложеност се определя от всяко естествено число и се записва като y = f (f 1 (f 2 (f 3 (. . . (f n (x)))))) .

Определение 4

Концепцията за композиция на функции се отнася до броя на вложените функции според условията на проблема. За да решите, използвайте формулата за намиране на производната на сложна функция от формата

(f (g (x))) " = f " (g (x)) g " (x)

Примери

Пример 1

Намерете производната на сложна функция от вида y = (2 x + 1) 2.

Решение

Условието показва, че f е функция за повдигане на квадрат и g(x) = 2 x + 1 се счита за линейна функция.

Нека приложим формулата за производна за сложна функция и напишем:

f " (g (x)) = ((g (x)) 2) " = 2 (g (x)) 2 - 1 = 2 g (x) = 2 (2 x + 1) ; g " (x) = (2 x + 1) " = (2 x) " + 1 " = 2 x " + 0 = 2 1 x 1 - 1 = 2 ⇒ (f (g (x))) " = f " (g (x)) g " (x) = 2 (2 x + 1) 2 = 8 x + 4

Необходимо е да се намери производната с опростена оригинална форма на функцията. Получаваме:

y = (2 x + 1) 2 = 4 x 2 + 4 x + 1

Оттук нататък имаме това

y " = (4 x 2 + 4 x + 1) " = (4 x 2) " + (4 x) " + 1 " = 4 (x 2) " + 4 (x) " + 0 = = 4 · 2 · x 2 - 1 + 4 · 1 · x 1 - 1 = 8 x + 4

Резултатите бяха същите.

При решаването на задачи от този тип е важно да се разбере къде ще се намира функцията на формата f и g (x).

Пример 2

Трябва да намерите производните на сложни функции във формата y = sin 2 x и y = sin x 2.

Решение

Първата нотация на функцията казва, че f е функцията за повдигане на квадрат, а g(x) е функцията синус. Тогава разбираме това

y " = (sin 2 x) " = 2 sin 2 - 1 x (sin x) " = 2 sin x cos x

Вторият запис показва, че f е синусова функция, а g(x) = x 2 означава степенна функция. От това следва, че записваме произведението на сложна функция като

y " = (sin x 2) " = cos (x 2) (x 2) " = cos (x 2) 2 x 2 - 1 = 2 x cos (x 2)

Формулата за производната y = f (f 1 (f 2 (f 3 (. . . (f n (x))))) ще бъде написана като y " = f " (f 1 (f 2 (f 3 (. . ))) )) · . . . fn "(x)

Пример 3

Намерете производната на функцията y = sin (ln 3 a r c t g (2 x)).

Решение

Този пример показва трудността при писане и определяне на местоположението на функциите. Тогава y = f (f 1 (f 2 (f 3 (f 4 (x))))) означава, където f , f 1 , f 2 , f 3 , f 4 (x) е синусовата функция, функцията за повишаване до 3 степен, функция с логаритъм и основа e, арктангенс и линейна функция.

От формулата за дефиниране на сложна функция имаме това

y " = f " (f 1 (f 2 (f 3 (f 4 (x)))) f 1 " (f 2 (f 3 (f 4 (x)))) f 2 " (f 3 (f 4) (x)) f 3 " (f 4 (x)) f 4 " (x)

Получаваме това, което трябва да намерим

  1. f " (f 1 (f 2 (f 3 (f 4 (x))))) като производна на синуса според таблицата с производни, след това f " (f 1 (f 2 (f 3 (f 4 ( x)))) ) = cos (ln 3 a r c t g (2 x)) .
  2. f 1 " (f 2 (f 3 (f 4 (x)))) като производна на степенна функция, тогава f 1 " (f 2 (f 3 (f 4 (x)))) = 3 ln 3 - 1 a r c t g (2 x) = 3 ln 2 a r c t g (2 x) .
  3. f 2 " (f 3 (f 4 (x))) като логаритмична производна, тогава f 2 " (f 3 (f 4 (x))) = 1 a r c t g (2 x) .
  4. f 3 " (f 4 (x)) като производна на арктангенса, тогава f 3 " (f 4 (x)) = 1 1 + (2 x) 2 = 1 1 + 4 x 2.
  5. Когато намирате производната f 4 (x) = 2 x, премахнете 2 от знака на производната, като използвате формулата за производна на степенна функция с показател, равен на 1, след което f 4 " (x) = (2 x) " = 2 x " = 2 · 1 · x 1 - 1 = 2 .

Комбинираме междинните резултати и получаваме това

y " = f " (f 1 (f 2 (f 3 (f 4 (x)))) f 1 " (f 2 (f 3 (f 4 (x)))) f 2 " (f 3 (f 4) (x)) f 3 " (f 4 (x)) f 4 " (x) = = cos (ln 3 a r c t g (2 x)) 3 ln 2 a r c t g (2 x) 1 a r c t g (2 x) 1 1 + 4 x 2 2 = = 6 cos (ln 3 a r c t g (2 x)) ln 2 a r c t g (2 x) a r c t g (2 x) (1 + 4 x 2)

Анализът на такива функции напомня на кукли за гнездене. Правилата за диференциация не винаги могат да се прилагат изрично с помощта на производна таблица. Често трябва да използвате формула за намиране на производни на сложни функции.

