Зоны субдукции на карте мира. Геологическое выражение зон субдукции

Если постоянно возникает так много нового морского дна, а Земля не расширяется (и существует достаточно доказательств этого), тогда, чтобы компенсировать этот процесс, что‑то на глобальной коре должно разрушаться. Именно это происходит на окраинах большей части Тихого океана. Здесь литосферные плиты сближаются, и на их границах одна из сталкивающихся плит погружается под другую и уходит глубоко внутрь Земли. Такие участки столкновения плит называются зонами субдукции (погружения, подныривания одной плиты под другую); на поверхности Земли они отмечаются глубокими океаническими рвами (желобами) и активными вулканами (рис. 5.4). Грандиозные цепи вулканов, образующие так называемое огненное кольцо, протянувшееся вдоль берегов Тихого океана, – Анды, Алеутские острова, а также вулканы Камчатки, Японии и Марианских островов – все они обязаны своим существованием явлению субдукции.

Рис. 5.4. Схематический поперечный разрез зоны субдукции (верхняя часть, не в масштабе) показывает литосферную плиту, опускающуюся в глубины мантии, и активные вулканы над нею. В нижней части рисунка точками изображены положения очагов землетрясений, зафиксированных под желобом Тонга в юго‑западной части Тихого океана. В совокупности они отмечают расположение погружающейся плиты до глубины приблизительно 700 километров. Отметки на горизонтальной шкале показывают расстояние от желоба. Составлено с частичным использованием рисунка 4‑10 из книги П. Дж. Уилли «Как работает Земля». Изд‑во «Джон Уайли и Сыновья», 1976.

Никто не может точно сказать, как именно начинается субдукция, когда две плиты начинают сближаться, но ключом к их взаимодействию является, по‑видимому, плотность пород. Плотная океаническая кора может подвергнуться субдукции, исчезнув в глубине Земли почти бесследно, в то время как сравнительно легкие континенты всегда остаются на поверхности. Вот почему дно океанов всегда молодо, а континенты стары: морское дно не только непрерывно образуется в разломах океанических хребтов, но и постоянно уничтожается в зонах субдукции. Как мы уже видели, отдельные части континентов имеют возраст почти четыре миллиарда лет, в то время как самые древние части морского дна не старше 200 миллионов лет. Один из первых пропагандистов идеи континентального дрейфа сравнил континенты с пеной, накапливающейся на поверхности кастрюли с кипящим супом, – живое, хотя не сказать, чтобы очень точное сравнение.

Реальность субдукции подтверждается землетрясениями, которые ее сопровождают. Хотя сейсмичность является характерной особенностью всех типов границ между плитами, только зоны субдукции отличаются глубокими землетрясениями, которые происходят на глубине 600 километров или более. Глубокие землетрясения были известны задолго до того, как тектоника плит приобрела популярность. В 1928 году японский сейсмолог К. Вадати сообщил о землетрясениях, происшедших под Японией на глубине нескольких сот километров. Приблизительно через двадцать лет другой геофизик, Хуго Бениоф, показал, что и в других частях света существуют «большие разломы», отмечающиеся частыми землетрясениями, которые погружаются глубоко в мантию из океанских рвов, как бы продолжая их на глубину. Он описал несколько таких разломов, расположенных как вдоль западного побережья Южной Америки, так и на юго‑западе Тихого океана в желобе Тонга. Эти области в то время не были интерпретированы как зоны субдукции и лишь позднее стало ясно, что эти гигантские плоско‑наклонные зоны повышенной сейсмичности точно следуют по пути плит, погружающихся внутрь мантии (рис. 5.4). Землетрясения возникают потому, что погружающиеся в горячую мантию части океанических плит остаются сравнительно холодными, в противоположность окружающим их породам мантии, остаются даже на больших глубинах настолько хрупкими, что в них могут возникать трещины, порождающие землетрясения. Некоторые из самых глубоких землетрясений могут также возникать по той причине, что минералы в погружающихся частях плит становятся неустойчивыми в обстановке больших давлений, которым они там подвергаются, и разрушаются внезапно, образуя более плотные минералы, резко изменяя при этом свой объем.

В противоположность сравнительно спокойным прорывам базальтовой лавы вдоль осей расхождения плит, вулканизм, свойственный зонам субдукции, часто проявляется очень бурно. Хотя эта вулканическая активность Земли и создает потрясающе прекрасные вулканы, как, например, гора Фудзи в Японии, она также вносит свой вклад во множество катастроф, сопровождающих историю Земли. Примерами таких катастроф являются погребение древнего римского города Помпеи под слоем горячего вулканического пепла, выброшенного соседним вулканом Везувий, грандиозное уничтожение всего живого вокруг в результате взрыва вулкана Кракатау в Индонезии в 1883 году и совсем недавно взрыв вулкана Пинатубо на Филиппинских островах в 1991 году. Почему существует вулканизм в зонах субдукции? В главе 2 мы намекнули на возможный ответ: океанические плиты содержат воду. В мощных толщах осадков, накапливающихся на океанском дне, по мере того как оно движется от места своего образования у хребтов к месту своего уничтожения в зонах субдукции, накапливается вода. Кроме того, во время этого долгого путешествия происходит реакция некоторых минералов базальтовой коры с морской водой и образуются другие, водосодержащие минералы. Хотя во время столкновения плит часть этих осадков соскребается с опускающейся плиты и выбрасывается на сушу, другая их часть уносится в мантию на значительные глубины. Во время опускания этих осадков вдоль зоны субдукции большая часть свободной воды, содержащейся в порах между зернами, выжимается увеличившимся давлением и пробивается обратно на поверхность. Но какая‑то ее часть остается, как и вода, связанная в структуре минералов коры. В конце концов увеличивающиеся температура и давление изгоняют из пород и эту воду, и она просачивается в мантию в верхней части зоны субдукции. Именно этот процесс вызывает вулканизм. На тех глубинах, где вода изгоняется из пор и из самих минералов, окружающая мантия уже весьма горяча, а добавление воды понижает температуру плавления пород настолько, что это плавление начинается. Этот принцип должен быть знаком жителям северных городов, которые зимой рассыпают на улицах соль, чтобы понизить температуру плавления (таяния) льда.

Во всех субдукционных зонах Земли активный вулканизм неизбежно возникает приблизительно на одной и той же высоте над опускающейся плитой, а именно – около 150 километров. Такова приблизительно глубина, на которой разрушаются водосодержащие минералы,

освобождая воду, которая способствует плавлению. Характерным для этой обстановки типом пород является андезит, получивший свое название, как вы можете догадаться, по названию горной цепи в Южной Америке (Анды), где эта порода весьма распространена. Лабораторные эксперименты показывают, что андезит представляет собой именно ту породу, образование которой следовало бы ожидать, если породы мантии расплавить в присутствии воды, выделившейся из погрузившейся плиты; эта вода объясняет также взрывной, бурный характер вулканизма, свойственного зонам субдукции. По мере приближения магмы к земной поверхности растворенная в ней вода и другие летучие компоненты в ответ на понижение давления быстро расширяются; это расширение часто имеет характер взрыва.

Многие из самых крупных землетрясений происходят вдоль зон субдукции. Это и не удивительно, если подумать, что происходит в этих областях: два гигантских куска земной коры, каждый толщиной около 100 километров, сталкиваются друг с другом, причем одна плита вталкивается под другую. К несчастью, некоторые районы, расположенные вблизи зон субдукции, очень плотно заселены. Мы можем предсказать со стопроцентной уверенностью, что в таких областях мощные разрушительные землетрясения будут продолжаться; вряд ли это будет большим утешением перед перспективой таких катастрофических событий, как землетрясение в Кобэ в Японии, происшедшее в начале 1995 года.

И все же Земля – это динамичная планета; даже зоны субдукции существуют не вечно, по крайней мере с точки зрения геологического времени. В конце концов они перестают действовать, и где‑нибудь образуются другие. Какие же события могут остановить процесс субдукции?

Чаще всего это столкновение между континентами после того, как океаническая кора, существовавшая между ними, оказывается израсходованной в процессе субдукции. Вспомним, что очень часто литосферные плиты состоят из континентальной и океанической коры. В то время как сама плита, может быть, и безразлична к природе своих пассажиров, этого нельзя сказать о зоне субдукции. Она просто не в состоянии заглотить континентальную кору с ее низкой плотностью. Поэтому, когда океанический бассейн в конце концов закрывается благодаря субдукции, два обломка континентальной коры просто сталкиваются и припаиваются друг к другу; субдукция прекращается. Упрощенный набросок такого процесса показан на рис. 5.5. Он не так уж прост, как можно подумать по приведенному описанию; в типичном случае столкновение между континентами сопровождается мощным вулканизмом, метаморфизмом и горообразованием и занимает очень много времени.

