كيفية حل المعادلات المثلثية مع الجذور. التخفيض إلى معادلة متجانسة

يتم حل أبسط المعادلات المثلثية، كقاعدة عامة، باستخدام الصيغ. دعني أذكرك أن أبسط المعادلات المثلثية هي:

سينكس = أ

كوسكس = أ

تغكس = أ

ctgx = أ

x هي الزاوية التي سيتم العثور عليها،
a هو أي رقم.

وإليك الصيغ التي يمكنك من خلالها كتابة حلول أبسط المعادلات على الفور.

لجيب:


لجيب التمام:

x = ± arccos a + 2π n, n ∈ Z


للظل:

x = قطبي a + π n, n ∈ Z


لظل التمام:

x = arcctg a + π n, n ∈ Z

في الواقع، هذا هو الجزء النظري لحل أبسط المعادلات المثلثية. علاوة على ذلك، كل شيء!) لا شيء على الإطلاق. ومع ذلك، فإن عدد الأخطاء في هذا الموضوع هو ببساطة خارج المخططات. خاصة إذا كان المثال ينحرف قليلاً عن القالب. لماذا؟

نعم، لأن الكثير من الناس يكتبون هذه الرسائل، دون أن نفهم معناها على الإطلاق!إنه يكتب بحذر، خشية أن يحدث شيء ما...) يجب حل هذا الأمر. علم المثلثات للناس، أو الناس لعلم المثلثات، بعد كل شيء!؟)

دعونا معرفة ذلك؟

زاوية واحدة ستكون مساوية ل أركوس أ, ثانية: -اركوس أ.

وسوف تعمل دائما بهذه الطريقة.لأي أ.

إذا كنت لا تصدقني، قم بتمرير مؤشر الماوس فوق الصورة، أو المس الصورة الموجودة على جهازك اللوحي.) لقد قمت بتغيير الرقم أ إلى شيء سلبي. على أية حال، حصلنا على زاوية واحدة أركوس أ, ثانية: -اركوس أ.

ولذلك، يمكن دائمًا كتابة الإجابة على شكل سلسلتين من الجذور:

x 1 = arccos a + 2π n, n ∈ Z

x 2 = - arccos a + 2π n, n ∈ Z

دعونا ندمج هاتين السلسلتين في سلسلة واحدة:

x= ± arccos a + 2π n, n ∈ Z

و هذا كل شيء. لقد حصلنا على صيغة عامة لحل أبسط معادلة مثلثية باستخدام جيب التمام.

إذا فهمت أن هذه ليست بعض الحكمة العلمية الفائقة، ولكن مجرد نسخة مختصرة من سلسلتين من الإجابات،ستتمكن أيضًا من التعامل مع المهام "ج". مع عدم المساواة، مع اختيار الجذور من فترة معينة... هناك الإجابة مع زائد/ناقص لا تعمل. ولكن إذا تعاملت مع الإجابة بطريقة عملية وقسمتها إلى إجابتين منفصلتين، فسيتم حل كل شيء.) في الواقع، هذا هو سبب بحثنا في الأمر. ماذا وكيف وأين.

في أبسط معادلة مثلثية

سينكس = أ

نحصل أيضًا على سلسلتين من الجذور. دائماً. ويمكن أيضًا تسجيل هاتين السلسلتين في سطر واحد. فقط هذا الخط سيكون أكثر تعقيدًا:

x = (-1) n قوسسين a + π n, n ∈ Z

لكن الجوهر يبقى كما هو. لقد صمم علماء الرياضيات ببساطة صيغة لإنشاء إدخال واحد بدلاً من إدخالين لسلسلة من الجذور. هذا كل شئ!

دعونا نتحقق من علماء الرياضيات؟ ولا تعلمون...)

في الدرس السابق، تمت مناقشة الحل (بدون أي صيغ) للمعادلة المثلثية مع الجيب بالتفصيل:

نتج عن الجواب سلسلتين من الجذور:

س 1 = π /6 + 2π n, n ∈ Z

× 2 = 5π /6 + 2π n, n ∈ Z

إذا حللنا نفس المعادلة باستخدام الصيغة، فسنحصل على الجواب:

x = (-1) n قوسسين 0.5 + π n, n ∈ Z

في الواقع، هذه إجابة غير مكتملة.) يجب أن يعرف الطالب ذلك أركسين 0.5 = π /6.الجواب الكامل سيكون:

س = (-1)ن π /6+ π ن، ن ∈ ض

وهذا يثير مسألة مثيرة للاهتمام. الرد عبر × 1؛ × 2 (هذه هي الإجابة الصحيحة!) ومن خلال وحيدا X (وهذه هي الإجابة الصحيحة!) - هل هما نفس الشيء أم لا؟ سنكتشف ذلك الآن.)

نعوض في الجواب ب × 1 قيم ن =0; 1؛ 2؛ وما إلى ذلك، نحسب، نحصل على سلسلة من الجذور:

س 1 = π/6; 13π/6; 25π/6 وما إلى ذلك وهلم جرا.

مع نفس الاستبدال في الرد مع × 2 ، نحن نحصل:

س 2 = 5π/6; 17π/6; 29π/6 وما إلى ذلك وهلم جرا.

الآن دعونا نستبدل القيم ن (0؛ 1؛ 2؛ 3؛ 4...) في الصيغة العامة للمفرد X . أي أننا نرفع سالب واحد إلى الأس صفر، ثم إلى الأول فالثاني، وهكذا. حسنًا، بالطبع، نعوض بـ 0 في الحد الثاني؛ 1؛ 2 3; 4، الخ. ونحن نحسب. نحصل على السلسلة:

س = π/6; 5π/6; 13π/6; 17π/6; 25π/6 وما إلى ذلك وهلم جرا.

هذا كل ما يمكنك رؤيته.) الصيغة العامة تعطينا بالضبط نفس النتائجكما هو الحال مع الإجابتين بشكل منفصل. فقط كل شيء دفعة واحدة، بالترتيب. لم ينخدع علماء الرياضيات.)

