أمثلة على خصائص اللوغاريتمات. حل المعادلات اللوغاريتمية - الدرس الأخير

اللوغاريتمات، مثل أي أرقام، يمكن جمعها وطرحها وتحويلها بكل الطرق. ولكن بما أن اللوغاريتمات ليست أرقامًا عادية تمامًا، فهناك قواعد تسمى هنا الخصائص الرئيسية.

تحتاج بالتأكيد إلى معرفة هذه القواعد - بدونها، لا يمكن حل أي مشكلة لوغاريتمية خطيرة. بالإضافة إلى ذلك، هناك عدد قليل جدًا منهم - يمكنك تعلم كل شيء في يوم واحد. لذلك دعونا نبدأ.

جمع وطرح اللوغاريتمات

فكر في لوغاريتمين لهما نفس الأساس: السجل أ سوسجل أ ذ. ومن ثم يمكن إضافتها وطرحها، و:

  1. سجل أ س+ سجل أ ذ= سجل أ (س · ذ);
  2. سجل أ س- سجل أ ذ= سجل أ (س : ذ).

إذن، مجموع اللوغاريتمات يساوي لوغاريتم حاصل الضرب، والفرق يساوي لوغاريتم حاصل القسمة. يرجى ملاحظة: النقطة الأساسية هنا هي أسباب متطابقة. إذا اختلفت الأسباب فلا تصلح هذه القواعد!

ستساعدك هذه الصيغ في حساب التعبير اللوغاريتمي حتى في حالة عدم أخذ أجزائه الفردية في الاعتبار (راجع الدرس "ما هو اللوغاريتم"). ألقِ نظرة على الأمثلة وانظر:

سجل 6 4 + سجل 6 9.

بما أن اللوغاريتمات لها نفس الأساس، فإننا نستخدم صيغة الجمع:
سجل 6 4 + سجل 6 9 = سجل 6 (4 9) = سجل 6 36 = 2.

مهمة. أوجد قيمة التعبير: log 2 48 − log 2 3.

القواعد هي نفسها، نستخدم صيغة الفرق:
سجل 2 48 - سجل 2 3 = سجل 2 (48: 3) = سجل 2 16 = 4.

مهمة. أوجد قيمة التعبير: log 3 135 − log 3 5.

مرة أخرى القواعد هي نفسها، لذلك لدينا:
سجل 3 135 - سجل 3 5 = سجل 3 (135: 5) = سجل 3 27 = 3.

كما ترون، تتكون التعبيرات الأصلية من لوغاريتمات "سيئة"، والتي لا يتم حسابها بشكل منفصل. ولكن بعد التحويلات يتم الحصول على أرقام طبيعية تماما. وتستند العديد من الاختبارات على هذه الحقيقة. نعم، يتم تقديم التعبيرات الشبيهة بالاختبار بكل جدية (أحيانًا بدون أي تغييرات تقريبًا) في امتحان الدولة الموحدة.

استخراج الأس من اللوغاريتم

الآن دعونا نعقد المهمة قليلاً. ماذا لو كانت قاعدة أو وسيطة اللوغاريتم قوة؟ ومن ثم يمكن إخراج أس هذه الدرجة من إشارة اللوغاريتم وفق القواعد التالية:

ومن السهل أن نرى أن القاعدة الأخيرة تتبع القاعدتين الأوليين. ولكن من الأفضل أن تتذكرها على أي حال - ففي بعض الحالات سوف تقلل بشكل كبير من حجم العمليات الحسابية.

بالطبع، كل هذه القواعد تكون منطقية إذا تمت ملاحظة ODZ للوغاريتم: أ > 0, أ ≠ 1, س> 0. وشيء آخر: تعلم كيفية تطبيق جميع الصيغ ليس فقط من اليسار إلى اليمين، ولكن أيضًا بالعكس، أي. يمكنك إدخال الأرقام قبل تسجيل اللوغاريتم في اللوغاريتم نفسه. وهذا هو المطلوب في أغلب الأحيان.

مهمة. أوجد قيمة التعبير: log 7 49 6 .

دعونا نتخلص من الدرجة في الوسيطة باستخدام الصيغة الأولى:
سجل 7 49 6 = 6 سجل 7 49 = 6 2 = 12

مهمة. ابحث عن معنى العبارة:

[تعليق على الصورة]

لاحظ أن المقام يحتوي على لوغاريتم، قاعدته ووسيطه عبارة عن قوى دقيقة: 16 = 2 4 ; 49 = 7 2. لدينا:

[تعليق على الصورة]

أعتقد أن المثال الأخير يتطلب بعض التوضيح. أين ذهبت اللوغاريتمات؟ حتى اللحظة الأخيرة نحن نعمل فقط مع القاسم. لقد قدمنا ​​أساس ووسيطة اللوغاريتم الموجود هناك في شكل قوى وأزلنا الأسس - لقد حصلنا على كسر "من ثلاثة طوابق".

الآن دعونا نلقي نظرة على الكسر الرئيسي. يحتوي البسط والمقام على نفس الرقم: log 2 7. بما أن log 2 7 ≠ 0، يمكننا تبسيط الكسر - سيبقى 2/4 في المقام. ووفقا للقواعد الحسابية، يمكن نقل الأربعة إلى البسط، وهذا ما تم. وكانت النتيجة الجواب: 2.

الانتقال إلى أساس جديد

عند الحديث عن قواعد جمع وطرح اللوغاريتمات، أكدت على وجه التحديد أنها تعمل فقط مع نفس القواعد. وماذا لو كانت الأسباب مختلفة؟ ماذا لو لم تكن صلاحيات محددة لنفس العدد؟

تأتي صيغ الانتقال إلى أساس جديد للإنقاذ. دعونا صياغتها في شكل نظرية:

دع سجل اللوغاريتم يعطى أ س. ثم لأي رقم جمثل هذا ج> 0 و ج≠ 1، المساواة صحيحة:

[تعليق على الصورة]

على وجه الخصوص، إذا وضعنا ج = س، نحصل على:

[تعليق على الصورة]

ويترتب على الصيغة الثانية أنه يمكن تبديل أساس ووسيطة اللوغاريتم، ولكن في هذه الحالة يتم "قلب" التعبير بأكمله، أي. يظهر اللوغاريتم في المقام.

نادرًا ما توجد هذه الصيغ في التعبيرات العددية العادية. من الممكن تقييم مدى ملاءمتها فقط عند حل المعادلات اللوغاريتمية والمتباينات.

ولكن هناك مشاكل لا يمكن حلها على الإطلاق إلا بالانتقال إلى أساس جديد. دعونا نلقي نظرة على اثنين من هذه:

مهمة. أوجد قيمة التعبير: سجل 5 16 سجل 2 25.