Има някои разлики между сложния външен вид и сложните функции. С ясна способност да разграничите това, намирането на производни ще бъде особено лесно.

Пример 4

Необходимо е да се обмисли даването на такъв пример. Ако има функция от формата y = t g 2 x + 3 t g x + 1, тогава тя може да се разглежда като сложна функция от формата g (x) = t g x, f (g) = g 2 + 3 g + 1 . Очевидно е необходимо да се използва формулата за сложна производна:

f " (g (x)) = (g 2 (x) + 3 g (x) + 1) " = (g 2 (x)) " + (3 g (x)) " + 1 " = = 2 · g 2 - 1 (x) + 3 g " (x) + 0 = 2 g (x) + 3 1 g 1 - 1 (x) = = 2 g (x) + 3 = 2 t g x + 3 ; g " (x) = (t g x) " = 1 cos 2 x ⇒ y " = (f (g (x))) " = f " (g (x)) g " (x) = (2 t g x + 3 ) · 1 cos 2 x = 2 t g x + 3 cos 2 x

Функция под формата y = t g x 2 + 3 t g x + 1 не се счита за сложна, тъй като има сумата от t g x 2, 3 t g x и 1. Въпреки това, t g x 2 се счита за сложна функция, тогава получаваме степенна функция от вида g (x) = x 2 и f, която е допирателна функция. За да направите това, диференцирайте по количество. Разбираме това

y " = (t g x 2 + 3 t g x + 1) " = (t g x 2) " + (3 t g x) " + 1 " = = (t g x 2) " + 3 (t g x) " + 0 = (t g x 2) " + 3 cos 2 x

Нека да преминем към намиране на производната на сложна функция (t g x 2) ":

f " (g (x)) = (t g (g (x))) " = 1 cos 2 g (x) = 1 cos 2 (x 2) g " (x) = (x 2) " = 2 x 2 - 1 = 2 x ⇒ (t g x 2) " = f " (g (x)) g " (x) = 2 x cos 2 (x 2)

Получаваме, че y " = (t g x 2 + 3 t g x + 1) " = (t g x 2) " + 3 cos 2 x = 2 x cos 2 (x 2) + 3 cos 2 x

Функциите от сложен тип могат да бъдат включени в сложни функции, а самите сложни функции могат да бъдат компоненти на функции от сложен тип.

Пример 5

Например, разгледайте сложна функция от формата y = log 3 x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 + ln 2 x (x 2 + 1)

Тази функция може да бъде представена като y = f (g (x)), където стойността на f е функция на логаритъм с основа 3, а g (x) се счита за сумата от две функции във формата h (x) = x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 и k (x) = ln 2 x · (x 2 + 1) . Очевидно y = f (h (x) + k (x)).

Да разгледаме функцията h(x). Това е отношението l (x) = x 2 + 3 cos 3 (2 x + 1) + 7 към m (x) = e x 2 + 3 3

Имаме, че l (x) = x 2 + 3 cos 2 (2 x + 1) + 7 = n (x) + p (x) е сумата от две функции n (x) = x 2 + 7 и p ( x) = 3 cos 3 (2 x + 1) , където p (x) = 3 p 1 (p 2 (p 3 (x))) е комплексна функция с числов коефициент 3, а p 1 е кубична функция, p 2 чрез косинусова функция, p 3 (x) = 2 x + 1 чрез линейна функция.

Открихме, че m (x) = e x 2 + 3 3 = q (x) + r (x) е сумата от две функции q (x) = e x 2 и r (x) = 3 3, където q (x) = q 1 (q 2 (x)) е сложна функция, q 1 е експоненциална функция, q 2 (x) = x 2 е степенна функция.

Това показва, че h (x) = l (x) m (x) = n (x) + p (x) q (x) + r (x) = n (x) + 3 p 1 (p 2 ( p 3 (x))) q 1 (q 2 (x)) + r (x)

Когато се премине към израз на формата k (x) = ln 2 x · (x 2 + 1) = s (x) · t (x), е ясно, че функцията е представена под формата на комплекс s ( x) = ln 2 x = s 1 ( s 2 (x)) с цяло рационално число t (x) = x 2 + 1, където s 1 е квадратна функция, а s 2 (x) = ln x е логаритмична с база e.

От това следва, че изразът ще приеме формата k (x) = s (x) · t (x) = s 1 (s 2 (x)) · t (x).

Тогава разбираме това

y = log 3 x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 + ln 2 x (x 2 + 1) = = f n (x) + 3 p 1 (p 2 (p 3 ( x))) q 1 (q 2 (x)) = r (x) + s 1 (s 2 (x)) t (x)

Въз основа на структурите на функцията стана ясно как и какви формули трябва да се използват за опростяване на израза при диференцирането му. За да се запознаете с такива проблеми и за концепцията за тяхното решение, е необходимо да се обърнете към точката на диференциране на функция, тоест намиране на нейната производна.

Ако забележите грешка в текста, моля, маркирайте я и натиснете Ctrl+Enter