Пожалуй, самым выдающимся примером такого процесса, взятым из недавнего прошлого, является столкновение между Индией и Азией, более подробно описанное в главе 11, в результате которого возникли Гималаи. Когда‑то давным‑давно на том месте, где сейчас располагаются Гималаи, существовала зона субдукции, вдоль которой находящаяся южнее плита погружалась на север под Азию, а между Азией и континентом Индии, который располагался южнее, находился обширный океан. Породы Гималаев и Тибетского плато свидетельствуют, что эта ситуация продолжалась очень долгое время, в течение которого много мелких фрагментов плавучей континентальной коры, перемещенных вместе с этой океанической плитой, прибыло с юга к зоне субдукции и приклеилось к южному краю Азии. Но постепенно дно океана было поглощено зоной субдукции, в результате чего Индия притянулась к северу. Между 50 и 60 миллионами лет назад угол этого континента достиг зоны субдукции и стал прижиматься к Азии. Инерция его движения заставила северную часть Индии проскользнуть под южную часть азиатской плиты, образуя участок континентальной коры толщиной в два раза больше, чем где‑либо еще в мире. Осадки, смытые с окраин двух сближенных континентов еще до их столкновения, вулканические острова, существовавшие вдоль их краев, и породы самих континентов попали в ловушку гигантского столкновения, были смяты в систему параллельных складок, разбиты на блоки системой разломов и метаморфизованы. В результате образовалась самая высокая горная цепь и самое большое плоскогорье на Земле.

Рис. 5.5. Схематический разрез, показывающий, как процесс субдукции может закрыть океанский бассейн и привести к столкновению континенты, образуя огромные горные системы типа Гималаев.

Обширная горная страна Гималаев все еще считается границей плиты, потому что до сих пор существует относительное движение между Азией и Индией. Эта страна пока поднимается; там довольно часты землетрясения. Действительно, землетрясения, снимающие напряжения, возникающие в земной коре, происходят в наши дни уже вдали от зоны столкновения, особенно в Китае, как результат того факта, что части Азии были сжаты и повернуты к востоку в момент, когда обе плиты устремились друг на друга. Однако в конце концов, когда прекратится относительное движение между двумя ранее отделенными друг от друга континентами, Гималаи будут признаны неактивной шовной зоной, находящейся внутри континента. Но когда это произойдет, кое‑чему другому придется отодвинуться, чтобы дать пристанище новой области морского дна, образующейся вдоль океанического хребта, лежащего далеко к югу (рис. 5.2). Проведенные в последние годы исследования морского дна вблизи от Шри‑Ланки показывают, что южнее этого острова, возможно, образуется новая зона субдукции, которая разрешит геометрическую головоломку.

Столкновения континента с континентом, подобные тому, что произвели на свет Гималаи, видимо, происходят регулярно на протяжении геологической истории. Хотя созданные ими высокие горы давно разрушились, следы таких событий можно распознать в древних породах по тому факту, что они образуют характерные длинные полосы сильно метаморфизованных пород, имеющих приблизительно одинаковый возраст. Хорошим примером такой области является провинция Грэнвиль в восточной части Северной Америки (рис. 4.3), которая была, без сомнения, в глубокой древности очень похожа на нынешние Гималаи.

7. Удивительные явления - спрединг и субдукция

Эти явления иллюстрирует рисунок на с. 74. Начнем со спрединга. Он происходит вдоль срединно-океанических хребтов - границ раздела раздвигающихся плит (эти границы всегда проходят по океаническому дну). На нашем рисунке срединно-океанический хребет разделяет литосферные плиты А и В. Это могут быть, например, Тихоокеанская плита и плита Наска соответственно. Линии со стрелками на рисунке показывают направления движения магматических масс астеносферы. Легко видеть, что астеносфера стремится увлечь плиту А влево, а плиту В вправо и тем самым раздвигает эти плиты. Раздвиганию плит способствует также поток магмы астеносферы, направленный снизу вверх прямо к границе раздела плит; он действует подобно своеобразному клину. Итак, плиты А и В слегка раздвигаются, между ними образуется расщелина (рифт). Давление пород в этом месте падает и там возникает очаг расплавленной магмы. Происходит подводное извержение вулкана, расплавленный базальт изливается через расщелину и застывает, образуя базальтовую лаву. Вот таким образом и наращиваются края раздвигающихся плит А и В. Итак, наращивание происходит за счет магматической массы, поднявшейся из астеносферы и разлившейся по склонам срединно-океанического хребта. Отсюда и английский термин «спрединг», что означает «расширение», «растекание».

Следует иметь в виду, что спрединг происходит непрерывно. Плиты АиВ все время наращиваются. Именно так и осуществляется движение данных плит в разные стороны. Подчеркнем: движение литосферных плит -это не есть перемещение какого-то объекта в пространстве (с одного места на другое); оно не имеет ничего общего с движением, скажем, льдины на поверхности воды. Движение литосферной плиты происходит за счет того, что в каком-то месте (там, где находится срединно-океанический хребет) все время наращиваются новые и новые части плиты, в результате чего ранее образовавшиеся части плиты все время отодвигаются от упомянутого места. Так что данное движение следует воспринимать не как перемещение, а как разрастание (можно сказать: расширение).

Ну а при разрастании, естественно, возникает вопрос: куда девать «лишние» части плиты? Вот плита В разрослась настолько, что достигла плиты С. Если в нашем случае плита В - это плита Наска, то плитой С может служить Южноамериканская плита.

Заметим, что на плите С находится материк; это более массивная плита по сравнению с океанической плитой В. Итак, плита В достигла плиты С. Что же дальше? Ответ известен: плита В прогнется книзу, поднырнет (подвинется) под плиту С и будет продолжать разрастаться в глубинах астеносферы под плитой С, постепенно превращаясь в вещество астеносферы. Это явление называют субдукцией. Данный термин происходит от слов «суб» и «дукция». По-латыни они означают «под» и «веду» соответственно. Так что «субдукция» - это подведение подо что-то. В нашем случае плита В оказалась подведенной под плиту С.

На рисунке хорошо видно, что вследствие прогиба плиты В глубина океана вблизи края континентальной плиты С возрастает - здесь образуется глубоководный желоб. Рядом с желобами обычно возникают цепочки действующих вулканов. Они образуются над тем местом, где «поднырнувшая» литосферная плита, наклонно уходящая в глубину, начинает частично плавиться. Плавление происходит вследствие того, что температура с глубиной заметно повысилась (до 1000-1200 °С), а давление пород возросло пока еще не очень сильно.

Теперь ты представляешь сущность концепции глобальной тектоники литосферных плит. Литосфера Земли - это совокупность плит, которые плавают на поверхности вязкой астеносферы. Под воздействием астеносферы океанические литосферные плиты движутся в направлении от срединно-океанических хребтов, кратеры которых обеспечивают постоянное нарастание океанической литосферы (это есть явление сцрединга). Океанические плиты движутся к глубоководным желобам; там они уходят в глубину и в конечном счете поглощаются астеносферой (это явление субдукции). В зонах спрединга земная кора «подпитывается» веществом астеносферы, а в зонах субдукции она возвращает «излишки» вещества в астеносферу. Эти процессы происходят за счет тепловой энергии земных недр. Зоны спрединга и зоны субдукции наиболее активны в тектоническом отношении. На них приходится основная масса (более 90%) очагов землетрясений и вулканов на земном шаре.

Описанную картину дополним двумя замечаниями. Во-первых, существуют границы между плитами, перемещающимися примерно параллельно друг другу. На таких границах одна плита (или часть плиты) смещается относительно другой по вертикали. Это так называемые трансформные разломы. Примером могут служить большие тихоокеанские разломы, идущие параллельно друг другу. Второе замечание состоит в том, что субдукция может сопровождаться процессами сминания и образования горных складок на краю континентальной коры. Именно так образовались Анды в Южной Америке. Особого разговора заслуживает образование Тибетского нагорья и Гималаев. Об этом мы поговорим в следующем параграфе.

Земная кора самый верхний слой Земли, то и изучена лучше всех. В её недрах залегают очень ценные для человека горные породы и минералы, который он научился использовать в хозяйстве. Рисунок 1. Строение Земли Верхний слой земной коры состоит из достаточно мягких горных пород. Они образованы в результате разрушения твёрдых пород (например, песок), отложения остатков животных (мел) или...

Выделяются два тектонических режима: платформенный и орогенный, которым соответствуют мегаструктуры II порядка – платформы и орогены. На платформах развивается рельеф разновысотных равнин различного генезиса, в областях горообразования – горные страны. Платформенные равнины Платформенные равнины развиваются на разновозрастных платформах и являются основной мегаформой рельефа континентов...

А иногда могут образовываться даже провалы. Эти формы широко распространены в среднеазиатских районах. Карст и карстовые формы рельефа. Известняки, гипс и другие родственные им породы почти всегда имеют большое количество трещин. Дождевые и снеговые воды по этим трещинам уходят вглубь земли. При этом они постепенно растворяют известняки и расширяют трещины. В результате вся толща известняковых...

Высокая точка всей Украины гора Говерла (2 061 м) в Украинских Карпатах. Низменности, возвышенности и горы Украины приурочены к различным тектоническим структурам, которые влияли на развитие современного рельефа, на поверхность отдельных частей территории. Низменности. На севере Украины находится Полесская низменность, имеющая наклон к рекам Припять и Днепр. Высоты ее не превышают 200 м, только...

Понимание природы тонкой структуры зоны субдукции имеет ключевое значение для физики сейсмотектонического процесса. Результатом интенсивных геофизических и геологических исследования зон суб- дукции в последние несколько десятков лет являются новые данные о структуре этой зоны и особенностях сейсмичности. Они поставили целый ряд вопросов, ответы на которые нельзя получить в рамках модели плитотектоники. Предпочтительнее рассматривать эти вопросы на основе активизации эндогенных процессов, имеющих значительную вертикальную компоненту переноса энергии. Ограничимся изложением результатов ряда работ по Камчатке, Курилам и Японии, которые широко известны и достаточно объективны.