لاحظ أن وسيطات كلا اللوغاريتمات تحتوي على قوى دقيقة. لنأخذ المؤشرات: log 5 16 = log 5 2 4 = 4log 5 2; سجل 2 25 = سجل 2 5 2 = 2سجل 2 5;

الآن دعونا "نعكس" اللوغاريتم الثاني:

[تعليق على الصورة]

وبما أن حاصل الضرب لا يتغير عند إعادة ترتيب العوامل، فقد ضربنا أربعة في اثنين بهدوء، ثم تعاملنا مع اللوغاريتمات.

مهمة. أوجد قيمة التعبير: log 9 100 lg 3.

أساس ووسيطة اللوغاريتم الأول هما القوى الدقيقة. دعنا نكتب هذا ونتخلص من المؤشرات:

[تعليق على الصورة]

الآن دعونا نتخلص من اللوغاريتم العشري بالانتقال إلى قاعدة جديدة:

[تعليق على الصورة]

الهوية اللوغاريتمية الأساسية

في كثير من الأحيان، في عملية الحل، من الضروري تمثيل رقم على هيئة لوغاريتم لقاعدة معينة. في هذه الحالة، سوف تساعدنا الصيغ التالية:

في الحالة الأولى العدد نيصبح مؤشرا على درجة الوقوف في الحجة. رقم نيمكن أن تكون أي شيء على الإطلاق، لأنها مجرد قيمة لوغاريتمية.

الصيغة الثانية هي في الواقع تعريف معاد صياغته. وهذا ما يطلق عليه: الهوية اللوغاريتمية الأساسية.

في الواقع، ماذا سيحدث إذا كان العدد برفع إلى هذه القوة أن العدد بلهذه القوة يعطي الرقم أ؟ هذا صحيح: تحصل على نفس الرقم أ. اقرأ هذه الفقرة بعناية مرة أخرى - كثير من الناس عالقون فيها.

مثل صيغ الانتقال إلى قاعدة جديدة، تكون الهوية اللوغاريتمية الأساسية في بعض الأحيان هي الحل الوحيد الممكن.

مهمة. ابحث عن معنى العبارة:

[تعليق على الصورة]

لاحظ أن log 25 64 = log 5 8 - ببساطة أخذ المربع من قاعدة اللوغاريتم ووسيطه. ومع الأخذ في الاعتبار قواعد ضرب القوى ذات الأساس نفسه، نحصل على:

[تعليق على الصورة]

إذا كان أي شخص لا يعرف، كانت هذه مهمة حقيقية من امتحان الدولة الموحدة :)

الوحدة اللوغاريتمية والصفر اللوغاريتمي

في الختام، سأقدم هويتين يصعب وصفهما بالخصائص - بل هما نتيجة لتعريف اللوغاريتم. إنهم يظهرون باستمرار في المشاكل، ومن المدهش أنهم يخلقون مشاكل حتى للطلاب "المتقدمين".

  1. سجل أ أ= 1 هي وحدة لوغاريتمية. تذكر مرة واحدة وإلى الأبد: اللوغاريتم لأي قاعدة أمن هذه القاعدة ذاتها يساوي واحدًا.
  2. سجل أ 1 = 0 هو صفر لوغاريتمي. قاعدة أيمكن أن يكون أي شيء، ولكن إذا كانت الوسيطة تحتوي على واحد، فإن اللوغاريتم يساوي صفرًا! لأن أ 0 = 1 هو نتيجة مباشرة للتعريف.

هذا كل الخصائص. تأكد من ممارسة وضعها موضع التنفيذ! قم بتنزيل ورقة الغش في بداية الدرس وطباعتها وحل المشكلات.

ما هو اللوغاريتم؟

انتباه!
هناك اضافية
المواد في القسم الخاص 555.
بالنسبة لأولئك الذين هم "ليسوا جدا..."
ولأولئك الذين "كثيرا ...")

ما هو اللوغاريتم؟ كيفية حل اللوغاريتمات؟ هذه الأسئلة تربك العديد من الخريجين. تقليديا، يعتبر موضوع اللوغاريتمات معقدا وغير مفهوم ومخيف. وخاصة المعادلات مع اللوغاريتمات.

هذا ليس صحيحا على الاطلاق. قطعاً! لا تصدقني؟ بخير. الآن، في 10 - 20 دقيقة فقط يمكنك:

1. سوف تفهم ما هو اللوغاريتم.

2. تعلم كيفية حل فئة كاملة من المعادلات الأسية. حتى لو لم تسمع أي شيء عنهم.

3. تعلم كيفية حساب اللوغاريتمات البسيطة.

علاوة على ذلك، لهذا ستحتاج فقط إلى معرفة جدول الضرب وكيفية رفع الرقم إلى قوة...

أشعر أن لديك شكوك... حسنًا، حسنًا، حدد الوقت! دعنا نذهب!

أولاً، حل هذه المعادلة في رأسك:

إذا أعجبك هذا الموقع...

بالمناسبة، لدي موقعين أكثر إثارة للاهتمام بالنسبة لك.)

يمكنك التدرب على حل الأمثلة ومعرفة مستواك. الاختبار مع التحقق الفوري. دعونا نتعلم - باهتمام!)

يمكنك التعرف على الوظائف والمشتقات.

الخصائص الرئيسية.

  1. logax + logay = loga(x y);
  2. logax - logay = loga (x: y).

أسباب متطابقة

سجل 6 4 + سجل 6 9.

الآن دعونا نعقد المهمة قليلاً.

أمثلة على حل اللوغاريتمات

ماذا لو كانت قاعدة أو وسيطة اللوغاريتم قوة؟ ومن ثم يمكن إخراج أس هذه الدرجة من إشارة اللوغاريتم وفق القواعد التالية:

بالطبع، كل هذه القواعد تكون منطقية إذا تمت ملاحظة ODZ للوغاريتم: a > 0, a ≠ 1, x >

مهمة. ابحث عن معنى العبارة:

الانتقال إلى أساس جديد

دع اللوغاريتم يعطى. ثم بالنسبة لأي رقم c بحيث يكون c > 0 و c ≠ 1، تكون المساواة صحيحة:

مهمة. ابحث عن معنى العبارة:

أنظر أيضا:


الخصائص الأساسية للوغاريتم

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



الأس هو 2.718281828…. لتذكر الأس، يمكنك دراسة القاعدة: الأس يساوي 2.7 ومرتين سنة ميلاد ليو نيكولايفيتش تولستوي.

الخصائص الأساسية للوغاريتمات

بمعرفة هذه القاعدة، ستعرف القيمة الدقيقة للأس وتاريخ ميلاد ليو تولستوي.