يمكن أيضًا التحقق من صيغ حل المعادلات المثلثية ذات الظل وظل التمام. لكننا لن نفعل ذلك.) إنها بسيطة بالفعل.

لقد كتبت كل هذا الاستبدال والتحقق على وجه التحديد. من المهم هنا أن نفهم شيئًا واحدًا بسيطًا: هناك صيغ لحل المعادلات المثلثية الأولية، مجرد ملخص قصير للإجابات.لهذا الإيجاز، كان علينا إدراج علامة زائد/ناقص في محلول جيب التمام و(-1) n في محلول الجيب.

لا تتداخل هذه الإدخالات بأي شكل من الأشكال في المهام التي تحتاج فيها فقط إلى كتابة إجابة المعادلة الأولية. ولكن إذا كنت بحاجة إلى حل متباينة، أو كنت بحاجة إلى القيام بشيء ما مع الإجابة: تحديد الجذور على فترة ما، والتحقق من وجود ODZ، وما إلى ذلك، فإن هذه الإدخالات يمكن أن تزعج الشخص بسهولة.

اذا ماذا يجب أن أفعل؟ نعم، إما أن تكتب الإجابة في سلسلتين، أو تحل المعادلة/المتباينة باستخدام الدائرة المثلثية. ثم تختفي هذه الإدخالات وتصبح الحياة أسهل.)

يمكننا أن نلخص.

لحل أبسط المعادلات المثلثية، هناك صيغ إجابات جاهزة. أربع قطع. إنها جيدة لكتابة حل المعادلة على الفور. على سبيل المثال، تحتاج إلى حل المعادلات:


سينكس = 0.3

بسهولة: x = (-1) n قوسسين 0.3 + π n, n ∈ Z


كوزكس = 0.2

لا مشكلة: س = ± قوس 0.2 + 2π n, n ∈ Z


تغكس = 1.2

بسهولة: x = القطب الشمالي 1,2 + π n, n ∈ Z


كجتكس = 3.7

بقيت واحده: x= arcctg3,7 + π n, n ∈ Z

كوس س = 1.8

إذا كنت تتألق بالمعرفة، فاكتب الإجابة على الفور:

س= ± قوس 1.8 + 2π n, n ∈ Z

فأنت تتألق بالفعل، هذا... ذلك... من بركة.) الإجابة الصحيحة: لا توجد حلول. لا أفهم لماذا؟ اقرأ ما هو قوس جيب التمام. بالإضافة إلى ذلك، إذا كانت هناك قيم جدولية للجيب، وجيب التمام، والظل، وظل التمام، على الجانب الأيمن من المعادلة الأصلية، - 1; 0; √3; 1/2; √3/2 وما إلى ذلك وهلم جرا. - الجواب من خلال الأقواس لن يكتمل. يجب تحويل الأقواس إلى راديان.

وإذا واجهت عدم المساواة، مثل

فالجواب هو:

س πn، ن ∈ Z

هناك هراء نادر، نعم...) هنا تحتاج إلى الحل باستخدام الدائرة المثلثية. ماذا سنفعل في الموضوع المقابل.

لأولئك الذين قرأوا ببطولة هذه السطور. أنا ببساطة لا أستطيع إلا أن أقدر جهودك الجبارة. مكافأة لك.)

علاوة:

عند كتابة الصيغ في موقف قتالي مثير للقلق، فحتى المهووسين المتمرسين غالبًا ما يرتبكون بشأن المكان πن, و أين 2π ن. إليك خدعة بسيطة لك. في الجميعالصيغ تستحق ن. باستثناء الصيغة الوحيدة مع جيب التمام القوسي. انها تقف هناك 2πn. اثنين peen. الكلمة الرئيسية - اثنين.في هذه الصيغة نفسها هناك اثنينالتوقيع في البداية. زائد وناقص. هنا وهناك - اثنين.

لذلك إذا كتبت اثنينقم بالتوقيع قبل قوس جيب التمام، فمن الأسهل أن تتذكر ما سيحدث في النهاية اثنين peen. ويحدث العكس. سوف يفتقد الشخص العلامة ± ، يصل إلى النهاية، يكتب بشكل صحيح اثنين Pien، وسوف يأتي إلى رشده. هناك شيء في المستقبل اثنينلافتة! سيعود الشخص إلى البداية ويصحح الخطأ! مثله.)

إذا أعجبك هذا الموقع...

بالمناسبة، لدي موقعين أكثر إثارة للاهتمام بالنسبة لك.)

يمكنك التدرب على حل الأمثلة ومعرفة مستواك. الاختبار مع التحقق الفوري. دعونا نتعلم - باهتمام!)

يمكنك التعرف على الوظائف والمشتقات.

عند حل الكثير المشاكل الرياضيةوخاصة تلك التي تحدث قبل الصف العاشر، فإن ترتيب الإجراءات التي يتم تنفيذها والتي ستؤدي إلى الهدف محدد بوضوح. وتشمل هذه المشاكل، على سبيل المثال، المعادلات الخطية والتربيعية، والمتباينات الخطية والتربيعية، والمعادلات الكسرية والمعادلات التي يتم اختزالها إلى معادلات تربيعية. مبدأ حل كل من المشاكل المذكورة بنجاح هو كما يلي: تحتاج إلى تحديد نوع المشكلة التي تحلها، وتذكر التسلسل الضروري للإجراءات التي ستؤدي إلى النتيجة المرجوة، أي. قم بالإجابة واتبع هذه الخطوات.

من الواضح أن النجاح أو الفشل في حل مشكلة معينة يعتمد بشكل أساسي على مدى صحة تحديد نوع المعادلة التي يتم حلها، ومدى صحة إعادة إنتاج تسلسل جميع مراحل حلها. بالطبع، في هذه الحالة من الضروري أن تكون لديك المهارات اللازمة لإجراء تحويلات وحسابات متطابقة.