Прежде всего, рассмотрим особенности протекания сейсмотектонических процессов, которые одновременно отражают и условия их проявления. Об этом можно судить по распределению плотности эпицентров Камчатских землетрясений (Рис.5.6, [Болдырев, 2002]). Основная сейсмоактивная зона имеет ширину 200 - 250 км. Распределение плотности эпицентров очагов (далее очагов) в пространстве носит сложный характер, при этом выделяются изометрические и вытянутые участки различной плотности очагов.

Участки повышенной плотности очагов образуют систему лине- аментов, из которых наиболее заметные совпадают с простиранием морфоструктур Камчатского региона. Эти участки устойчивы в пространстве за период инструментального контроля, начиная с 1962 и кончая 2000 годом. Устойчиво в пространстве также положение слабосейсмичных участков. Заметим, что частота землетрясений внутри этих участков может существенно меняться. Это показано при реализации, например, алгоритмов RTL [Соболев и Пономарев,2003].

Рис.5.6 Плотность эпицентров (N на 100кв.км) Камчатских землетрясений 1962-1998гг. (Н=0-70км, кб > 8.5). Прямоугольник - область уверенной регистрации событий с кб> 8.5. 1 - современные вулканы, 2 - очаги с кб > 14.0, 3 - ось глубоководного желоба, 4 - изобата - 3500м .

Пространственно - временные изменения плотности очагов в трех полосах сейсмической зоны Камчатки приведены на рис. 5.7. [Болдырев, 2002 ]. Как видно, положение сейсмоактивных и слабо сейсмичных участков весьма устойчиво во времени в данный период контроля. На этом же рисунке показано положение очагов сильных землетрясений (К > 12.5), совпадающие с участками повышенной плотности очагов слабых землетрясений. Можно констатировать, что сильные события происходят в зонах повышенной активности слабых событий, хотя по механистическим представлениям в этих участках должна происходить разрядка накапливаемых напряжений.

Весьма интересны результаты анализа, представленные на рис. 5.8 [Болдырев, 2000]. На верхней части рисунка показан вертикальный разрез распределения плотности гипоцентров в ячейках 10 на 10км и положение коромантийного раздела. Под Камчаткой практически отсутствуют очаги в мантии, а под экваторией Тихого океана они преобладают. На нижней части рисунка автор показывает предположительные тренды миграции сильных событий от 159 о в.д. до 167 о в.д. Скорость "миграции" очагов 50 - 60 км/год, периодичность активизации 10 - 11 лет. Таким же образом можно выделить тренды событий более низкого энергетического уровня, "распространяющиеся" с запада на восток. Однако природа таких горизонтальных процессов передачи упругой энергии не обсуждалась. Отметим, что схема горизонтально действующих процессов передачи упругой энергии не согласуется с наблюдаемыми устойчивыми положениями в пространстве участков с постоянным уровнем сейсмичности. Существование устойчивых участков с активными сейсмическими явлениями в большей мере указывают на протекание вертикальных процессов возбуждения среды, имеющих в данный период определенную ритмичность.

Возможно, что с этими процессами связаны различные характеристики среды, отражающиеся в скоростных моделях (Рис.5.9 и 5.10) [Тараканов, 1987; Болдырев и Кац, 1982]. Сразу бросается в глаза неоднородности, образующие сложную мозаику "блоков " с повышенным или пониженным уровнем скоростей (относительно осредненного скоростного разреза по Джеффрису). Причем "блоки ", в которых почти постоянны скорости, расположены в широком диапазоне глубин, контрастно выделяются наклонные структуры также с большим перепадом глубин. В одних и тех же диапазонах глубин скорости упругих волн могут быть как высокими, так и низкими. Скорости в подконтинентальной мантии ниже скоростей в подокеанической мантии на одних и тех же глубинах. Необходимо также отметить наибольшие значения градиентов скоростей.

Рис.5.7 Пространственно-временные распределения плотности очагов (число событий за 0.5 года в интервале AY = 20км) в трех продольных линеаментах Камчатской сейсмоактивной зоны. Крестиками помечено положение 20 сильнейших землетрясений в каждой полосе.

Рис.5.8. Вертикальный разрез (а) и пространственно-временные изменения плотности очагов (б) в полосе 20км вдоль 55°с.ш.. 1- очаги землетрясений Кб>12.5, 2 - проекция современной вулканической зоны, 3 - проекция оси глубоководных желобов.

Рис.5.9 Поля скоростей продольных волн (км/с) в фокальной зоне вдоль профиля станция Хатинохе - о-в Шикотан: 1 - < 7.25, 2 - 7.25 - 7.5, 3 - 7.51 - 7.75, 4 - 7.76 - 8.0, 5 - 8.01 - 8.25, 6 - 8.26 - 8.5, 7 - > 8.5, 8 - гипоцентры сильнейших землетрясений.

Рис.5.10 Широтный профиль изменения скоростей продольных волн (станция SKR - глубоководный желоб), теплового потока и аномалий поля силы тяжести. 1 - изолинии поля скорости V ; 2 - значения скорости для стандартной модели Земли; 3 - положение поверхности М и значения граничных скоростей в ней; 4 - изменение фонового теплового потока; 5 - аномалии поля силы тяжести; 6 - действующие вулканы; 7 - глубоководный желоб, 8 - границы сейсмофокального слоя.

Уровень сейсмической активности (т.е. плотности очагов) в зонах имеет обратную корреляцию со скоростью V ? и прямую с добротностью среды. При этом участки повышенных значений скоростей, как правило, характеризуются более высоким уровнем затухания [Болдырев, 2005], причем гипоцентры наиболее сильных событий располагаются в зонах с повышенной скоростью и приурочены к границам "блоков" с разными скоростями [Тараканов, 1987] .

Была построена обобщенная скоростная модель блоковой среды для сейсмофокальной зоны и ее окрестностей [Тараканов, 1987]. Фокальная зона по пространственному распределению гипоцентров и скоростному строению также является неоднородной. По толщине она является как бы двухслойной, т.е., сама сейсмофокальная зона и примыкающий к ней высокоскоростной слой (или "блок") с Д V ~ (0.2 - 0.3 км/с). Аномально высокими скоростями отличается наиболее высокосейсмичная часть зоны, а аномально низкими скоростями характеризуются блоки непосредственно под островными дугами и еще глубже в направлении сейс- мофокальной зоны. О двухслойной сейсмофокальной зоне на некоторых глубинах сообщалось и в других работах [Строение..,1987].

Эти данные можно относить к объективным, хотя границы выделенных "блоков" могли быть определены не достаточно точно. Наблюдаемые распределения скоростей сейсмических волн, особенности тектонических напряжений и деформаций, а также пространственное распределение аномалий различных геофизических и гидрогеохимических полей не могут реализоваться, если представить, что сейсмофокальная зона находится в постоянном одностороннем движении, как это следует из модели плитотектоники [Тараканов и Ким, 1979; Болдырев и Кац, 1982; Тараканов, 1987; Болдырев, 1987]. Здесь аномалии скоростей связывают с вариациями плотности, что может объяснить перемещение вязкой среды в поле силы тяжести. При этом отмечается, что характер движений напоминает поля в конвективной ячейке, где восходящие движения могут трансформироваться в горизонтальные движения верхней мантии, которое выделяется вблизи островной гряды. Положение сейсмофокальной зоны, ее очертания и наклон связываются с взаимодействием разуплотненной мантией под окраинным морем с более плотной средой под океаном.

Представляют интерес работы Л.М. Балакиной, посвященные исследованиям механизмов очагов землетрясений в зонах субдукции ([Балакина, 1991,2002] и литература к ним). Наиболее полно исследовались Курило-Камчатская остравная дуга и Японские острова. Для землетрясений (М > 5.5) в верхних 100 км литосферы выявлен единый тип механизмов очагов. В нем одна из возможных плоскостей разрыва ориентирована устойчиво вдоль простирания островной дуги и имеет крутой угол наклона (60 - 70°) в сторону глубоководного желоба, вторая - пологая плоскость (угол падения менее 30°) не имеет устойчивой ориентации по азимуту простирания и направлению падения. В первой плоскости преобладающая подвижка всегда взброс, во второй - меняется от надвига до сдвига. Отсюда следует закономерная ориентация действующих напряжений для глубин до 100км: напряжение сжатия по всей толще литосферы ориентированно вкрест простирания островной дуги с наклоном в сторону глубоководного желоба под небольшими углами к горизонту (20-25°). Напряжения растяжения на этих глубинах ориентировано круто с наклоном в сторону тылового бассейна и большим разбросом по азимуту простирания. Это означает, что представления о совпадении ориентации осей напряжений сжатия или растяжения с вектором наклона фокальной зоны не является обоснованным. Также Л.М. Балакиной отмечается, что в очагах промежуточных и глубокофокусных землетрясений ни одно из напряжений сжатия или растяжения нельзя считать совпадающим по направлению с вектором падения сейсмофокальной зоны. Анализ механизмов очагов показал, что в литосфере и мантии имеет место субвертикальное перемещение вещества. Однако в мантии, в отличие от литосферы, оно может быть как восходящим, так и нисходящим (рис.5.11). Поэтому сейсмофокальная зона может быть пограничной между зонами поднятия и опускания. Ведущим процессом представляется образование и развитие тыловых структур погружения, обусловленное перемещением масс, охватывающих всю верхнюю мантию под тыловым бассейном (Балакина, 1991). Этот процесс связывается с гравитационной дифференциацией вещества в области фазовых переходов между нижней и верхней мантией, т.е., процесс перемещения начинается снизу, а не сверху, как это следует из модели плитотектоники. Фокальная же зона - это область дифференцированных движений на границе между мантией тылового бассейна и океанической. Происходящее перераспределение масс сопровождается также их горизонтальным перемещением, развитие которого в астеносфере обуславливает поднятие подошвы соответствующего участка литосферы. В результате вдоль фокальной зоны концентрируются напряжения и накапливаются сдвиговые деформации, которые определяют закономерности распределения механизмов очагов на различных глубинах, от поверхностных до мантийных.