أمثلة على اللوغاريتمات

التعبيرات اللوغاريتمية

مثال 1.
أ). س=10أك^2 (أ>0,ج>0).

باستخدام الخصائص 3.5 نحسب

2.

3.

4. أين .



مثال 2. ابحث عن x if


مثال 3. دع قيمة اللوغاريتمات تعطى

احسب السجل (x) إذا




الخصائص الأساسية للوغاريتمات

اللوغاريتمات، مثل أي أرقام، يمكن جمعها وطرحها وتحويلها بكل الطرق. ولكن بما أن اللوغاريتمات ليست أرقامًا عادية تمامًا، فهناك قواعد تسمى هنا الخصائص الرئيسية.

تحتاج بالتأكيد إلى معرفة هذه القواعد - بدونها، لا يمكن حل أي مشكلة لوغاريتمية خطيرة. بالإضافة إلى ذلك، هناك عدد قليل جدًا منهم - يمكنك تعلم كل شيء في يوم واحد. لذلك دعونا نبدأ.

جمع وطرح اللوغاريتمات

فكر في لوغاريتمين لهما نفس الأساس: logax وlogay. ومن ثم يمكن إضافتها وطرحها، و:

  1. logax + logay = loga(x y);
  2. logax - logay = loga (x: y).

إذن، مجموع اللوغاريتمات يساوي لوغاريتم حاصل الضرب، والفرق يساوي لوغاريتم حاصل القسمة. يرجى ملاحظة: النقطة الأساسية هنا هي أسباب متطابقة. إذا اختلفت الأسباب فلا تصلح هذه القواعد!

ستساعدك هذه الصيغ في حساب التعبير اللوغاريتمي حتى عندما لا يتم أخذ أجزائه الفردية في الاعتبار (راجع الدرس "ما هو اللوغاريتم"). ألقِ نظرة على الأمثلة وانظر:

بما أن اللوغاريتمات لها نفس الأساس، فإننا نستخدم صيغة الجمع:
سجل6 4 + سجل6 9 = سجل6 (4 9) = سجل6 36 = 2.

مهمة. أوجد قيمة التعبير: log2 48 − log2 3.

القواعد هي نفسها، نستخدم صيغة الفرق:
سجل2 48 - سجل2 3 = سجل2 (48: 3) = سجل2 16 = 4.

مهمة. أوجد قيمة التعبير: log3 135 - log3 5.

مرة أخرى القواعد هي نفسها، لذلك لدينا:
log3 135 - log3 5 = log3 (135: 5) = log3 27 = 3.

كما ترون، تتكون التعبيرات الأصلية من لوغاريتمات "سيئة"، والتي لا يتم حسابها بشكل منفصل. ولكن بعد التحويلات يتم الحصول على أرقام طبيعية تماما. وتستند العديد من الاختبارات على هذه الحقيقة. نعم، يتم تقديم التعبيرات الشبيهة بالاختبار بكل جدية (أحيانًا بدون أي تغييرات تقريبًا) في امتحان الدولة الموحدة.

استخراج الأس من اللوغاريتم

ومن السهل أن نرى أن القاعدة الأخيرة تتبع القاعدتين الأوليين. ولكن من الأفضل أن تتذكرها على أي حال - ففي بعض الحالات سوف تقلل بشكل كبير من حجم العمليات الحسابية.

بالطبع، كل هذه القواعد تكون منطقية إذا تمت ملاحظة ODZ للوغاريتم: a > 0, a ≠ 1, x > 0. وشيء آخر: تعلم كيفية تطبيق جميع الصيغ ليس فقط من اليسار إلى اليمين، ولكن أيضًا العكس. ، أي. يمكنك إدخال الأرقام قبل تسجيل اللوغاريتم في اللوغاريتم نفسه. وهذا هو المطلوب في أغلب الأحيان.

مهمة. أوجد قيمة التعبير: log7 496.

دعونا نتخلص من الدرجة في الوسيطة باستخدام الصيغة الأولى:
log7 496 = 6 log7 49 = 6 2 = 12

مهمة. ابحث عن معنى العبارة:

لاحظ أن المقام يحتوي على لوغاريتم، قاعدته ووسيطه عبارة عن قوى دقيقة: 16 = 24؛ 49 = 72. لدينا:

أعتقد أن المثال الأخير يتطلب بعض التوضيح. أين ذهبت اللوغاريتمات؟ حتى اللحظة الأخيرة نحن نعمل فقط مع القاسم.

صيغ اللوغاريتم. اللوغاريتمات أمثلة الحلول

لقد قدمنا ​​أساس ووسيطة اللوغاريتم الموجود هناك في شكل قوى وأزلنا الأسس - لقد حصلنا على كسر "من ثلاثة طوابق".

الآن دعونا نلقي نظرة على الكسر الرئيسي. يحتوي البسط والمقام على نفس الرقم: log2 7. بما أن log2 7 ≠ 0، يمكننا تبسيط الكسر - سيبقى 2/4 في المقام. ووفقا للقواعد الحسابية، يمكن نقل الأربعة إلى البسط، وهذا ما تم. وكانت النتيجة الجواب: 2.

الانتقال إلى أساس جديد

عند الحديث عن قواعد جمع وطرح اللوغاريتمات، أكدت على وجه التحديد أنها تعمل فقط مع نفس القواعد. وماذا لو كانت الأسباب مختلفة؟ ماذا لو لم تكن صلاحيات محددة لنفس العدد؟

تأتي صيغ الانتقال إلى أساس جديد للإنقاذ. دعونا صياغتها في شكل نظرية:

دع اللوغاريتم يعطى. ثم بالنسبة لأي رقم c بحيث يكون c > 0 و c ≠ 1، تكون المساواة صحيحة:

على وجه الخصوص، إذا وضعنا c = x، نحصل على:

ويترتب على الصيغة الثانية أنه يمكن تبديل أساس ووسيطة اللوغاريتم، ولكن في هذه الحالة يتم "قلب" التعبير بأكمله، أي. يظهر اللوغاريتم في المقام.

نادرًا ما توجد هذه الصيغ في التعبيرات العددية العادية. من الممكن تقييم مدى ملاءمتها فقط عند حل المعادلات اللوغاريتمية والمتباينات.

ولكن هناك مشاكل لا يمكن حلها على الإطلاق إلا بالانتقال إلى أساس جديد. دعونا نلقي نظرة على اثنين من هذه:

مهمة. أوجد قيمة التعبير: log5 16 log2 25.

لاحظ أن وسيطات كلا اللوغاريتمات تحتوي على قوى دقيقة. لنأخذ المؤشرات: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

الآن دعونا "نعكس" اللوغاريتم الثاني:

وبما أن حاصل الضرب لا يتغير عند إعادة ترتيب العوامل، فقد ضربنا أربعة في اثنين بهدوء، ثم تعاملنا مع اللوغاريتمات.