الوضع مختلف مع المعادلات المثلثية.ليس من الصعب على الإطلاق إثبات حقيقة أن المعادلة مثلثية. تنشأ الصعوبات عند تحديد تسلسل الإجراءات التي من شأنها أن تؤدي إلى الإجابة الصحيحة.

ويصعب أحيانًا تحديد نوعه بناءً على مظهر المعادلة. وبدون معرفة نوع المعادلة، يكاد يكون من المستحيل اختيار المعادلة الصحيحة من بين عشرات الصيغ المثلثية.

لحل معادلة مثلثية، عليك تجربة ما يلي:

1. جلب جميع الدوال المتضمنة في المعادلة إلى "نفس الزوايا"؛
2. تحويل المعادلة إلى "دوال متطابقة"؛
3. عامل الجانب الأيسر من المعادلة، وما إلى ذلك.

دعونا نفكر الطرق الأساسية لحل المعادلات المثلثية.

I. الاختزال إلى أبسط المعادلات المثلثية

مخطط الحل

الخطوة 1.التعبير عن دالة مثلثية بدلالة المركبات المعروفة.

الخطوة 2.ابحث عن وسيطة الوظيفة باستخدام الصيغ:

كوس س = أ؛ x = ±arccos a + 2πn, n ЄZ.

الخطيئة س = أ؛ x = (-1) n قوسسين a + πn، n Є Z.

تان س = أ؛ x = القطب الشمالي a + πn, n Є Z.

ctg x = a; x = arcctg a + πn, n Є Z.

الخطوه 3.ابحث عن المتغير المجهول.

مثال.

2 cos(3x – π/4) = -√2.

حل.

1) cos(3x – π/4) = -√2/2.

2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z;

3x – π/4 = ±3π/4 + 2πn, n Є Z.

3) 3x = ±3π/4 + π/4 + 2πn, nЄZ;

س = ±3π/12 + π/12 + 2πn/3, nЄZ;

س = ±π/4 + π/12 + 2πn/3, nЄZ.

الإجابة: ±π/4 + π/12 + 2πn/3, nЄZ.

ثانيا. استبدال متغير

مخطط الحل

الخطوة 1.اختزل المعادلة إلى الصورة الجبرية فيما يتعلق بإحدى الدوال المثلثية.

الخطوة 2.قم بالإشارة إلى الوظيفة الناتجة بواسطة المتغير t (إذا لزم الأمر، ضع قيودًا على t).

الخطوه 3.اكتب وحل المعادلة الجبرية الناتجة.

الخطوة 4.قم بإجراء استبدال عكسي.

الخطوة 5.حل أبسط معادلة مثلثية.

مثال.

2cos 2 (x/2) – 5sin (x/2) – 5 = 0.

حل.

1) 2(1 – الخطيئة 2 (س/2)) – 5الخطيئة (س/2) – 5 = 0;

2sin 2 (x/2) + 5sin (x/2) + 3 = 0.

2) دع الخطيئة (x/2) = t، حيث |t| ≥ 1.

3) 2ر 2 + 5ر + 3 = 0;

t = 1 أو e = -3/2، لا يحقق الشرط |t| ≥ 1.

4) خطيئة(س/2) = 1.

5) س/2 = π/2 + 2πn، n Є Z؛

س = π + 4πn، n Є Z.

الإجابة: x = π + 4πn، n Є Z.

ثالثا. طريقة تخفيض ترتيب المعادلة

مخطط الحل

الخطوة 1.استبدل هذه المعادلة بمعادلة خطية باستخدام صيغة تقليل الدرجة:

خطيئة 2 س = 1/2 · (1 - جتا 2س)؛

cos 2 x = 1/2 · (1 + cos 2x);

tg 2 x = (1 – cos 2x) / (1 + cos 2x).

الخطوة 2.حل المعادلة الناتجة باستخدام الطريقتين الأولى والثانية.

مثال.

كوس 2س + كوس 2 س = 5/4.

حل.

1) cos 2x + 1/2 · (1 + cos 2x) = 5/4.

2) cos 2x + 1/2 + 1/2 · cos 2x = 5/4؛

3/2 كوس 2س = 3/4؛

2x = ±π/3 + 2πn, nЄZ;

س = ±π/6 + πn, nЄZ.

الإجابة: x = ±π/6 + πn, nЄZ.

رابعا. المعادلات المتجانسة

مخطط الحل

الخطوة 1.تقليل هذه المعادلة إلى النموذج

أ) أ خطيئة س + ب جتا س = 0 (معادلة متجانسة من الدرجة الأولى)

أو إلى الرأي

ب) a sin 2 x + b sin x · cos x + c cos 2 x = 0 (معادلة متجانسة من الدرجة الثانية).

الخطوة 2.اقسم طرفي المعادلة على

أ) كوس س ≠ 0؛

ب) جتا 2 س ≠ 0؛

واحصل على معادلة tan x:

أ) تان س + ب = 0؛

ب) أ تان 2 س + ب القطب الشمالي س + ج = 0.

الخطوه 3.حل المعادلة باستخدام الطرق المعروفة.

مثال.

5sin 2 x + 3sin x cos x – 4 = 0.

حل.

1) 5sin 2 x + 3sin x · cos x – 4(sin 2 x + cos 2 x) = 0;

5sin 2 x + 3sin x · cos x – 4sin² x – 4cos 2 x = 0;

جا 2 س + 3 جا س · كوس س – 4كوس 2 × = 0/كوس 2 × ≠ 0.

2) تيراغرام 2 س + 3تيراغرام س – 4 = 0.

3) دع tg x = t، إذن

ر 2 + 3ت – 4 = 0;

ر = 1 أو ر = -4، وهو ما يعني

تيراغرام س = 1 أو تيراغرام س = -4.

من المعادلة الأولى x = π/4 + πn, n Є Z; من المعادلة الثانية x = -arctg 4 + πk، kЄ Z.

الجواب: س = π/4 + πn، n Є Z؛ س = -arctg 4 + πk، kЄ Z.