Развитые в цитированных работах представления о формировании сейсмофокальных зон (зоны субдукции) во многом схожи, а механизмы вертикальных движений находят свое объяснение также в модели вертикальной аккреции вещества [Вертикальная.. , 2003].

Однако остаются две группы вопросов. Первая группа: природа слабой коровой сейсмичности, квазистационарность зон сейсмичности с различной активностью, сопряженность зон слабой и более сильной сейсмичности. Вторая группа вопросов связана с природой глубокофокусной сейсмичности и скоростными моделями среды.

Ответы на первую группу вопросов можно получить из представлений о последствиях взаимодействия восходящих потоков легких газов с твердой фазой литосферы. Интенсивность сейсмических событий в различных зонах (пятнистость сейсмичности) обусловлена различием потоков восходящих легких газов, их цикличностью, т.е., пятнистость сейсмичности отражает соответствующую неравномерность восходящих потоков легких газов.

Рис.5.11 Схема дифференциальных перемещений вещества в пограничной зоне между активной мантией тылового бассейна и пассивной океанической мантией, происходящих в процессе погружения тылового бассейна (по Балакиной). Вертикальное сечение, перпендикулярное простиранию дуги. 1 - нисходящие движения на периферии тылового бассейна; 2 - горизонтальные перемещения вещества в астеносфере под островным склоном желоба; 3 - линии поднятия подошвы литосферы, вследствие перемещения вещества в астеносфере; 4,5 - ориентация напряжений: 4 - сжатия, 5 - растяжения, возникающих при дифференциальных перемещениях вещества в литосфере и в нижней части фокальной зоны; 6 - ориентация крутых разрывов и подвижек в литосфере; 7 - верхняя мантия под тыловым бассейном; 8 - океаническая верхняя мантия; 9 - фокальная зона; 10 крутые разрывы в низах фокальной зоны.

Природа процессов формирования тонкой скоростной структуры среды, как нам представляется, практически не обсуждалась. Скоростная структура среды весьма удивительна своей контрастностью. Внешнескоростная структура среды напоминает вертикальные зоны (блоки) повышенной или пониженной сейсмичности, однако они расположены в переходной зоне нижней коры и верхней мантии (40-120 км). Изменения скоростного режима в вертикальных блочных структурах может быть объяснено не только на основе чисто плотностных моделей (происхождение которых необходимо обсуждать), но и вариациями температурного режима, связанного с тепловыми эффектами восходящих потоков водорода в различных элементах структуры. Причем в переходной зоне от верхней мантии до нижней коры речь может идти только о восходящей диффузии атомарного водорода в кристаллических структурах. По-видимому возможны струйные течения водорода и гелия в направлении менее плотной упаковки кристаллических структур, аналогичные наблюдаемым в лабораторных экспериментах (рис.4.4 б,в,г). Подтверждением этого могут служить данные по быстрой изменчивости скоростных параметров среды [Славина и др., 2007].

Обсудим возможные механизмы изменения свойств среды в зонах струйных восходящих течений водорода. Один из механизмов связан с процессами растворения водорода в кристаллических структурах. Это процесс эндотермический. Хотя для горных материалов теплоты растворения водорода не известны, однако для оценок можно взять данные для материалов, не образующих гидридных соединений. Эта величина может быть порядка 30 ккал /моль(Н). При непрерывных восходящих потоках атомарного водорода (при условии занятых водородом вакансий и дефектных структур) порядка 1 моль Н/м 2 понижение температуры может составить 50-100°. Этому процессу может способствовать текстурированность определенных граничных структур, например, в сейсмофокальной зоне и прилегающих областях. Следует отметить, что проявления эндотермических процессов, сопровождающих растворение водорода в кристаллических структурах, интенсивны в зонах структурно-вещественных преобразований, реализующих реидное течение вещества. На возможность таких процессов указывают ряд закономерностей распространения упругих волн. Например, вертикальные зоны повышенных скоростей характеризуются более высоким уровнем их затухания [Болдырев, 2005]. Это может быть связано с взаимодействием упругих волн с водородной подрешеткой, концентрация которой повышена в зонах с более низкой температурой. Такие эффекты известны в лабораторной практике. Наличие водородной подрешетки после насыщения горных материалов фиксировалось в рентгеноструктурных исследованиях по появлению сверхструктурных отражений на малых углах (рис. 4.2). В этих представлениях скоростных структур рассматриваются два типа зон: зона с нормальным фоновым восходящим потоком водорода и зона с небольшой концентрацией водорода (до этого в этой зоне температура была повышена), где возможно дополнительное растворение водорода. Можно отметить, что появление в геологической среде двухфазного состояния вещества при высоком давлении водорода может привести к увеличению плотности за счет более плотной упаковки структур.

Однако можно рассматривать и другую модель формирования различий в скоростных структурах среды. При струйных течениях водорода по различным структурам (например, на рис.4.4б) с ним выносится определенное количества тепла [Летников и Дорогокупец, 2001]. В рамках этих представлений существуют структуры с повышенной температурой и структуры с нормальной температурой для соответствующих глубин. Но все это означает, что скорости упругих волн в различных структурах будут со временем изменяться, причем время изменений может быть весьма небольшим, что показала Л.Б. Славина с коллегами.

В рамках рассматриваемых процессов некоторые свойства сейсмо- фокальной зоны (зоны субдукции) можно связывать с процессами взаимодействия восходящего потока глубинного водорода с твердой фазой. Сейсмофокальная зона является стоком легких газов. Повышенная концентрация дефектов структуры, о чем говорилось выше, может привести к накоплению водорода и гелия в дефектах (вакансиях), с плотностью, близкой к плотности их в твердых фазах. За счет этого плотность материала сейсмофокальной зоны может увеличиться на доли единиц (г/см 3). Это также может способствовать увеличению скорости упругих волн. Однако этот процесс происходит на фоне более масштабных явлений планетарного типа, обусловленных, по-видимому, вертикальным переносом вещества (адвекционно-флюидный механизм [Белоусов, 1981; Спорные..,2002; 0кеанизация..,2004; Павленкова, 2002]), а также процессами в граничных слоях между континентальными и океаническими мантией и литосферой. Естественно, что эта пограничная зона должна обладать рядом уникальных свойств. Формирование этой зоны и поддержание ее длительного достаточно устойчивого состояния сопровождается возникновением в ней, как отмечалось выше, высоких напряжений, создающих определенную текстуру деформации. Текстура деформации также может внести существенный вклад в увеличение скоростей упругих волн вдоль таких граничных структур. Формированию и поддержанию текстуры деформации способствует также восходящая диффузия водорода и гелия. Примеры текстурирования (Рис.4.1б) горных материалов при насыщении их легкими газами были приведены выше. Следует отметить, что в текстурированных структурах повышенная концентрация дефектов. Это способствует накоплению в них легких газов и проявлениям неустойчивости среды за счет постоянной восходящей диффузии легких газов. Поэтому пограничная зона, она же сейсмофокальная зона, также может представлять двухфазную структуру, что влияет на ее скоростные параметры. Заметим, что неравновесное состояние геологической среды при повышенных значениях Р-Т параметров может быть признаком протекания сверхпластичности. Это следует из лабораторных представлений и наблюдений сверхпластичности. Однако перенос этих представлений на условия среды глубже 150-200км пока не имеет реальных оснований.

Теперь о природе глубокофокусных землетрясений, точнее, конечно, говорить о природе подготовки и протекания разномасштабных глубокофокусных "движений". Причем основанием для этих представлений являются особенности сейсмических явлений, характеризующихся сдвиговой компонентой движений в так называемом глубокофокусном "очаге". Основные положения представлений об этом исходят в настоящее время из модели плитотектоники. Однако эта модель подвергается все большей критике [Спорные.., 2002; Океанизация.., 2004]. Накопленный объем геологических и геофизических данных ставит под сомнение реальность этой модели. В рамках модели плитотекто- ники протекание глубокофокусных движений связывали с фазовыми переходами оливин-шпинель при определенных Р-Т условиях в граничных слоях опускающейся холодной океанической плиты [Калинин и др., 1989]. Фазовые границы в погружающейся плите представляются механически ослабленными зонами, вдоль которых осуществляется проскальзывание сегментов погружающихся жестких плит при некотором участии "флюидной фазы" [Родкин, 2006], т.е. очагом является зона проскальзывания. В рамках этой модели пытаются объяснить также резкие изгибы погружающихся плит, выявленные по гипоцентрам глубоких землетрясений и по данным сейсмической томографии. Эти резкие изгибы плит связываются также с фазовыми переходами на определенных глубинах и соответствующей потерей жесткости таких плит. Однако при этом не учитывается природа сил (в рамках модели плитотектоники), вызывающая движение плиты вниз. Можно ли объяснить действием этих сил горизонтальное движение плиты после ее изгиба? Можно ли затем изменить направление движения плиты вниз? На эти вопросы необходимо отмечать. Остается также вопрос к природе резкой контрастности границ опускающейся плиты. Эти вопросы в модели плитотектоники не обсуждаются и не могут в ней найти объяснений.