مهمة. أوجد قيمة التعبير: log9 100 lg 3.

أساس ووسيطة اللوغاريتم الأول هما القوى الدقيقة. دعنا نكتب هذا ونتخلص من المؤشرات:

الآن دعونا نتخلص من اللوغاريتم العشري بالانتقال إلى قاعدة جديدة:

الهوية اللوغاريتمية الأساسية

في كثير من الأحيان، في عملية الحل، من الضروري تمثيل رقم على هيئة لوغاريتم لقاعدة معينة. في هذه الحالة، سوف تساعدنا الصيغ التالية:

في الحالة الأولى، يصبح الرقم n هو الأس في الوسيطة. يمكن أن يكون الرقم n أي شيء على الإطلاق، لأنه مجرد قيمة لوغاريتمية.

الصيغة الثانية هي في الواقع تعريف معاد صياغته. وهذا ما يسمى : .

في الواقع، ماذا يحدث إذا تم رفع الرقم b إلى قوة بحيث يعطي الرقم b إلى هذه القوة الرقم a؟ هذا صحيح: النتيجة هي نفس الرقم أ. اقرأ هذه الفقرة بعناية مرة أخرى - كثير من الناس عالقون فيها.

مثل صيغ الانتقال إلى قاعدة جديدة، تكون الهوية اللوغاريتمية الأساسية في بعض الأحيان هي الحل الوحيد الممكن.

مهمة. ابحث عن معنى العبارة:

لاحظ أن log25 64 = log5 8 - ببساطة أخذ المربع من قاعدة اللوغاريتم ووسيطه. ومع الأخذ في الاعتبار قواعد ضرب القوى ذات الأساس نفسه، نحصل على:

إذا كان أي شخص لا يعرف، كانت هذه مهمة حقيقية من امتحان الدولة الموحدة :)

الوحدة اللوغاريتمية والصفر اللوغاريتمي

في الختام، سأقدم هويتين يصعب وصفهما بالخصائص - بل هما نتيجة لتعريف اللوغاريتم. إنهم يظهرون باستمرار في المشاكل، ومن المدهش أنهم يخلقون مشاكل حتى للطلاب "المتقدمين".

  1. اللوغا = 1 هو. تذكر مرة واحدة وإلى الأبد: لوغاريتم أي أساس a لهذا الأساس نفسه يساوي واحدًا.
  2. لوغا 1 = 0 هو. الأساس a يمكن أن يكون أي شيء، ولكن إذا كان الوسيط يحتوي على واحد، فإن اللوغاريتم يساوي صفر! لأن a0 = 1 هي نتيجة مباشرة للتعريف.

هذا كل الخصائص. تأكد من ممارسة وضعها موضع التنفيذ! قم بتنزيل ورقة الغش في بداية الدرس وطباعتها وحل المشكلات.

أنظر أيضا:

لوغاريتم b للأساس a يشير إلى التعبير. لحساب اللوغاريتم يعني العثور على القوة x () التي تتحقق عندها المساواة

الخصائص الأساسية للوغاريتم

من الضروري معرفة الخصائص المذكورة أعلاه، حيث يتم حل جميع المشاكل والأمثلة المتعلقة باللوغاريتمات تقريبًا على أساسها. ويمكن استخلاص بقية الخصائص الغريبة من خلال التلاعب الرياضي بهذه الصيغ

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

عند حساب صيغة مجموع وفرق اللوغاريتمات (3.4) تصادفك كثيرًا. الباقي معقد إلى حد ما، ولكن في عدد من المهام لا غنى عنها لتبسيط التعبيرات المعقدة وحساب قيمها.

الحالات الشائعة للوغاريتمات

بعض اللوغاريتمات الأكثر شيوعًا هي تلك التي يكون أساسها يساوي عشرة أو أسيًا أو اثنين.
عادةً ما يسمى اللوغاريتم للأساس العشري باللوغاريتم العشري ويُشار إليه ببساطة بـ lg(x).

ويتضح من التسجيل أن الأساسيات غير مكتوبة في التسجيل. على سبيل المثال

اللوغاريتم الطبيعي هو لوغاريتم قاعدته أس (يُشار إليه بالرمز ln(x)).

الأس هو 2.718281828…. لتذكر الأس، يمكنك دراسة القاعدة: الأس يساوي 2.7 ومرتين سنة ميلاد ليو نيكولايفيتش تولستوي. بمعرفة هذه القاعدة، ستعرف القيمة الدقيقة للأس وتاريخ ميلاد ليو تولستوي.

وهناك لوغاريتم مهم آخر للأساس اثنين يُشار إليه بالرمز

مشتقة لوغاريتم الدالة تساوي واحدًا مقسومًا على المتغير

يتم تحديد اللوغاريتم التكاملي أو العكسي من خلال العلاقة

المواد المقدمة كافية لك لحل فئة واسعة من المسائل المتعلقة باللوغاريتمات واللوغاريتمات. ولمساعدتك على فهم المادة، سأقدم فقط بعض الأمثلة الشائعة من المناهج المدرسية والجامعات.

أمثلة على اللوغاريتمات

التعبيرات اللوغاريتمية

مثال 1.
أ). س=10أك^2 (أ>0,ج>0).

باستخدام الخصائص 3.5 نحسب

2.
بواسطة خاصية اختلاف اللوغاريتمات لدينا

3.
باستخدام الخصائص 3.5 نجد

4. أين .

يتم تبسيط التعبير الذي يبدو معقدًا إلى شكل باستخدام عدد من القواعد

إيجاد القيم اللوغاريتمية

مثال 2. ابحث عن x if

حل. للحساب، نطبق على خصائص الحد الأخير 5 و13

نسجله ونحزن

بما أن الأساسات متساوية، فإننا نساوي التعبيرات

اللوغاريتمات. مستوى الدخول.

دع قيمة اللوغاريتمات تعطى

احسب السجل (x) إذا

الحل: لنأخذ لوغاريتم المتغير لنكتب اللوغاريتم من خلال مجموع حدوده


هذه مجرد بداية للتعرف على اللوغاريتمات وخصائصها. تدرب على العمليات الحسابية، وقم بإثراء مهاراتك العملية - ستحتاج قريبًا إلى المعرفة التي تكتسبها لحل المعادلات اللوغاريتمية. بعد دراسة الطرق الأساسية لحل هذه المعادلات، سنوسع معرفتك إلى موضوع آخر لا يقل أهمية - المتباينات اللوغاريتمية...