V. طريقة تحويل المعادلة باستخدام الصيغ المثلثية

مخطط الحل

الخطوة 1.باستخدام جميع الصيغ المثلثية الممكنة، اختزل هذه المعادلة إلى معادلة تم حلها بالطرق I، II، III، IV.

الخطوة 2.حل المعادلة الناتجة باستخدام الطرق المعروفة.

مثال.

خطيئة س + خطيئة 2س + خطيئة 3س = 0.

حل.

1) (الخطيئة س + الخطيئة 3س) + الخطيئة 2س = 0؛

2sin 2x cos x + sin 2x = 0.

2) خطيئة 2س (2كوس س + 1) = 0؛

خطيئة 2س = 0 أو 2كوس س + 1 = 0؛

من المعادلة الأولى 2x = π/2 + πn, n Є Z; من المعادلة الثانية cos x = -1/2.

لدينا x = π/4 + πn/2, n Є Z؛ من المعادلة الثانية x = ±(π – π/3) + 2πk, kЄZ.

ونتيجة لذلك، x = π/4 + πn/2, n Є Z; س = ±2π/3 + 2πك، ك، ض.

الإجابة: x = π/4 + πn/2, n Є Z; س = ±2π/3 + 2πك، ك، ض.

القدرة والمهارة على حل المعادلات المثلثية للغاية والأهم من ذلك أن تطويرها يتطلب جهدًا كبيرًا، سواء من جانب الطالب أو المعلم.

ترتبط العديد من مسائل القياس الفراغي والفيزياء وغيرها بحل المعادلات المثلثية، وتجسد عملية حل مثل هذه المسائل العديد من المعارف والمهارات التي يتم اكتسابها من خلال دراسة عناصر علم المثلثات.

تحتل المعادلات المثلثية مكانًا مهمًا في عملية تعلم الرياضيات والتنمية الشخصية بشكل عام.

لا تزال لديك أسئلة؟ لا أعرف كيفية حل المعادلات المثلثية؟
للحصول على مساعدة من المعلم -.
الدرس الأول مجاني!

blog.site، عند نسخ المادة كليًا أو جزئيًا، يلزم وجود رابط للمصدر الأصلي.

يمكنك طلب حل مفصل لمشكلتك!!!

المساواة التي تحتوي على مجهول تحت علامة الدالة المثلثية (`sin x، cos x، tan x` أو `ctg x`) تسمى معادلة مثلثية، وسننظر في صيغها بشكل أكبر.

أبسط المعادلات هي `sin x=a، cos x=a، tg x=a، ctg x=a`، حيث `x` هي الزاوية التي سيتم العثور عليها، و`a` هو أي رقم. دعونا نكتب الصيغ الجذرية لكل منها.

1. المعادلة `الخطيئة س=أ`.

بالنسبة إلى `|a|>1`، لا يوجد لها حلول.

عندما `|أ| \leq 1` يحتوي على عدد لا نهائي من الحلول.

صيغة الجذر: `x=(-1)^n arcsin a + \pi n, n \in Z`

2. المعادلة `cos x=a`

بالنسبة لـ `|a|>1` - كما في حالة جيب الجيب، ليس لها حلول بين الأعداد الحقيقية.

عندما `|أ| \leq 1` يحتوي على عدد لا نهائي من الحلول.

صيغة الجذر: `x=\pm arccos a + 2\pi n, n \in Z`

حالات خاصة للجيب وجيب التمام في الرسوم البيانية.

3. المعادلة `tg x=a`

لديه عدد لا نهائي من الحلول لأي قيم `a`.

صيغة الجذر: `x=arctg a + \pi n, n \in Z`

4. المعادلة `ctg x=a`

لديه أيضًا عدد لا نهائي من الحلول لأي قيم `a`.

صيغة الجذر: `x=arcctg a + \pi n, n \in Z`

صيغ جذور المعادلات المثلثية في الجدول

لجيب:
لجيب التمام:
بالنسبة للظل وظل التمام:
صيغ حل المعادلات التي تحتوي على دوال مثلثية عكسية:

طرق حل المعادلات المثلثية

حل أي معادلة مثلثية يتكون من مرحلتين:

  • وذلك بمساعدة تحويله إلى الأبسط؛
  • حل أبسط معادلة تم الحصول عليها باستخدام الصيغ الجذرية والجداول المكتوبة أعلاه.

دعونا نلقي نظرة على طرق الحل الرئيسية باستخدام الأمثلة.

الطريقة الجبرية.

تتضمن هذه الطريقة استبدال متغير واستبداله بالمساواة.

مثال. حل المعادلة: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 - x)+1=0`

`2cos^2(x+\frac \pi 6)-3cos(x+\frac \pi 6)+1=0`,

قم بالاستبدال: `cos(x+\frac \pi 6)=y`، ​​ثم `2y^2-3y+1=0`،

نجد الجذور: `y_1=1, y_2=1/2`، ويتبع منها حالتان:

1. `cos(x+\frac \pi 6)=1`, `x+\frac \pi 6=2\pi n`, `x_1=-\frac \pi 6+2\pi n`.

2. `cos(x+\frac \pi 6)=1/2`, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3- \frac \pi 6+2\pi n`.

الإجابة: `x_1=-\frac \pi 6+2\pi n`، `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

التخصيم.

مثال. حل المعادلة: `sin x+cos x=1`.

حل. لننقل جميع حدود المساواة إلى اليسار: `sin x+cos x-1=0`. باستخدام ، نقوم بتحويل وتحليل الجانب الأيسر:

`الخطيئة x - 2sin^2 x/2=0`،

`2sin x/2 cos x/2-2sin^2 x/2=0`،

`2سين x/2 (cos x/2-sin x/2)=0`،

  1. `الخطيئة x/2 =0`، `x/2 =\pi n`، `x_1=2\pi n`.
  2. `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ \pi n`, `x/2=\pi/4+ \pi n` , `x_2=\pi/2+ 2\pi n`.