Учитывая выше изложенное, а также многочисленные данные исследований, необходимо согласиться с теми, кто показывает уязвимость представлений плитотектоники. Зона Заварицкого-Беньофа является границей двух сред, континентальной литосферы-мантии и океанической литосферы-мантии. Эти среды оказывают на граничную структуру и ее динамику основное влияние. Однако ряд особенностей граничной структуры указывает на то, что она является мощным стоком легких газов, прежде всего водорода, от ядра к поверхности.

Восходящие потоки водорода имеют струйный характер и могут контролироваться ярко выраженными границами, которыми определяются структурными особенностями среды. Это было показано при лабораторном моделировании (рис. 4.4б,в,г). Как уже отмечалось, в направлении к поверхности концентрация водорода будет увеличиваться. Постепенно дефектные места (дислокации, вакансии, дефекты упаковки др.) будут заняты водородом и его поток будет осуществляться только по междоузлиям. Поэтому основным препятствием для движения потока будут уже занятые водородом дефектные структуры и элементы текстуры деформации. Водород начнет накапливаться в междоузлиях и свободных дефектах структуры, вызывая структурные напряжения.

Известна вертикальная и субгоризонтальная расслоенность верхней мантии. Природа расслоенности верхней мантии рассматривают на основе тепловой конвекции, адвективно-полиморфного и флюидного механизмов. Анализ действия этих процессов рассматривался в работах [Павленкова, 2002]. На основе этого анализа делался вывод, что наиболее полно можно объяснить расслоенность верхней мантии действием флюидного механизма [Летников, 2000]. Суть рассматриваемого здесь механизма заключается в том, что благодаря значительной подвижности флюидов вещество мантии достаточно быстро (по сравнению с конвективным течением) поднимается вверх по ослабленным или разломным зонам. На некоторых глубинах оно задерживается, образуя слои с повышенной концентрацией флюида. Дальнейшее продвижение глубинного вещества вверх зависит от проницаемости верхней мантии. Такими зонами проницаемости являются наклонные мантийные структуры, в том числе так называемые зоны субдукции, по существу зона сочленения двух различных структур. Эти зоны имеют изломы, а в ряде случаев изломы имеют углы, близкие к прямым.

Однако зоны "проницаемости" в верхней мантии не могут иметь трещин, поэтому они могут быть проницаемы только для легких газов (под флюидом следует понимать только легкие газы), которые образуют фазы внедрения. Это водород и гелий. Зоны изгиба представляются зонами накопления водорода в кристаллических структурах. Можно полагать, что поток водорода из внешнего ядра квазипостоянен, поэтому накопление водорода в этих зонах будет заканчиваться его прорывом в вышележащие структуры. Примером такого поведения водорода может быть струйный прорыв (см. рис. 4.4 в,г и 4.7-4.10). Этот прорыв будет сопровождаться перестройкой снизу вверх протяженных кристаллических структур, проявляющейся в ее быстром деформировании, т.е. тем, что называют глубокофокусным землетрясением. Естественно, что в этом процессе нет разрыва сплошности. В подтверждение этой модели можно привести данные по цикличности или ритмичности глубокофокусных землетрясений с периодичностью 7-8 лет [Поликарпова и др., 1995], отражающих косвенно как величину глубинного потока водорода, так и особенности взаимодействия этого потока с твердой фазой и ее реакцию на этот поток.

Вместо заключения.

Эндогенные процессы в так называемых зонах субдукции действуют в масштабах, существенно превышающих региональные. Измерения возмущений различных полей в локальных участках могут дать информацию об активизации пространственных или локальных процессов. Однако они не могут помочь в оценке и прогнозировании локальной реакции среды в тех или иных участках. В тоже время плотная сеть мониторинга, где она возможна, может помочь в оконтуривании региональной зоны эндогенного возбуждения среды, но вряд ли может указать на вероятное место сильного события.

Чтобы управлять чем бы то ни было, надо считаться с массовыми фактами, а еще лучше - понимать их.

Не так давно, ученым стало известно о том, что Средиземное море умирает и судя по данным, которые удалось собрать за это время, есть повод полагать, что соседствующему Атлантическому океану придется пережить новые времена.

Для научного мира не секрет, что срок жизни океанов – несколько сотен миллионов лет, что по меркам нашей планеты не так уж много. Одни океаны появляются, а другие уходят навсегда. Процесс формирования связан с разрывом континентов, который рано или поздно происходит, а смерть океанов соответственно, начинается, когда континенты сталкивается и океаническая кора погружается в мантию Земли.

Однако, не смотря на эти знания, довольно неопределенным остается процесс формирования так называемых зон субдукции (именно этот процесс начинается сейчас в Атлантике). Сама зона субдукции – это линейно протяжённая зона, вдоль которой происходит погружение одних блоков земной коры под другие. Чаще всего в них океаническая кора пододвигается под островную дугу или активную континентальную окраину, и погружается в мантию.

Интересное открытие в этой сфере сделал Жуан Дуарте из Университета Монаш, который решил найти для наблюдения формирующуюся зону субдукции для дальнейшего исследования. Наблюдения привели его к абсолютно новому тектоническому примеру плит в южном районе Португалии. В течение восьми лет, исследователь и его команда проводили замеры и занимались картографированием геологической активности на берегах Португалии и обнаружили, что полученные сведения говорят о том, что в этом районе формируется зона субдукции.

Открытым и известным фактом было то, что юго-западный район Португалии был испещрен надвигами, которые, по мнению группы Дуарте соединены между собой трансформными разломами, а стало быть – это не отдельные участки пород, которые заходят под другие, а фактически целостная система разломов протяженностью в несколько сотен километров. Данный факт, считает Дуатре и является подтверждением их предположения о формировании здесь зоны субдукции.

Главным достижением исследования команды Жуана Дуатре является возможность судить о причинах формирования. Основная идея исследования ученого состоит в проведении параллели формирования зоны с зоной субдукции на западе Средиземного моря. Он считает, что трансформные разломы являются связующим звеном между этой новой зоной и Гибралтарской дугой, а стало быть, есть вариант, что сдвиг одной литосферной плиты под другую распространяется из умирающего Средиземного моря.

«Можете считать эти зоны субдукции пороками развития, - говорит г-н Дуарте. - Из этих областей разойдутся трещины, которые рано или поздно приведут к разлому литосферной плиты. Возможно, мы оказались свидетелями переломного момента в истории Атлантики». Уже сейчас Атлантический океан убывает в зонах Карибского бассейна и крайнего юга.

Однако далеко не все поддерживают ученого. Если с одной стороны, «теория инфекции» Дуатре объясняет причину формирования зон субдукций, то с другой – данных на нынешнем этапе слишком мало, и с уверенностью говорить о том, что открывается новая зона нельзя – полагает Жак Девершер из Брестского университета во Франции.

Так это или нет – в будущем покажут дальнейшие исследования, а пока что не будем спешить переводить Анлантический океан из списка молодых океанов в категорию старых и умирающих.


15. Субдукция.

Взаимодействие литосферных плит при встречном движении (т. е. на конвергентных границах) порождает сложные и много­образные тектонические процессы , проникающие глубоко в ман­тию. Они выражены такими мощными зонами тектономагматической активности, как островные дуги, континентальные окраины андского типа и складчатые горные сооружения. Различают два главных вида конвергентного взаимодействия литосферных плит: субдукцию и коллизию. Субдукция развивается там, где на кон­вергентной границе сходятся континентальная и океанская лито­сферы или океанская с океанской. При их встречном движении более тяжелая литосферная плита (всегда океанская) уходит под другую, а затем погружается в мантию. Коллизия, т.е. столк­новение литосферных плит, развивается там, где континентальная литосфера сходится с континентальной: их дальнейшее встречное движение затруднено, оно компенсируется деформацией лито­сферы, ее утолщением и «скучиванием» в складчатых горных сооружениях. Гораздо реже и на короткое время при конвергенции возникают условия для надвигания на край континентальной плиты фрагментов океанской литосферы: происходит ее обдуция. При общей протяженности современных конвергентных границ около 57 тыс. км 45 из них приходится на субдукционные, осталь­ные 12 - на коллизионные. Обдукционное взаимодействие лито­сферных плит в наши дни нигде не установлено, хотя известны участки, где эпизод обдукции произошел в сравнительно недавнее геологическое время.

6.1. Субдукция: ее проявление, режимы и геологические последствия

Еще в начале 30-х годов, обнаружив вдоль глубоководных желобов Индонезии резкие отрицательные аномалии, Ф. Венинг-Мейнес пришел к выводу, что в этих активных зонах происходит затягивание в мантию складок легкого корового вещества. Тогда же Ф.Лейк, исследуя форму и размещение островных дуг, объяс­нил их образование пересечением земной сферы наклонными сколами, по которым Азиатский континент надвигается в сторону Тихого океана. Вскоре К. Вадати впервые установил наклонную сейсмофокальную зону, уходящую от глубоководного желоба под вулканические цепи Японских островов, что свидетельствовало в пользу предположений о связи островных дуг с крупными поддви-гами (или надвигами) по периферии Тихого океана.