الخصائص الأساسية للوغاريتمات

اللوغاريتمات، مثل أي أرقام، يمكن جمعها وطرحها وتحويلها بكل الطرق. ولكن بما أن اللوغاريتمات ليست أرقامًا عادية تمامًا، فهناك قواعد تسمى هنا الخصائص الرئيسية.

تحتاج بالتأكيد إلى معرفة هذه القواعد - بدونها، لا يمكن حل أي مشكلة لوغاريتمية خطيرة. بالإضافة إلى ذلك، هناك عدد قليل جدًا منهم - يمكنك تعلم كل شيء في يوم واحد. لذلك دعونا نبدأ.

جمع وطرح اللوغاريتمات

فكر في لوغاريتمين لهما نفس الأساس: logax وlogay. ومن ثم يمكن إضافتها وطرحها، و:

  1. logax + logay = loga(x y);
  2. logax - logay = loga (x: y).

إذن، مجموع اللوغاريتمات يساوي لوغاريتم حاصل الضرب، والفرق يساوي لوغاريتم حاصل القسمة. يرجى ملاحظة: النقطة الأساسية هنا هي أسباب متطابقة. إذا اختلفت الأسباب فلا تصلح هذه القواعد!

ستساعدك هذه الصيغ في حساب التعبير اللوغاريتمي حتى عندما لا يتم أخذ أجزائه الفردية في الاعتبار (راجع الدرس "ما هو اللوغاريتم"). ألقِ نظرة على الأمثلة وانظر:

مهمة. أوجد قيمة التعبير: log6 4 + log6 9.

بما أن اللوغاريتمات لها نفس الأساس، فإننا نستخدم صيغة الجمع:
سجل6 4 + سجل6 9 = سجل6 (4 9) = سجل6 36 = 2.

مهمة. أوجد قيمة التعبير: log2 48 − log2 3.

القواعد هي نفسها، نستخدم صيغة الفرق:
سجل2 48 - سجل2 3 = سجل2 (48: 3) = سجل2 16 = 4.

مهمة. أوجد قيمة التعبير: log3 135 - log3 5.

مرة أخرى القواعد هي نفسها، لذلك لدينا:
log3 135 - log3 5 = log3 (135: 5) = log3 27 = 3.

كما ترون، تتكون التعبيرات الأصلية من لوغاريتمات "سيئة"، والتي لا يتم حسابها بشكل منفصل. ولكن بعد التحويلات يتم الحصول على أرقام طبيعية تماما. وتستند العديد من الاختبارات على هذه الحقيقة. نعم، يتم تقديم التعبيرات الشبيهة بالاختبار بكل جدية (أحيانًا بدون أي تغييرات تقريبًا) في امتحان الدولة الموحدة.

استخراج الأس من اللوغاريتم

الآن دعونا نعقد المهمة قليلاً. ماذا لو كانت قاعدة أو وسيطة اللوغاريتم قوة؟ ومن ثم يمكن إخراج أس هذه الدرجة من إشارة اللوغاريتم وفق القواعد التالية:

ومن السهل أن نرى أن القاعدة الأخيرة تتبع القاعدتين الأوليين. ولكن من الأفضل أن تتذكرها على أي حال - ففي بعض الحالات سوف تقلل بشكل كبير من حجم العمليات الحسابية.

بالطبع، كل هذه القواعد تكون منطقية إذا تمت ملاحظة ODZ للوغاريتم: a > 0, a ≠ 1, x > 0. وشيء آخر: تعلم كيفية تطبيق جميع الصيغ ليس فقط من اليسار إلى اليمين، ولكن أيضًا العكس. ، أي. يمكنك إدخال الأرقام قبل تسجيل اللوغاريتم في اللوغاريتم نفسه.

كيفية حل اللوغاريتمات

وهذا هو المطلوب في أغلب الأحيان.

مهمة. أوجد قيمة التعبير: log7 496.

دعونا نتخلص من الدرجة في الوسيطة باستخدام الصيغة الأولى:
log7 496 = 6 log7 49 = 6 2 = 12

مهمة. ابحث عن معنى العبارة:

لاحظ أن المقام يحتوي على لوغاريتم، قاعدته ووسيطه عبارة عن قوى دقيقة: 16 = 24؛ 49 = 72. لدينا:

أعتقد أن المثال الأخير يتطلب بعض التوضيح. أين ذهبت اللوغاريتمات؟ حتى اللحظة الأخيرة نحن نعمل فقط مع القاسم. لقد قدمنا ​​أساس ووسيطة اللوغاريتم الموجود هناك في شكل قوى وأزلنا الأسس - لقد حصلنا على كسر "من ثلاثة طوابق".

الآن دعونا نلقي نظرة على الكسر الرئيسي. يحتوي البسط والمقام على نفس الرقم: log2 7. بما أن log2 7 ≠ 0، يمكننا تبسيط الكسر - سيبقى 2/4 في المقام. ووفقا للقواعد الحسابية، يمكن نقل الأربعة إلى البسط، وهذا ما تم. وكانت النتيجة الجواب: 2.

الانتقال إلى أساس جديد

عند الحديث عن قواعد جمع وطرح اللوغاريتمات، أكدت على وجه التحديد أنها تعمل فقط مع نفس القواعد. وماذا لو كانت الأسباب مختلفة؟ ماذا لو لم تكن صلاحيات محددة لنفس العدد؟

تأتي صيغ الانتقال إلى أساس جديد للإنقاذ. دعونا صياغتها في شكل نظرية:

دع اللوغاريتم يعطى. ثم بالنسبة لأي رقم c بحيث يكون c > 0 و c ≠ 1، تكون المساواة صحيحة:

على وجه الخصوص، إذا وضعنا c = x، نحصل على:

ويترتب على الصيغة الثانية أنه يمكن تبديل أساس ووسيطة اللوغاريتم، ولكن في هذه الحالة يتم "قلب" التعبير بأكمله، أي. يظهر اللوغاريتم في المقام.

نادرًا ما توجد هذه الصيغ في التعبيرات العددية العادية. من الممكن تقييم مدى ملاءمتها فقط عند حل المعادلات اللوغاريتمية والمتباينات.

ولكن هناك مشاكل لا يمكن حلها على الإطلاق إلا بالانتقال إلى أساس جديد. دعونا نلقي نظرة على اثنين من هذه:

مهمة. أوجد قيمة التعبير: log5 16 log2 25.

لاحظ أن وسيطات كلا اللوغاريتمات تحتوي على قوى دقيقة. لنأخذ المؤشرات: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

الآن دعونا "نعكس" اللوغاريتم الثاني:

وبما أن حاصل الضرب لا يتغير عند إعادة ترتيب العوامل، فقد ضربنا أربعة في اثنين بهدوء، ثم تعاملنا مع اللوغاريتمات.