الإجابة: `x_1=2\pi n`، `x_2=\pi/2+ 2\pi n`.

التخفيض إلى معادلة متجانسة

أولاً، عليك اختزال هذه المعادلة المثلثية إلى أحد الشكلين:

`a sin x+b cos x=0` (معادلة متجانسة من الدرجة الأولى) أو `a sin^2 x + b sin x cos x +c cos^2 x=0` (معادلة متجانسة من الدرجة الثانية).

ثم اقسم كلا الجزأين على `cos x \ne 0` - للحالة الأولى، وعلى `cos^2 x \ne 0` - للحالة الثانية. حصلنا على معادلات `tg x`: `a tg x+b=0` و`a tg^2 x + b tg x +c =0`، والتي تحتاج إلى حل باستخدام الطرق المعروفة.

مثال. حل المعادلة: `2 sin^2 x+sin x cos x - cos^2 x=1`.

حل. لنكتب الجانب الأيمن بالشكل `1=sin^2 x+cos^2 x`:

`2 الخطيئة^2 x+الخطيئة x cos x — cos^2 x=` `الخطيئة^2 x+cos^2 x`,

`2 الخطيئة^2 x+الخطيئة x cos x — cos^2 x -` ` الخطيئة^2 x — cos^2 x=0`

`الخطيئة^2 x+الخطيئة x cos x — 2 cos^2 x=0`.

هذه معادلة مثلثية متجانسة من الدرجة الثانية، نقسم طرفيها الأيمن والأيسر على `cos^2 x\ne 0`، فنحصل على:

`\frac (sin^2 x)(cos^2 x)+\frac(sin x cos x)(cos^2 x) — \frac(2 cos^2 x)(cos^2 x)=0`

`tg^2 x+tg x — 2=0`. دعنا نقدم الاستبدال `tg x=t`، مما يؤدي إلى `t^2 + t - 2=0`. جذور هذه المعادلة هي `t_1=-2` و`t_2=1`. ثم:

  1. `tg x=-2`, `x_1=arctg (-2)+\pi n`, `n \in Z`
  2. `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, ` n \in Z`.

إجابة. `x_1=arctg (-2)+\pi n`, `n \in Z`, `x_2=\pi/4+\pi n`, `n \in Z`.

الانتقال إلى نصف الزاوية

مثال. حل المعادلة: `11 sin x - 2 cos x = 10`.

حل. دعونا نطبق صيغ الزاوية المزدوجة، مما يؤدي إلى: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x /2 +10 كوس ^2 س/2`

`4 تيراغرام^2 س/2 — 11 تيراغرام س/2 +6=0`

وبتطبيق الطريقة الجبرية الموصوفة أعلاه نحصل على:

  1. `tg x/2=2`, `x_1=2 arctg 2+2\pi n`, `n \in Z`,
  2. `tg x/2=3/4`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

إجابة. `x_1=2 arctg 2+2\pi n, n \in Z`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

مقدمة من الزاوية المساعدة

في المعادلة المثلثية `a sin x + b cos x =c`، حيث a,b,c معاملات وx متغير، قسّم كلا الطرفين على `sqrt (a^2+b^2)`:

`\frac a(sqrt (a^2+b^2)) sin x +` `\frac b(sqrt (a^2+b^2)) cos x =` `\frac c(sqrt (a^2) ) +ب^2))`.

المعاملات الموجودة على الجانب الأيسر لها خصائص الجيب وجيب التمام، أي أن مجموع مربعاتها يساوي 1 ووحداتها ليست أكبر من 1. ولنرمز إليها كما يلي: `\frac a(sqrt (a^2) +b^2))=cos \varphi` , ` \frac b(sqrt (a^2+b^2)) =sin \varphi`, `\frac c(sqrt (a^2+b^2)) =C`، ثم:

`cos \varphi sin x + sin \varphi cos x =C`.

دعونا نلقي نظرة فاحصة على المثال التالي:

مثال. حل المعادلة: `3 sin x+4 cos x=2`.

حل. نقسم طرفي المساواة على `sqrt (3^2+4^2)`، نحصل على:

`\frac (3 sin x) (sqrt (3^2+4^2))+` `\frac(4 cos x)(sqrt (3^2+4^2))=` `\frac 2(sqrt) (3^2+4^2))`

`3/5 الخطيئة x+4/5 cos x=2/5`.

دعنا نشير إلى `3/5 = cos \varphi`، `4/5=sin \varphi`. بما أن `sin \varphi>0`، `cos \varphi>0`، فإننا نأخذ `\varphi=arcsin 4/5` كزاوية مساعدة. ثم نكتب المساواة لدينا في الشكل:

`cos \varphi sin x+sin \varphi cos x=2/5`

بتطبيق صيغة مجموع زوايا الجيب، نكتب مساواتنا بالشكل التالي:

`الخطيئة (x+\varphi)=2/5`،

`x+\varphi=(-1)^n arcsin 2/5+ \pi n`, `n \in Z`,

`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

إجابة. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

المعادلات المثلثية العقلانية الكسرية

هذه هي المساواة مع الكسور التي تحتوي بسطها ومقاماتها على دوال مثلثية.

مثال. حل المعادلة. `\frac (sin x)(1+cos x)=1-cos x`.

حل. اضرب واقسم الجانب الأيمن من المساواة على `(1+cos x)`. ونتيجة لذلك نحصل على:

`\frac (sin x)(1+cos x)=` `\frac ((1-cos x)(1+cos x))(1+cos x)`

`\frac (sin x)(1+cos x)=` `\frac (1-cos^2 x)(1+cos x)`

`\frac (sin x)(1+cos x)=` `\frac (sin^2 x)(1+cos x)`

`\frac (sin x)(1+cos x)-` `\frac (sin^2 x)(1+cos x)=0`

`\frac (sin x-sin^2 x)(1+cos x)=0`

بالنظر إلى أن المقام لا يمكن أن يساوي الصفر، نحصل على `1+cos x \ne 0`, `cos x \ne -1`, ` x \ne \pi+2\pi n, n \in Z`.