К концу 50-х годов Г. Штилле высказал мысль, что образование глубоко­водных желобов, сопутствующих им отрицательных гравианомалий и уходящих в мантию сейсмофокальных зон сопряжено с наклонным поддвиганием океанской земной коры; на определен­ной глубине она подвергается плавлению, порождая вулканичес­кие цепи, протянувшиеся параллельно желобу.

Эта схема была уже очень близка к современному представ­лению о субдукции как форме конвергентного взаимодействия литосферных плит. Оно сложилось в 60-х годах, когда была раз­работана модель литосферпой субдукции. Сам термин «субдук­ция (лат. sub - под, ductio - ведение) был заимствован из аль­пийской геологии: в начале 50-х годов А. Амштуц назвал субдукцией подвиг и затягивание на глубину одних сиалических комплексов Альп под другие. В своем новом значении термин «субдук­ция» был одобрен на II Пенроузской конференции и с тех пор широко используется для одного из основополагающих понятии тектоники литосферных плит. За последние десятилетия учение о субдукции превратилось в обширный раздел геотектоники.

Следует подчеркнуть, что понятие и термин «субдукция» были введены для обозначения сложного глубинного процесса, ранее неизвестного. Субдукцию нельзя свести ни к «поддвигу», ни к «надвигу» литосферных плит. Их сближение при субдукции складывается из векторов движения двух контактирующих плит, причем наблюдается разнообразное соотношение направления и величины этих векторов. Кроме того , в тех случаях, когда проис­ходит быстрое гравитационное погружение одной из литосферных плит в астеносферу, их взаимодействие осложняется откатом конвергентной границы. Установлено, что субдукция развивается по-разному в зависимости от соотношения векторов движения плит, от возраста субдуцирующей литосферы и ряда других фак­торов.

Поскольку при субдукции одна из литосферных плит погло­щается на глубине, нередко увлекая с собой осадочные формации желоба и даже породы висячего крыла, изучение процессов суб­дукции сопряжено с большими трудностями. Геологические наб­людения затрудняются и глубоководностью океана над субдукционными границами. Современная субдукция выражается в подводном и наземном рельефе, тектонических движениях и структурах, вулканизме к условиях седиментации. Глубинное строение зон субдукции, ее сейсмические и геотермические проявления изучаются методами геофизики. Для расчетов кинематики субдукционного взаимодей­ствия, литосферных плит используются параметры их движения, определяемые относительно осей спрединга и в координатах го­рячих точек, а также решения фокального механизма непосред­ственно в верхней части зон Беньофа. В последние годы все боль­шее значение приобретают прямые измерения относительного дви­жения литосферных плит методами лазерных отражателей и ра­дио интерферометрии.

6.1.1. Выражение зон субдукции в рельефе

Сам способ конвергентного взаимодействия литосферных плит при субдукции предопределяет асимметрию каждой такой зоны и ее рельефа. Линия активного контакта отчетливо выражена глу­боководными желобами, глубина которых , как литосферных структур, находится в прямой зависимости от скорости субдукции и от средней плотности (т.е. от возраста) погружающейся плиты. Поскольку желоба служат седиментационной ловуш­кой, в первую очередь для турбидитов островодужного или кон­тинентального происхождения, их глубина искажается осадконакоплением, которое определяется физико-географическими ус­ловиями. Глубина океана над современными желобами широко варьирует, она максимальна в Марианском желобе (11022м). Глубина желобов относительно смежного краевого вала субдуцирующей плиты достигает 4000 м.

При протяженности до нескольких тысяч километров ширина желобов обычно не превышает 50-100 км. Как правило, они ду­гообразно изогнуты выпуклостью навстречу субдуцирующей пли­те, реже прямолинейны. Современные глубоководные желобе простираются перпендикулярно направлению субдукции (орто­гональная субдукция) или под острым углом к этому направлению (косоориентированная субдукция), установлено господство орто­гональной и близких к ней ориентировок.

Профиль глубоководных желобов всегда асимметричен: субдуцирующее крыло пологое (около 5°), висячее крыло более кру­тое (до 10 и даже 20°). Детали рельефа варьируют в зависимости от напряженного состояния литосферных плит, от режима суб­дукции и других условий. На многих пересечениях океанский склон желоба бывает осложнен продольными грабенами и гор. Узкое и плоское дно желоба шириной иногда всего лишь в несколько сотен метров сложено осадками.

Асимметрично и размещение форм рельефа па обрамлении глубоководных желобов. Со стороны океана это пологие краевые валы, которые возвышаются над ложем океана на 200-1000 м. Судя по геофизическим данным, краевые валы представляют со­бой антиклинальный изгиб океанской литосферы, который не уравновешен изостатически и поддерживается ее горизонтальным сжатием. Там, где фрикционное сцепление литосферных плит велико, высота краевого вала находится в прямом соответствии с относительной глубиной соседнего отрезка желоба.

С противоположной стороны, над висячим («надвигающимся») крылом зоны субдукции, параллельно желобу протягиваются вы­сокие хребты или подводные гряды , имеющие, как будет показа­но ниже, иное строение и происхождение. Если субдукция нап­равляется непосредственно под окраину континента (и глубоко­водный желоб примыкает к этой окраине), обычно образуются береговой хребет и отделенный от него продольными долинами главный хребет, рельеф которого бывает осложнен вулканически­ми постройками. Последние тоже связаны с субдукцией, разме­щаясь на определенном удалении от глубоководного желоба. Анды - наиболее мощная и представительная из современных горных систем такого происхождения.

Там, где зона субдукции не находится на краю континента, сходная по происхождению пара положительных форм рельефа представлена островными дугами. Это невулканическая внешняя дуга (непосредственно рядом с желобом) и отделенная депрессия­ми, параллельная ей главная, вулканическая внутренняя дуга. Иногда внешняя островная дуга не образуется и ей соответствует резкий перегиб подводного рельефа у бровки глубоководного же­лоба. Большинство современных островных дуг находится на за­падном обрамлении Тихого океана: от Алеутской и Курило-Камчатской дуги на севере до дуги Кермадек на юге. Последняя прос­тирается почти прямолинейно: дугообразная форма вулканических и невулканических гряд, глубоководных желобов /и иных проявле­ний выхода зон субдукции на поверхность широко распространена, неслучайна, но не обязательна.

Поскольку любая зона субдукции уходит на глубину наклон­но, ее воздействие на висячее крыло и его рельеф может распро­страняться на 600-700 км и более от желоба, что зависит преж­де всего от угла наклона. При этом в соответствии с тектоничес­кими условиями образуются различные формы рельефа, о которых речь пойдет ниже, при характеристике латеральных структурных рядов над зонами субдукции.

6.1.2. Тектоническое положение и основные типы зон субдукции

Современное размещение зон субдукции весьма закономерно Большинство из них приурочено к периферии Ти­хого океана. Субдукционные системы Малых и Южных Антил, хотя и находятся в Атлантике , тесно связаны своим про­исхождением с эволюцией структур тихоокеанского обрамления, с их изгибом и проникновением далеко на восток в свободных пространствах, раскрывшихся между континентами Северной Америки, Южной Америки и Антарктиды. Более самостоятельна Зондская система субдукции, тем не менее и она тяготеет к струк­турному ансамблю Тихоокеанского кольца. Таким образом, в настоящее время все зоны субдукции, получившие полное И ха­рактерное развитие, так или иначе связаны с этим наиболее мощным поясом современной тектонической активности. Лишь несколько сравнительно небольших, малоглубинных и специфи­ческих по ряду характеристик зон субдукции (таких, как Эгейская, Эоловая) развиваются в Средиземноморском бассейне - этом реликте мезозойско-кайнозойского океана Тетис. Северную окраину Тетиса наследует и зона субдукции Мекран.

Историческая геология позволяет понять указанную выше закономерность современного размещения зон субдукции. В нача­ле мезозоя они почти полностью обрамляли единый в то время суперконтинент Пангея, под который субдуцировала литосфера окружавшего его океана Панталасса. В дальней­шем, по мерсе последовательного распада суперконтинента и цент­робежного перемещения его фрагментов, зоны субдукции продол­жали развиваться перед фронтом движущихся континентальных масс. Эти процессы не прекращаются до наших дней. Поскольку современный Тихий океан -- это пространство, оставшееся от Панталассы , то оказавшиеся на его обрамлении зоны субдукции представляют собой как бы фрагменты субдукционного кольца, опоясывавшего Пангею. В настоящее время они находятся приб­лизительно на линии большого круга земной сферы, а с ходом геологического времени, по мере дальнейшего сокращения площа­ди Тихого океана, вероятно, будут еще ближе сходиться на его обрамлении.

Зоны субдукции Средиземноморья не имеют сопряженных с ними систем спрединга и, судя по всему, поддерживаются закры­тием океана Тетис - этого крупного ответвления Панталассы.

Характер взаимодействующих участков литосферы определяет различия между двумя главными тектоническими типами зон субдукции: окраинно-материковым (андским) и океанским (марианским), Первый формируется там, где океанская литосфера субдуцирует под континент, второй - при взаимодействии двух участков океанской литосферы.

Строение и субдукционный режим окраинно-материковых зон разнообразны и зависят от многих условий. Для наиболее протя­женной из них Андской (около 8 тыс. км) характерны пологая субдукция молодой океанской литосферы, господство сжимающих напряжений и горообразование на континентальном крыле. Зондскую дугу отличает отсутствие таких напряже­ний, что делает возможным утонение континентальной коры, по­верхность которой находится в основном ниже уровня океана; под нее субдуцирует более древняя океанская литосфера , уходя­щая на глубину под более крутым углом.