مهمة. أوجد قيمة التعبير: log9 100 lg 3.

أساس ووسيطة اللوغاريتم الأول هما القوى الدقيقة. دعنا نكتب هذا ونتخلص من المؤشرات:

الآن دعونا نتخلص من اللوغاريتم العشري بالانتقال إلى قاعدة جديدة:

الهوية اللوغاريتمية الأساسية

في كثير من الأحيان، في عملية الحل، من الضروري تمثيل رقم على هيئة لوغاريتم لقاعدة معينة. في هذه الحالة، سوف تساعدنا الصيغ التالية:

في الحالة الأولى، يصبح الرقم n هو الأس في الوسيطة. يمكن أن يكون الرقم n أي شيء على الإطلاق، لأنه مجرد قيمة لوغاريتمية.

الصيغة الثانية هي في الواقع تعريف معاد صياغته. وهذا ما يسمى : .

في الواقع، ماذا يحدث إذا تم رفع الرقم b إلى قوة بحيث يعطي الرقم b إلى هذه القوة الرقم a؟ هذا صحيح: النتيجة هي نفس الرقم أ. اقرأ هذه الفقرة بعناية مرة أخرى - كثير من الناس عالقون فيها.

مثل صيغ الانتقال إلى قاعدة جديدة، تكون الهوية اللوغاريتمية الأساسية في بعض الأحيان هي الحل الوحيد الممكن.

مهمة. ابحث عن معنى العبارة:

لاحظ أن log25 64 = log5 8 - ببساطة أخذ المربع من قاعدة اللوغاريتم ووسيطه. ومع الأخذ في الاعتبار قواعد ضرب القوى ذات الأساس نفسه، نحصل على:

إذا كان أي شخص لا يعرف، كانت هذه مهمة حقيقية من امتحان الدولة الموحدة :)

الوحدة اللوغاريتمية والصفر اللوغاريتمي

في الختام، سأقدم هويتين يصعب وصفهما بالخصائص - بل هما نتيجة لتعريف اللوغاريتم. إنهم يظهرون باستمرار في المشاكل، ومن المدهش أنهم يخلقون مشاكل حتى للطلاب "المتقدمين".

  1. اللوغا = 1 هو. تذكر مرة واحدة وإلى الأبد: لوغاريتم أي أساس a لهذا الأساس نفسه يساوي واحدًا.
  2. لوغا 1 = 0 هو. الأساس a يمكن أن يكون أي شيء، ولكن إذا كان الوسيط يحتوي على واحد، فإن اللوغاريتم يساوي صفر! لأن a0 = 1 هي نتيجة مباشرة للتعريف.

هذا كل الخصائص. تأكد من ممارسة وضعها موضع التنفيذ! قم بتنزيل ورقة الغش في بداية الدرس وطباعتها وحل المشكلات.

\(a^(b)=c\) \(\Leftrightarrow\) \(\log_(a)(c)=b\)

دعونا نشرح ذلك بشكل أكثر بساطة. على سبيل المثال، \(\log_(2)(8)\) تساوي القدرة التي يجب رفع \(2\) إليها للحصول على \(8\). ومن هذا يتضح أن \(\log_(2)(8)=3\).

أمثلة:

\(\log_(5)(25)=2\)

لأن \(5^(2)=25\)

\(\log_(3)(81)=4\)

لأن \(3^(4)=81\)

\(\log_(2)\)\(\frac(1)(32)\) \(=-5\)

لأن \(2^(-5)=\)\(\frac(1)(32)\)

الوسيطة وقاعدة اللوغاريتم

أي لوغاريتم لديه "التشريح" التالي:

عادة ما تتم كتابة وسيطة اللوغاريتم عند مستواه، ويتم كتابة القاعدة بخط منخفض أقرب إلى علامة اللوغاريتم. وهذا الإدخال يقرأ على النحو التالي: "لوغاريتم خمسة وعشرين للأساس خمسة".

كيفية حساب اللوغاريتم؟

لحساب اللوغاريتم، عليك الإجابة على السؤال: إلى أي قوة يجب رفع القاعدة للحصول على الوسيطة؟

على سبيل المثال، احسب اللوغاريتم: أ) \(\log_(4)(16)\) ب) \(\log_(3)\)\(\frac(1)(3)\) ج) \(\log_(\ sqrt (5))(1)\) د) \(\log_(\sqrt(7))(\sqrt(7))\) ه) \(\log_(3)(\sqrt(3))\)

أ) إلى أي أس يجب رفع \(4\) للحصول على \(16\)؟ ومن الواضح أن الثاني. لهذا السبب:

\(\log_(4)(16)=2\)

\(\log_(3)\)\(\frac(1)(3)\) \(=-1\)

ج) إلى أي قوة يجب رفع \(\sqrt(5)\) للحصول على \(1\)؟ ما هي القوة التي تجعل أي رقم واحد؟ صفر بالطبع!

\(\log_(\sqrt(5))(1)=0\)

د) إلى أي قوة يجب رفع \(\sqrt(7)\) للحصول على \(\sqrt(7)\)؟ أولًا، أي عدد أس الأول يساوي نفسه.

\(\log_(\sqrt(7))(\sqrt(7))=1\)

e) إلى أي قوة يجب رفع \(3\) للحصول على \(\sqrt(3)\)؟ نعلم أن هذه قوة كسرية، مما يعني أن الجذر التربيعي هو قوة \(\frac(1)(2)\) .

\(\log_(3)(\sqrt(3))=\)\(\frac(1)(2)\)

مثال : حساب اللوغاريتم \(\log_(4\sqrt(2))(8)\)

حل :

\(\log_(4\sqrt(2))(8)=x\)

نحن بحاجة إلى إيجاد قيمة اللوغاريتم، لنشير إليها بـ x. الآن دعونا نستخدم تعريف اللوغاريتم:
\(\log_(a)(c)=b\) \(\Leftrightarrow\) \(a^(b)=c\)

\((4\sqrt(2))^(x)=8\)

ما الذي يربط \(4\sqrt(2)\) و\(8\)؟ اثنان، لأن كلا الرقمين يمكن تمثيلهما برقمين:
\(4=2^(2)\) \(\sqrt(2)=2^(\frac(1)(2))\) \(8=2^(3)\)

\(((2^(2)\cdot2^(\frac(1)(2))))^(x)=2^(3)\)

على اليسار نستخدم خصائص الدرجة: \(a^(m)\cdot a^(n)=a^(m+n)\) و \((a^(m))^(n)= أ^(م\كدوت ن)\)

\(2^(\frac(5)(2)x)=2^(3)\)

القواعد متساوية، ننتقل إلى المساواة في المؤشرات

\(\frac(5x)(2)\) \(=3\)


اضرب طرفي المعادلة في \(\frac(2)(5)\)


الجذر الناتج هو قيمة اللوغاريتم

إجابة : \(\log_(4\sqrt(2))(8)=1,2\)

لماذا تم اختراع اللوغاريتم؟

لفهم ذلك، دعونا نحل المعادلة: \(3^(x)=9\). فقط قم بمطابقة \(x\) لتفعيل المساواة. بالطبع \(س=2\).