دعونا نساوي بسط الكسر بالصفر: `sin x-sin^2 x=0`، `sin x(1-sin x)=0`. ثم `sin x=0` أو `1-sin x=0`.

  1. `sin x=0`, `x=\pi n`, `n \in Z`
  2. `1-sin x=0`, `sin x=-1`, `x=\pi /2+2\pi n, n \in Z`.

بالنظر إلى أن ` x \ne \pi+2\pi n, n \in Z`، الحلول هي `x=2\pi n, n \in Z` و `x=\pi /2+2\pi n` ، `ن \في Z`.

إجابة. `x=2\pi n`, `n \in Z`, `x=\pi /2+2\pi n`, `n \in Z`.

يُستخدم علم المثلثات، والمعادلات المثلثية على وجه الخصوص، في جميع مجالات الهندسة والفيزياء والهندسة تقريبًا. تبدأ الدراسة في الصف العاشر، وهناك دائمًا مهام لامتحان الدولة الموحدة، لذا حاول أن تتذكر جميع صيغ المعادلات المثلثية - فهي بالتأكيد ستكون مفيدة لك!

ومع ذلك، لا تحتاج حتى إلى حفظها، والشيء الرئيسي هو فهم الجوهر والقدرة على استخلاصه. انها ليست صعبة كما يبدو. شاهد بنفسك من خلال مشاهدة الفيديو.

يتطلب معرفة الصيغ الأساسية لعلم المثلثات - مجموع مربعات الجيب وجيب التمام، والتعبير عن الظل من خلال الجيب وجيب التمام، وغيرها. لمن نسيها أو لا يعرفها ننصح بقراءة المقال "".
لذلك، نحن نعرف الصيغ المثلثية الأساسية، وحان الوقت لاستخدامها في الممارسة العملية. حل المعادلات المثلثيةباستخدام النهج الصحيح، يصبح هذا نشاطًا مثيرًا للغاية، مثل حل مكعب روبيك على سبيل المثال.

ومن الاسم نفسه يتضح أن المعادلة المثلثية هي معادلة يكون فيها المجهول تحت إشارة الدالة المثلثية.
هناك ما يسمى بأبسط المعادلات المثلثية. هذا هو شكلها: sinx = a، cos x = a، tan x = a. دعونا نفكر كيفية حل مثل هذه المعادلات المثلثية، من أجل الوضوح سوف نستخدم الدائرة المثلثية المألوفة بالفعل.

سينكس = أ

كوس س = أ

تان س = أ

سرير س = أ

يتم حل أي معادلة مثلثية على مرحلتين: نختصر المعادلة إلى أبسط صورة ثم نحلها كمعادلة مثلثية بسيطة.
هناك 7 طرق رئيسية يتم من خلالها حل المعادلات المثلثية.

  1. الاستبدال المتغير وطريقة الاستبدال

  2. حل المعادلة 2cos 2 (x + /6) – 3sin( /3 – x) +1 = 0

    باستخدام صيغ التخفيض نحصل على:

    2cos 2 (س + /6) – 3cos(x + /6) +1 = 0

    استبدل cos(x + /6) بـ y للتبسيط والحصول على المعادلة التربيعية المعتادة:

    2ص 2 - 3ص + 1 + 0

    جذورها هي ص 1 = 1، ص 2 = 1/2

    الآن دعنا نذهب بترتيب عكسي

    نستبدل قيم y التي تم العثور عليها ونحصل على خيارين للإجابة:

  3. حل المعادلات المثلثية من خلال التحليل

  4. كيف تحل المعادلة sin x + cos x = 1؟

    دعنا ننقل كل شيء إلى اليسار بحيث يبقى 0 على اليمين:

    خطيئة س + كوس س – 1 = 0

    دعونا نستخدم الهويات التي تمت مناقشتها أعلاه لتبسيط المعادلة:

    الخطيئة س - 2 الخطيئة 2 (س/2) = 0

    دعونا نحلل:

    2خطيئة(س/2) * جتا(س/2) - 2 خطيئة 2 (س/2) = 0

    2sin(x/2) * = 0

    نحصل على معادلتين

  5. التخفيض إلى معادلة متجانسة

  6. تكون المعادلة متجانسة بالنسبة إلى جيب التمام وجيب التمام إذا كانت جميع حدودها مرتبطة بجيب التمام وجيب التمام للقوة نفسها ولنفس الزاوية. لحل معادلة متجانسة، اتبع ما يلي:

    أ) نقل جميع أعضائه إلى الجانب الأيسر؛

    ب) أخرج جميع العوامل المشتركة من الأقواس؛

    ج) مساواة جميع العوامل والأقواس بالصفر؛

    د) يتم الحصول على معادلة متجانسة من الدرجة الأدنى بين قوسين، والتي بدورها تنقسم إلى جيب أو جيب التمام من درجة أعلى؛

    هـ) حل المعادلة الناتجة لـ tg.

    حل المعادلة 3sin 2 x + 4 sin x cos x + 5 cos 2 x = 2

    دعونا نستخدم الصيغة sin 2 x + cos 2 x = 1 ونتخلص من الاثنين المفتوحين على اليمين:

    3sin 2 x + 4 sin x cos x + 5 cos x = 2sin 2 x + 2cos 2 x

    خطيئة 2 س + 4 خطيئة x جتا س + 3 جتا 2 س = 0

    القسمة على cos x:

    تيراغرام 2 س + 4 تيراغرام س + 3 = 0

    استبدل tan x بـ y واحصل على معادلة تربيعية:

    ص 2 + 4ص +3 = 0، جذورها ص 1 =1، ص 2 = 3

    ومن هنا نجد حلين للمعادلة الأصلية:

    س 2 = القطب الشمالي 3 + ك

  7. حل المعادلات من خلال الانتقال إلى نصف الزاوية

  8. حل المعادلة 3sin x – 5cos x = 7

    دعنا ننتقل إلى x/2:

    6sin(x/2) * cos(x/2) – 5cos 2 (x/2) + 5sin 2 (x/2) = 7sin 2 (x/2) + 7cos 2 (x/2)

    دعنا ننقل كل شيء إلى اليسار:

    2sin 2 (x/2) – 6sin(x/2) * cos(x/2) + 12cos 2 (x/2) = 0

    القسمة على cos(x/2):

    تيراغرام 2 (س/2) – 3تغ(س/2) + 6 = 0

  9. مقدمة من الزاوية المساعدة

  10. للأخذ في الاعتبار، لنأخذ معادلة بالشكل: a sin x + b cos x = c،

    حيث a، b، c هي بعض المعاملات التعسفية، وx غير معروف.