Разновидностью окраинно-материкового можно считать и японский тип зоны субдукции, представление о котором дает пе­ресечение, проходящее через Японский желоб - Хонсю-Япон­ское море Для пего характерно наличие краевого морского бассейна с новообразованной корой океанского или суб­океанского типа. Гсолого-геофизические и палеомагнитные дан­ные позволяют проследить раскрытие краевого Японского моря по мере того, как от азиатской окраины отчленялась полоса кон­тинентальной литосферы. Постепенно изгибаясь, она преврати­лась в Японскую островную дугу с сиалическим континентальным основанием, т.е. в эисиалическую островную дугу. Ниже мы вер­немся к вопросу о том, почему в одних случаях развитие окраинно-материковой зоны субдукции приводит к раскрытию краевого моря, а в других этого не происходит.

При образовании зон субдукцнп океанского (марианского) типа более древняя (и поэтому более мощная и тяжелая) океан­ская литосфера субдуцирует под более молодую на краю которой (на симатическом основании) образуется энсимати ческал островная дуга. Примером таких зон субдукции, наряду с Марианской, могут служить такие островодужные системы, как Идзу-Бопинская, Тонга - Кермадек, Южных Лнтил. Ни одна из подобных зон субдукции , по крайней мере в новейшее время, не формировалась посреди океана: они тяготеют к сложному парагенезу структур океанского обрамления.

Во всех рассмотренных случаях субдуцирует литосфера оке­анского типа. Иначе протекает процесс там, где к конвергентной границе с обеих сторон подходит континентальная литосфера. Она включает в себя мощную и низкоплотностную земную кору. Поэтому конвергенция развивается здесь как столкновение, кол­лизия, которая сопровождается тектоническим расслаиванием и сложной деформацией верхней части литосферы. Многие зоны коллизии асимметричны, в них происходят выраженные сейсмоло­гически поддвиг и падвиг пластин континентальной коры. Такова современная тектоническая активность Ги­малаев па стыке континентальных плит Евразии и Индостана. Эта категория конвергентных границ будет рассмотрена нами как разновидность коллизии.

Однако в большинстве случаев А-субдукция имеет иную тек­тоническую природу и, как отмечал А. Балли, связана с направ­ленной навстречу более глубинной субдукцией океанской лито­сферы. Она развивается в тылу окраинно-материковых горных сооружений там, где субдуцирующая со стороны океана лито­сфера способна оказать на континент давление, порождающее взбросы и надвиги, направленные от океана. Примером могут служить подвиги Субандийских цепей, Скалистых гор. Не исклю­чено, что под влиянием глубинной субдукции происходит и неко­торое затягивание вниз континентального автохтона таких сопря­женных с ней надвигов. Подобные зоны А-субдукции, размещаясь над мощными окрапнно-материковыми зонами суб­дукции, скорее всего вторичны по отношению к ним. Они вписы­ваются в структурный парагенез континентальной окраины.

6.1,3. Геофизическое выражение зон субдукции

Методы сейсмики, сейсмологии , гравиметрии, магнитометрии, магнитотеллурического зондирования, геотермии, взаимно допол­няя друг друга, дают непосредственную информацию о глубинном состоянии вещества и строении зон субдукции, которые удается проследить с их помощью вплоть до нижней мантии. Многоканальное сейсмопрофилирование позволяет получить структурные профили зон субдукции до глубин в несколько де­сятков километров при высокой разрешающей способности. На таких профилях бывают различимы главный сместитель зоны субдукцин, а также внутреннее строение литосферных плит по обе стороны от этого смсститсля.

Методами сейсмической томографии субдуцирующая литосфе­ра прослеживается глубоко в мантию, поскольку эта литосфера, отличается от окружающих пород более высокими упругими свой­ствами («сейсмической добротностью») и скоростными характе­ристиками. На профилях видно, как субдуцирующая плита пере­секает главный астеносферный слой. В некоторых зонах, в том числе под Камчаткой , она и дальше следует наклонно, уходя в нижнюю мантию до глубины 1200 км.

Конвергентное взаимодейст­вие литосферы в зоне субдукции создает напряжения, которые на­рушают изостатическое равнове­сие, поддерживают изгиб литосферных плит и соответствую­щий тектонический рельеф. Гра виметрия обнаруживает резкие аномалии силы тяжести, кото­рые вытянуты вдоль зоны субдукции, а при ее пересечении сменяются в закономерной пос­ледовательности. Пе­ред глубоководным желобом в океане обычно прослеживается положительная аномалия до 40-60 мГл, приуроченная к краевому валу. Полагают, что она обусловлена упругим антикли­нальным изгибом океанской ли­тосферы у начала зоны субдук­ции. Далее следует интенсивная отрицательная аномалия (120- 200, реже до 300 мГл), которая протягивается над глубоковод­ным желобом будучи смещена па несколько километров в сторону его островодужного (или кон­тинентального) борта. Эта аномалия коррелируете я с тектоничес­ким рельефом литосферы, а также во многих случаях с наращи­ванием мощности осадочного комплекса. По другую сторону глу­боководного желоба над висячим крылом зоны субдукции наблю­дается высокая положительная аномалия (1С0-300 мГл). Сопо­ставление наблюденных значений силы тяжести с расчетными под­тверждает, что этот гравитационный максимум может быть обус­ловлен наклонной субдукцией в астеносферу более плотных пород Относительно холодной литосферы. В островодужных системах на продолжении гравитационного профиля обычно следуют неболь­шие положительные аномалии над бассейном краевого моря.

Современная субдукция находит выражение и в данных маг­ нитометрии. На картах линейных магнитных аномалий бассейнов океанского типа отчетливо различаются их тектонические грани­цы рифтогенной и субдукционной природы. Если по отношению к первым линейные аномалии океанской коры согласны (параллельны им), то субдукционныс границы секущие, они срезают системы аномалий под любым углом в зависимости от конвергентного взаимодействия литосферных плит.

При погружении океанской литосферы в глубоководный желоб интенсивность линейных аномалий нередко снижается в несколько раз, что предположительно объясняют размагничиванием пород в связи с напряжениями изгиба. В других случаях аномалии удает­ся проследить до конвергентной границы и даже дальше.

Геотермические наблюдения обнаруживают снижение теплово­го потока по мере погружения относительно холодной литосферы под островодужный (или континентальный) борт глубоководного желоба. Однако дальше, с приближением к поясу активных вул­канов, тепловой поток резко возрастает. Как полагают, там выно­сится энергия, выделяющаяся на глубине в результате субдукционного трения , адиабатического сжатия и экзотермических мине­ральных превращений.

Таким образом, данные разных геофизических методов нахо­дятся в достаточно хорошем соответствии между собой, они по­служили основой для модели литосферной субдукции, которая по мере пополнения этих данных проверялась и уточнялась.

6.1.4. Зоны Беньофа

Наиболее выразительным проявлением современной субдукции служат, как отмечалось выше, сейсмофокальные зоны, на­клонно уходящие на глубину. В середине 30-х годов К. Вадати установил под Японией первую такую зону, а в следующее деся­тилетие (1938-1945) Б. Гутенберг и Ч. Рихтер опубликовали ин­формацию о большинстве остальных сейсмофокальных зон. Гло­бальная сводка этих авторов вызвала большой интерес. Уже в 1946 г. появилась, в частности, статья известного петролога и вулканолога А. Н. Заварицкого «Некоторые факты, которые надо учитывать при тектонических построениях», где развивалась мысль о первичной, определяющей роли глубинных сейсмоактив­ных зон в отношении наблюдаемых над ними близ поверхностных тектонических и вулканических процессов, являющихся в этом смысле вторичными.

В 1949-1955 гг. X. Беньоф из Калифорнийского технологичес­кого института опубликовал следующее поколение обобщающих работ о сейсмофокальных зонах. В те годы назревала концепция «новой глобальной тектоники», создатели которой широко использозали работы X. Беньофа о сейсмофокальных зонах и стали именовать их «зоны Беньофа». Название укоренилось в геолого-геофизической терминологии, при этом признается приоритет К. Вадати, воздается должное фундаментальному открытию это­го ученого.

К настоящему времени накоплен обширный материал о стро­ении и характеристиках сейсмофокальных зон Беньофа. Учиты­ваются размещение очагов землетрясений , их магнитуда, а также результаты решения их фокального механизма, позволяющие су­дить об ориентировке главных осей напряжения. Размещение глу­бинных очагов обычно изображают на картах (т.е. в проекции на горизонтальную плоскость), а также на поперечных и продольных «профилях» зоны Беньофа. Каждый такой «профиль» представляет собой проекцию сейсмических очагов на вер­тикальную поверхность. Для построения поперечного «профиля» берется определенный сегмент зоны Беньофа и оказавшиеся в его пределах очаги проектируются на вертикальную плоскость, ори­ентированную в крест простирания зоны. Иногда эту вертикальную плоскость ориентируют в направлении субдукции, которая может происходить под разными углами к простиранию зоны. Продоль­ный «профиль» зоны Беньофа получают, проектируя сейсмические очаги на вертикальную поверхность, которая следует вдоль сейсмофокальной зоны, изгибаясь вместе с ней.