الآن قم بحل المعادلة: \(3^(x)=8\).ما قيمة x؟ هذه هي النقطة.

سيقول الأذكى: "X أقل بقليل من اثنين". كيف بالضبط لكتابة هذا الرقم؟ للإجابة على هذا السؤال، تم اختراع اللوغاريتم. وبفضله يمكن كتابة الإجابة هنا بالشكل \(x=\log_(3)(8)\).

أريد التأكيد على أن \(\log_(3)(8)\)، مثل أي لوغاريتم هو مجرد رقم. نعم، يبدو غير عادي، لكنه قصير. لأننا إذا أردنا كتابتها على شكل عدد عشري فستبدو هكذا: \(1.892789260714.....\)

مثال : حل المعادلة \(4^(5x-4)=10\)

حل :

\(4^(5x-4)=10\)

لا يمكن جلب \(4^(5x-4)\) و\(10\) إلى نفس القاعدة. هذا يعني أنه لا يمكنك الاستغناء عن اللوغاريتم.

دعونا نستخدم تعريف اللوغاريتم:
\(a^(b)=c\) \(\Leftrightarrow\) \(\log_(a)(c)=b\)

\(\log_(4)(10)=5x-4\)

دعونا نقلب المعادلة بحيث تكون X على اليسار

\(5x-4=\log_(4)(10)\)

قبلنا. لننتقل \(4\) إلى اليمين.

ولا تخف من اللوغاريتم، تعامل معه كرقم عادي.

\(5x=\log_(4)(10)+4\)

قسمة المعادلة على 5

\(x=\)\(\frac(\log_(4)(10)+4)(5)\)


هذا هو جذرنا. نعم، يبدو الأمر غير عادي، لكنهم لم يختاروا الإجابة.

إجابة : \(\frac(\log_(4)(10)+4)(5)\)

اللوغاريتمات العشرية والطبيعية

كما هو مذكور في تعريف اللوغاريتم، يمكن أن تكون قاعدته أي رقم موجب باستثناء واحد \((a>0, a\neq1)\). ومن بين جميع القواعد المحتملة، هناك أساسان يتكرران كثيرًا لدرجة أنه تم اختراع تدوين قصير خاص للوغاريتمات الخاصة بهما:

اللوغاريتم الطبيعي: لوغاريتم قاعدته رقم أويلر \(\e\) (يساوي \(2.7182818…\)) تقريباً، ويكتب اللوغاريتم بالشكل \(\ln(a)\).

إنه، \(\ln(a)\) هو نفسه \(\log_(e)(a)\)

اللوغاريتم العشري: يتم كتابة اللوغاريتم الذي أساسه 10 \(\lg(a)\).

إنه، \(\lg(a)\) هو نفسه \(\log_(10)(a)\)، حيث \(a\) هو رقم ما.

الهوية اللوغاريتمية الأساسية

اللوغاريتمات لها العديد من الخصائص. إحداها تسمى "الهوية اللوغاريتمية الأساسية" وتبدو كما يلي:

\(a^(\log_(a)(c))=c\)

هذه الخاصية تتبع مباشرة من التعريف. دعونا نرى بالضبط كيف جاءت هذه الصيغة.

دعونا نتذكر ملاحظة قصيرة لتعريف اللوغاريتم:

إذا \(a^(b)=c\)، ثم \(\log_(a)(c)=b\)

أي أن \(b\) هو نفس \(\log_(a)(c)\). بعد ذلك يمكننا كتابة \(\log_(a)(c)\) بدلاً من \(b\) في الصيغة \(a^(b)=c\). اتضح \(a^(\log_(a)(c))=c\) - الهوية اللوغاريتمية الرئيسية.

يمكنك العثور على خصائص أخرى للوغاريتمات. بمساعدتهم، يمكنك تبسيط وحساب قيم التعبيرات باللوغاريتمات، والتي يصعب حسابها مباشرة.

مثال : أوجد قيمة التعبير \(36^(\log_(6)(5))\)

حل :

إجابة : \(25\)

كيفية كتابة رقم على شكل لوغاريتم؟

كما ذكر أعلاه، أي لوغاريتم هو مجرد رقم. والعكس صحيح أيضًا: يمكن كتابة أي رقم على شكل لوغاريتم. على سبيل المثال، نحن نعلم أن \(\log_(2)(4)\) يساوي اثنين. ثم يمكنك كتابة \(\log_(2)(4)\) بدلاً من اثنين.

لكن \(\log_(3)(9)\) يساوي أيضًا \(2\)، مما يعني أنه يمكننا أيضًا كتابة \(2=\log_(3)(9)\) . وبالمثل مع \(\log_(5)(25)\)، ومع \(\log_(9)(81)\)، وما إلى ذلك. وهذا هو، اتضح

\(2=\log_(2)(4)=\log_(3)(9)=\log_(4)(16)=\log_(5)(25)=\log_(6)(36)=\ سجل_(7)(49)...\)

ومن ثم، إذا أردنا، يمكننا كتابة اثنين على هيئة لوغاريتم مع أي أساس في أي مكان (سواء كان ذلك في معادلة، أو في تعبير، أو في متباينة) - فنحن ببساطة نكتب الأساس تربيعًا كوسيطة.