    دعونا نقسم طرفي المعادلة على:

    الآن معاملات المعادلة، وفقًا للصيغ المثلثية، لها خصائص sin وcos، وهي: معاملها لا يزيد عن 1 ومجموع المربعات = 1. دعنا نشير إليهم على التوالي باسم cos وsin، حيث - هذا هو ما يسمى بالزاوية المساعدة. عندها ستأخذ المعادلة الشكل:

    cos * sin x + sin * cos x = C

    أو الخطيئة(س +) = ج

    الحل لهذه المعادلة المثلثية البسيطة هو

    س = (-1) ك * أركسين C - + ك، حيث

    تجدر الإشارة إلى أن الرموز cos وsin قابلة للتبديل.

    حل المعادلة sin 3x – cos 3x = 1

    المعاملات في هذه المعادلة هي:

    أ =، ب = -1، لذا اقسم كلا الطرفين على = 2

درس وعرض حول موضوع: "حل المعادلات المثلثية البسيطة"

مواد إضافية
أعزائي المستخدمين، لا تنسوا ترك تعليقاتكم ومراجعاتكم ورغباتكم! تم فحص جميع المواد بواسطة برنامج مكافحة الفيروسات.

الأدلة وأجهزة المحاكاة في متجر Integral عبر الإنترنت للصف العاشر من 1C
نحن نحل المشاكل في الهندسة. المهام التفاعلية للبناء في الفضاء
بيئة البرمجيات "1C: منشئ رياضي 6.1"

ما سوف ندرسه :
1. ما هي المعادلات المثلثية؟

3. طريقتان رئيسيتان لحل المعادلات المثلثية.
4. المعادلات المثلثية المتجانسة.
5. أمثلة.

ما هي المعادلات المثلثية؟

يا رفاق، لقد درسنا بالفعل أركسين وأركوسين وظل قوسي وظل قوسي. الآن دعونا نلقي نظرة على المعادلات المثلثية بشكل عام.

المعادلات المثلثية هي معادلات تحتوي على متغير تحت إشارة الدالة المثلثية.

دعونا نكرر شكل حل أبسط المعادلات المثلثية:

1)إذا كان |a|≥ 1، فإن المعادلة cos(x) = a لها حل:

X= ± arccos(a) + 2πk

2) إذا كان |a|≥ 1، فإن المعادلة sin(x) = a لها حل:

3) إذا |أ| > 1، فإن المعادلة sin(x) = a وcos(x) = a ليس لها حلول 4) المعادلة tg(x)=a لها حل: x=arctg(a)+ πk

5) المعادلة ctg(x)=a لها حل: x=arcctg(a)+ πk

لجميع الصيغ ك هو عدد صحيح

أبسط المعادلات المثلثية لها الشكل التالي: T(kx+m)=a، T هي دالة مثلثية.

مثال.

حل المعادلات: أ) sin(3x)= √3/2

حل:

أ) لنشير إلى 3x=t، ثم سنعيد كتابة معادلتنا على الصورة:

حل هذه المعادلة سيكون: t=((-1)^n)arcsin(√3 /2)+ πn.

من جدول القيم نحصل على: t=((-1)^n)×π/3+ πn.

دعنا نعود إلى المتغير: 3x =((-1)^n)×π/3+ πn,

ثم x= ((-1)^n)×π/9+ πn/3

الإجابة: x= ((-1)^n)×π/9+ πn/3، حيث n عدد صحيح. (-1)^n – ناقص واحد أس n.

المزيد من الأمثلة على المعادلات المثلثية.

حل المعادلات: أ) cos(x/5)=1 ب)tg(3x- π/3)= √3

حل:

أ) هذه المرة لننتقل مباشرة إلى حساب جذور المعادلة على الفور:

X/5= ± قوس(1) + 2ط ك. ثم x/5= πk => x=5πk

الإجابة: x=5πk، حيث k عدد صحيح.

ب) نكتبها على الصورة: 3x- π/3=arctg(√3)+ πk. نحن نعلم أن: arctan(√3)=π/3

3x- π/3= π/3+ πk => 3x=2π/3 + πk => x=2π/9 + πk/3

الإجابة: x=2π/9 + πk/3، حيث k عدد صحيح.

حل المعادلات: cos(4x)= √2/2. وابحث عن جميع الجذور في القطعة.

حل:

دعونا نحل معادلتنا بشكل عام: 4x= ± arccos(√2/2) + 2πk

4x= ± π/4 + 2πk;

X= ± π/16+ πk/2;

الآن دعونا نرى ما هي الجذور التي تقع على قطاعنا. عند k عند k=0, x= π/16، نكون في المقطع المحدد.
مع k=1، x= π/16+ π/2=9π/16، نضرب مرة أخرى.
بالنسبة إلى k=2، x= π/16+ π=17π/16، لكننا لم نصل هنا، مما يعني أنه من الواضح أيضًا أننا لن نصل إلى k الكبيرة.

الإجابة: س= ط/16، س= 9ط/16

طريقتان رئيسيتان للحل.