Глубинность зон Беньофа. Сравнивая размещение очагов землетрясений с результатами сейсмической томографии для той же зоны субдукции, можно убедиться, что погружение литосферы сначала, до какой-то определенной глубины, порождает очаг упругих колебаний , а далее продолжается как асейсмичный процесс. Это определяется, вероятно, в первую очередь снижением упругих свойств субдунирующей литосферы по мере ее разогрева. Глубинность зон Беньофа зависит главным об. разом от зрелости субдуцирующей океанской литосферы, которая с возрастом наращивала свою мощность и охлаждалась.

Второй важный регулятор глубинности зон Беньофа - скорость субдукции.

Наблюдаемая глубинность зон Беньофа широко варьирует как от одной зоны к другой, так и по простиранию одной и той же зоны. В частности, глубинность одной из наиболее протяженных сейсмофокальных зон, Андской, убывает от 600 км в ее централь­ной части до 150-100 км на флангах.

Вертикальное распределение сейсмических очагов в зонах Беньофа крайне неравномерно. Их количество максимально в верхах Зоны, убывает по экспоненте до глубин 250-300 км, а за­тем возрастает давая пик в интервале от 450 до 600 км.

Направление наклона зон Беньофа. Все зоны Беньофа ориен­тированы наклонно. В окраинно-материковых системах, в том числе и 1з сложно построенных системах японского типа, они всег­да погружаются в сторону континента, поскольку субдуцирует именно Океанская литосфера.

Профиль зон Беньофа. Наклон каждой сейсмофокальпой зоны меняется с глубиной, тем самым вырисовывается ее поперечный профиль. Небольшие углы наклона у поверхности (35-10°) с глубиной увеличиваются: сначала очень незначительно, затем обычно следует отчетливый перегиб , за которым возможно и дальнейшее постепенное (нарастание наклона, вплоть до почти вертикального. Практически все разнообразие профилей законо­мерно размещается между двумя.крайними их видами

Максимальная сейсмическая активность сосредоточена на сле­дующем отрезке зон Беньофа, где она порождается конвергентным взаимодействием двух литосферных плит.

6.1.5. Геологическое выражение зон субдукции

Изучение современных зон субдукции позволяет судить о вы­ражении этого процесса в седиментации, тектонических деформа­циях, магматизме, метаморфизме. Это в свою очередь дает ключ для актуалистической реконструкции древних зон субдукции.

Субдукция и седиментация. Тектонический рельеф, создавае­мый субдукцией, предопределяет закономерное размещение седиментационных бассейнов с характерными формациями. Особого внимания заслуживает специфика накопления осадков в глубоко­водном желобе, где проходит конвергентная граница литосферных плит и начинается субдукция.

Латеральные ряды седиментационных бассейнов варьируют в зависимости от тектонического типа зоны субдукции. В окраинно-материковой обстановке андского типа, начиная от океана, сле­дуют глубоководный желоб, фронтальный и тыловой бассейны. Для желоба характерны флишоидные отложения, терригенные и туфогенные турбидиты. Слагающий их материал поступает с кон­тинентального склона и нередко содержит продукты размыва гра­нитно-метаморфического фундамента. Характерен продольный перенос вдоль желоба на большие расстояния. Фронтальный и тыловой бассейны (прогибы) служат местом накопления конти­нентальных и мелководно-морских толщ молассового облика мощностью до нескольких километров. При этом фронтальный бассейн, размещаясь между береговым (невулканическим) и глав­ным (вулканическим) хребтами, заполняется асимметрично: с од­ной стороны обломочным материалом , с другой -- как обломоч­ным, так и вулканогенным. В тыловой бассейн, который по своему положению является предгорным, передовым прогибом, также поступают продукты разрушения главного хребта и его вулкани­ческий материал. Туда же идет снос с внутриконтинентальных поднятий кратона.

В обстановке островных дуг латеральный ряд бассейнов и их заполнение видоизменяются. Флишоидные отложения глубоко­водного желоба содержат здесь меньше терригенного материала. Перед энсиматическими дугами появляются продукты разруше­ния габброидов, ультрабазитов и других пород океанской лито­сферы, если оии выступают па островодужном склоне желоба. В качестве фронтального в островных дугах формируется предду говой бассейн, который заполняется морскими, в том числе флишоидными, туфогенно-осадочными отложениями большой мощ­ности. В качестве тылового развивается глубокий задуговой или междуговой бассейн, где на утоненном континентальном основа­нии или па новообразованной океанской коре накапливаются мощные морские отложения, в том числе флишоидные. Таким об­разом, молассоидные мелководноморские и континентальные формации окраин но-материковых систем сменяются в острово-дужных системах более глубоководными, преимущественно флишоидными. И для одних и для других характерно наличие вулка­ногенного материала, состав которого зависит от тектонического типа зоны субдукции, что будет рассмотрено ниже - в разделе о магматизме.

Уникальна тектоническая обстановка накопления осадков в глубоководном желобе. Независимо от длительности существова­ния зоны субдукции в нем находятся лишь очень молодые , плей­стоценовые и голоценовые отложения, мощность которых обычно не превышает нескольких сотен метров. В этом отношении они контрастируют с осадочным заполнением соседних прогибов кон­тинентальной окраины или островной дуги, где и возрастной диа­пазон, и мощности гораздо больше. Залегая почти горизонтально, осадки глубоководного желоба прислоняются к его океанскому борту, а на континентальной (или островодужной) его стороне соотношения зависят от тектонического режима субдукции. В од­них случаях, как, например, в Центральноамериканском желобе у берегов Гватемалы, они пододвигаются под висячее крыло и вовлекаются в субдукцию, почти не испытывая деформаций. В других случаях, напротив, близ конвергентной границы осадки глубоководного желоба приобретают все более сложную структу­ру (в конечном результате - складчатую изоклинально-чешуйча­тую), причленяясь к так называемому аккреционному клину. Таковы соотношения па северном отрезке того же Цент­ральноамериканского желоба у берегов Мексики.

Таким образом, специфика накопления осадков в глубоковод­ном желобе в любом случае состоит в том, что находящийся в движении, субдуцирующий под континентальную окраину (или островную дугу) коровый субстрат, подобно ленте транспортера , удаляет поступающий в желоб осадочный материал, освобождая место для все более молодых осадков. Эти соотношения весьма выразительны в Японском желобе у берегов Хонсю, где они кар­тировались с погружаемых аппаратов при исследованиях по про­грамме «Кайко». В частности, там подводно-оползневые массы, поступающие с островодужного склона, вовлекаются в субдукцию и не образуют на дне желоба сколько-нибудь значительных скоп­лений.

Если в обычных бассейнах седиментации мощность осадков в значительной степени зависит от опусканий дна, то в глубоковод­ных желобах на первое место выступают физико-географические факторы, контролирующие поступление терригенного материала. В этом отношении показателен Чилийско-Перуанский желоб, практически лишенный осадков на отрезке, прилегающем к пус­тыне Атакама, и постепенно обретающий обычное заполнение к северу и югу, где климат становится гумидным, а снабжение обломочным материалом с континента нормализуется. Другой яркий пример - желоб Пуэрто-Рико, крайняя южная часть которого перекрыта мощными осадками , поскольку сюда направляются обильные выносы дельты Ориноко. В северном направлении, по мере удаления от этого мощного источника, мощ­ность осадков в желобе убывает.

6.1.6. Кинематика субдукции

Разнообразие рельефа, глубинного строения, напряженного со­стояния и магматизма зон субдукции, их латеральных структур­ных рядов определяется взаимодействием многих факторов, среди которых, как отмечалось выше, велика роль кинематических па­раметров субдукции. Несмотря на то что под субдукцией подразумевается прежде всего конвергентное взаимодействие плит, важ­но учитывать всю совокупность этих параметров. Среди них ско­рость конвергенции во многих случаях не имеет решающего зна­чения.

Кинематические параметры субдукции. В основе кинематичес­ких моделей субдукции лежат векторы скорости «абсолютных» движений: горизонтального скольжения двух взаимодействующих литосферных плит, а также гравитационного опускания одной из них при ее отрицательной плавучести на астеносфере. В послед­нем случае учитывается и соответствующее откатывание шарнира субдуцирующей плиты (линии ее перегиба у желоба). Исходя из векторов «абсолютных» скоростей, определяют относительные дви­жения плит вдоль сместителя зоны субдукции, а также дополняющие их деформации (складчатость и разрывные смещения: сдви­ги, взбросы и надвиги, рифты и спрединг) в надвигающейся литосферной плите.

Противоположному, наступательному смещению шарнира субдуцирующей плиты , как полагают, препятствует погруженная часть плиты, «заякоренная» в мантии. При таком смещении про­исходило бы ее подворачивание и опрокидывание, однако, на­сколько можно судить по геофизическим данным, этого не проис­ходит. Не исключено наступательное перемещение субдуцирующей литосферы (и ее шарнира) вместе с окружающим астеносферным веществом.

При высоких скоростях движения верхней плиты, а также там, где субдуцирует относительно легкая или утолщенная океанская литосфера, верхняя плита наступает за линию шарнира нижней плиты и перекрывает ее. Образуется очень пологая приповерхностная часть зоны Беньофа, характерно выраженная под центральным отрезком Анд. В обеих литосферных плитах по­являются напряжения и структуры сжатия.

Напротив, там, где субдуцирует древняя и тяжелая литосфера возможны условия, при которых висячее крыло отстает в своем движении от откатывания шарнира. Соответствую­щее зияние реализуется по ослабленным зонам над поверхностью субдукции, где раскрываются задуговые или внутридуговые бас­сейны. Это определяется вектором относительного смещения фрон­тальной части надвигающейся литосферной плиты.