الأمر نفسه ينطبق على الثلاثي – يمكن كتابته كـ \(\log_(2)(8)\)، أو كـ \(\log_(3)(27)\)، أو كـ \(\log_(4)( 64) \)... هنا نكتب القاعدة في المكعب كوسيطة:

\(3=\log_(2)(8)=\log_(3)(27)=\log_(4)(64)=\log_(5)(125)=\log_(6)(216)=\ سجل_(7)(343)...\)

ومع أربعة:

\(4=\log_(2)(16)=\log_(3)(81)=\log_(4)(256)=\log_(5)(625)=\log_(6)(1296)=\ سجل_(7)(2401)...\)

ومع ناقص واحد:

\(-1=\) \(\log_(2)\)\(\frac(1)(2)\) \(=\) \(\log_(3)\)\(\frac(1)( 3)\) \(=\) \(\log_(4)\)\(\frac(1)(4)\) \(=\) \(\log_(5)\)\(\frac(1 )(5)\) \(=\) \(\log_(6)\)\(\frac(1)(6)\) \(=\) \(\log_(7)\)\(\frac (1)(7)\) \(...\)

ومع الثلث:

\(\frac(1)(3)\) \(=\log_(2)(\sqrt(2))=\log_(3)(\sqrt(3))=\log_(4)(\sqrt( 4))=\log_(5)(\sqrt(5))=\log_(6)(\sqrt(6))=\log_(7)(\sqrt(7))...\)

يمكن تمثيل أي رقم \(a\) على هيئة لوغاريتم ذو الأساس \(b\): \(a=\log_(b)(b^(a))\)

مثال : ابحث عن معنى التعبير \(\frac(\log_(2)(14))(1+\log_(2)(7))\)

حل :

إجابة : \(1\)

لوغاريتم الرقم الموجب b للأساس a (a>0, a لا يساوي 1) هو رقم c بحيث a c = b: log a b = c ⇔ a c = b (a > 0, a ≠ 1, b > 0)       

لاحظ أن لوغاريتم الرقم غير الموجب غير محدد. بالإضافة إلى ذلك، يجب أن يكون أساس اللوغاريتم رقمًا موجبًا لا يساوي 1. فمثلًا، إذا قمنا بتربيع -2، نحصل على الرقم 4، لكن هذا لا يعني أن اللوغاريتم للأساس -2 لـ 4 يساوي 2.

الهوية اللوغاريتمية الأساسية

سجل أ ب = ب (أ > 0، أ ≠ 1) (2)

من المهم أن يختلف نطاق تعريف الجانبين الأيمن والأيسر لهذه الصيغة. يتم تعريف الجانب الأيسر فقط لـ b>0 وa>0 وa ≠ 1. ويتم تعريف الجانب الأيمن لأي b، ولا يعتمد على a على الإطلاق. وبالتالي، فإن تطبيق "الهوية" اللوغاريتمية الأساسية عند حل المعادلات والمتباينات يمكن أن يؤدي إلى تغيير في OD.

نتيجتان واضحتان لتعريف اللوغاريتم

سجل أ = 1 (أ > 0، أ ≠ 1) (3)
سجل أ 1 = 0 (أ > 0، أ ≠ 1) (4)

وبالفعل، عند رفع العدد أ إلى القوة الأولى نحصل على نفس العدد، وعند رفعه إلى القوة صفر نحصل على واحد.

لوغاريتم المنتج ولوغاريتم الحاصل

سجل أ (ب ج) = سجل أ ب + سجل أ ج (أ > 0, أ ≠ 1, ب > 0, ج > 0) (5)

سجل أ ب ج = سجل أ ب − سجل أ ج (أ > 0, أ ≠ 1, ب > 0, ج > 0) (6)

أود أن أحذر تلاميذ المدارس من استخدام هذه الصيغ بلا تفكير عند حل المعادلات اللوغاريتمية والمتباينات. عند استخدامها "من اليسار إلى اليمين"، تضيق ODZ، وعند الانتقال من مجموع أو اختلاف اللوغاريتمات إلى لوغاريتم المنتج أو حاصل القسمة، تتوسع ODZ.

في الواقع، يتم تعريف التعبير log a (f (x) g (x)) في حالتين: عندما تكون كلتا الدالتين موجبتين تمامًا أو عندما يكون f (x) و g (x) أقل من الصفر.

بتحويل هذا التعبير إلى مجموع السجل a f (x) + log a g (x)، فإننا مضطرون إلى قصر أنفسنا فقط على الحالة عندما يكون f(x)>0 و g(x)>0. هناك تضييق في نطاق القيم المقبولة، وهذا غير مقبول بشكل قاطع، لأنه يمكن أن يؤدي إلى فقدان الحلول. توجد مشكلة مماثلة للصيغة (6).

يمكن إخراج الدرجة من علامة اللوغاريتم

سجل أ ب ص = ص سجل أ ب (أ > 0، أ ≠ 1، ب > 0) (7)

ومرة أخرى أود أن أحث على الحذر. خذ بعين الاعتبار المثال التالي:

سجل أ (و (س) 2 = 2 سجل أ و (س)

من الواضح أن الجانب الأيسر من المساواة محدد لجميع قيم f(x) باستثناء الصفر. الجانب الأيمن مخصص فقط لـ f(x)>0! من خلال أخذ الدرجة من اللوغاريتم، نقوم مرة أخرى بتضييق نطاق ODZ. يؤدي الإجراء العكسي إلى توسيع نطاق القيم المقبولة. كل هذه الملاحظات لا تنطبق فقط على القوة 2، بل أيضًا على أي قوة زوجية.

صيغة للانتقال إلى أساس جديد

سجل أ ب = سجل ج ب سجل ج أ (أ > 0، أ ≠ 1، ب > 0، ج > 0، ج ≠ 1) (8)

هذه الحالة النادرة عندما لا يتغير ODZ أثناء التحول. إذا اخترت الأساس c بحكمة (إيجابي ولا يساوي 1)، فإن صيغة الانتقال إلى قاعدة جديدة آمنة تمامًا.

إذا اخترنا الرقم b كقاعدة جديدة c، فسنحصل على حالة خاصة مهمة من الصيغة (8):

سجل أ ب = 1 سجل ب أ (أ > 0، أ ≠ 1، ب > 0، ب ≠ 1) (9)

بعض الأمثلة البسيطة مع اللوغاريتمات

مثال 1. احسب: log2 + log50.
حل. log2 + log50 = log100 = 2. استخدمنا صيغة مجموع اللوغاريتمات (5) وتعريف اللوغاريتم العشري.


مثال 2. احسب: lg125/lg5.
حل. log125/log5 = log 5 125 = 3. استخدمنا صيغة الانتقال إلى قاعدة جديدة (8).

جدول الصيغ المتعلقة باللوغاريتمات

سجل أ ب = ب (أ > 0، أ ≠ 1)
سجل أ = 1 (أ > 0، أ ≠ 1)
سجل أ 1 = 0 (أ > 0، أ ≠ 1)
سجل أ (ب ج) = سجل أ ب + سجل أ ج (أ > 0, أ ≠ 1, ب > 0, ج > 0)
سجل أ ب ج = سجل أ ب − سجل أ ج (أ > 0, أ ≠ 1, ب > 0, ج > 0)
سجل أ ب ص = ص سجل أ ب (أ > 0، أ ≠ 1، ب > 0)
سجل أ ب = سجل ج ب سجل ج أ (أ > 0، أ ≠ 1، ب > 0، ج > 0، ج ≠ 1)
سجل أ ب = 1 سجل ب أ (أ > 0, أ ≠ 1, ب > 0, ب ≠ 1)