لقد نظرنا إلى أبسط المعادلات المثلثية، ولكن هناك أيضًا معادلات أكثر تعقيدًا. ولحلها يتم استخدام طريقة إدخال متغير جديد وطريقة التحليل. دعونا نلقي نظرة على الأمثلة.

دعونا نحل المعادلة:

حل:
لحل المعادلة سنستخدم طريقة إدخال متغير جديد يدل على: t=tg(x).

نتيجة الاستبدال نحصل على: t 2 + 2t -1 = 0

لنجد جذور المعادلة التربيعية: t=-1 وt=1/3

ثم tg(x)=-1 وtg(x)=1/3، نحصل على أبسط معادلة مثلثية، لنجد جذورها.

X=arctg(-1) +πk= -π/4+πk; x=arctg(1/3) + πk.

الإجابة: x= -π/4+πk; x=arctg(1/3) + πk.

مثال على حل المعادلة

حل المعادلات: 2sin 2 (x) + 3 cos(x) = 0

حل:

لنستخدم الهوية: sin 2 (x) + cos 2 (x)=1

ستكون معادلتنا بالشكل التالي: 2-2cos 2 (x) + 3 cos (x) = 0

2 كوس 2 (س) - 3 كوس (س) -2 = 0

دعونا نقدم الاستبدال t=cos(x): 2t 2 -3t - 2 = 0

حل المعادلة التربيعية هو الجذور: t=2 وt=-1/2

ثم cos(x)=2 وcos(x)=-1/2.

لأن لا يمكن لجيب التمام أن يأخذ قيمًا أكبر من واحد، وبالتالي فإن cos(x)=2 ليس له جذور.

بالنسبة لـ cos(x)=-1/2: x= ± arccos(-1/2) + 2πk; س= ±2π/3 + 2πك

الإجابة: x= ±2π/3 + 2πk

المعادلات المثلثية المتجانسة.

تعريف: تسمى المعادلات ذات الشكل a sin(x)+b cos(x) بالمعادلات المثلثية المتجانسة من الدرجة الأولى.

معادلات النموذج

المعادلات المثلثية المتجانسة من الدرجة الثانية.

لحل معادلة مثلثية متجانسة من الدرجة الأولى، قم بتقسيمها على cos(x): لا يمكنك القسمة على جيب التمام إذا كان يساوي صفر، فلنتأكد من أن الأمر ليس كذلك:
لنفترض أن cos(x)=0، ثم asin(x)+0=0 => sin(x)=0، لكن الجيب وجيب التمام لا يساويان الصفر في نفس الوقت، نحصل على تناقض، حتى نتمكن من القسمة بأمان بمقدار الصفر.

حل المعادلة:
مثال: cos 2 (x) + sin(x) cos(x) = 0

حل:

لنأخذ العامل المشترك: cos(x)(c0s(x) + sin (x)) = 0

ثم نحتاج إلى حل معادلتين:

Cos(x)=0 وcos(x)+sin(x)=0

Cos(x)=0 عند x= π/2 + πk;

خذ بعين الاعتبار المعادلة cos(x)+sin(x)=0 قسّم المعادلة على cos(x):

1+tg(x)=0 => tg(x)=-1 => x=arctg(-1) +πk= -π/4+πk

الإجابة: x= π/2 + πk و x= -π/4+πk

كيفية حل المعادلات المثلثية المتجانسة من الدرجة الثانية؟
يا رفاق، اتبعوا هذه القواعد دائمًا!

1. تعرف على ما يساويه المعامل a، إذا كانت a=0 فإن معادلتنا ستأخذ الشكل cos(x)(bsin(x)+ccos(x))، مثال على الحل موجود في الشريحة السابقة

2. إذا كانت a≠0، فأنت بحاجة إلى قسمة طرفي المعادلة على مربع جيب التمام، نحصل على:


نغير المتغير t=tg(x) ونحصل على المعادلة:

حل المثال رقم:3

حل المعادلة:
حل:

دعونا نقسم طرفي المعادلة على مربع جيب التمام:

نغير المتغير t=tg(x): t 2 + 2 t - 3 = 0

لنجد جذور المعادلة التربيعية: t=-3 وt=1

ثم: tg(x)=-3 => x=arctg(-3) + πk=-arctg(3) + πk

Tg(x)=1 => x= π/4+ πk

الإجابة: x=-arctg(3) + πk و x= π/4+ πk

حل المثال رقم:4

حل المعادلة:

حل:
دعونا نحول تعبيرنا:


يمكننا حل هذه المعادلات: x= - π/4 + 2πk و x=5π/4 + 2πk

الإجابة: x= - π/4 + 2πk و x=5π/4 + 2πk

حل المثال رقم:5

حل المعادلة:

حل:
دعونا نحول تعبيرنا:


دعونا نقدم الاستبدال tg(2x)=t:2 2 - 5t + 2 = 0

سيكون حل المعادلة التربيعية هو الجذور: t=-2 وt=1/2

ثم نحصل على: tg(2x)=-2 و tg(2x)=1/2
2x=-arctg(2)+ πk => x=-arctg(2)/2 + πk/2

2x= arctg(1/2) + πk => x=arctg(1/2)/2+ πk/2

الإجابة: x=-arctg(2)/2 + πk/2 و x=arctg(1/2)/2+ πk/2

مشاكل للحل المستقل.

1) حل المعادلة

أ) sin(7x)= 1/2 ب) cos(3x)= √3/2 ج) cos(-x) = -1 د) tg(4x) = √3 د) ctg(0.5x) = -1.7

2) حل المعادلات: sin(3x)= √3/2. وأوجد جميع الجذور في القطعة [π/2; π].

3) حل المعادلة: cot 2 (x) + 2 cot (x) + 1 =0

4) حل المعادلة: 3 sin 2 (x) + √3sin (x) cos(x) = 0

5) حل المعادلة: 3sin 2 (3x) + 10 sin(3x)cos(3x) + 3 cos 2 (3x) =0

6) حل المعادلة: cos 2 (2x) -1 - cos(x) =√3/2 -sin 2 (2x)