Золотое правило механики единица измерения. Определение золотого правила механики

Механизмом в физике называется приспособление для преобразования силы (её увеличения или уменьшения). Например, прикладывая небольшое усилие в одном месте механизма, можно получить значительно большее усилие в другом его месте.

Один вид механизма нам уже встретился: это гидравлический пресс. Здесь мы рассмотрим так называемые простые механизмы рычаг и наклонную плоскость.

17.1 Рычаг

Рычаг это твёрдое тело, которое может вращаться вокруг неподвижной оси. На рис. 50

Из этого соотношения следует, что рычаг даёт выиг-

рыш в силе или в расстоянии (смотря по тому, с какой

целью он используется) во столько раз, во сколько боль-

шее плечо длиннее меньшего.

Например, чтобы усилием 100 Н поднять груз весом

Рис. 50. Рычаг

700 Н, нужно взять рычаг с отношением плеч 7: 1 и положить груз на короткое плечо. Мы выиграем в силе в 7 раз, но во столько же раз проиграем

в расстоянии: конец длинного плеча опишет в 7 раз б´ольшую дугу, чем конец короткого плеча (то есть груз).

Примерами рычага, дающего выигрыш в силе, являются лопата, ножницы, плоскогубцы. Весло гребца это рычаг, дающий выигрыш в расстоянии. А обычные рычажные весы являются равноплечим рычагом, не дающим выигрыша ни в расстоянии, ни в силе (в противном случае их можно использовать для обвешивания покупателей).

Неподвижный блок

Важной разновидностью рычага является блок укреплён-

ное в обойме колесо с жёлобом, по которому пропущена верёв-

ка. В большинстве задач верёвка считается невесомой нерас-

тяжимой нитью.

На рис. 51 изображён неподвижный блок, т. е. блок с непо-

движной осью вращения (проходящей перпендикулярно плос-

кости рисунка через точку O).

На правом конце нити в точке D закреплён груз весом P .

Напомним, что вес тела это сила, с которой тело давит на

опору или растягивает подвес. В данном случае вес P прило-

жен к точке D, в которой груз крепится к нити.

К левому концу нити в точке C приложена сила F .

Рис. 51. Неподвижный блок

Плечо силы F равно OA = r, где r радиус блока. Плечо

веса P равно OB = r. Значит, неподвижный блок является

равноплечим рычагом и потому не даёт выигрыша ни в силе, ни в расстоянии: во-первых,

имеем равенство F = P , а во-вторых, в процессе движении груза и нити перемещение точки C

равно перемещению груза.

Зачем же тогда вообще нужен неподвижный блок? Он полезен тем, что позволяет изме-

нить направление усилия. Обычно неподвижный блок используется как часть более сложных

механизмов.

Подвижный блок

На рис. 52 изображён подвижный блок, ось которого переме-

щается вместе с грузом. Мы тянем за нить с силой F , которая

приложена в точке C и направлена вверх. Блок вращается и

при этом также движется вверх, поднимая груз, подвешенный

на нити OD.

В данный момент времени неподвижной точкой является

точка A, и именно вокруг неё поворачивается блок (он бы ¾пе-

рекатывается¿ через точку A). Говорят ещё, что через точку A

проходит мгновенная ось вращения блока (эта ось направлена

перпендикулярно плоскости рисунка).

Вес груза P приложен в точке D крепления груза к нити.

Плечо силы P равно AO = r.

А вот плечо силы F , с которой мы тянем за нить, оказыва-

ется в два раза больше: оно равно AB = 2r. Соответственно,

условием равновесия груза является равенство F = P=2 (что

мы и видим на рис. 52 : длина вектора F в два раза меньше

длины вектора P).

Следовательно, подвижный блок даёт выигрыш в силе в

Рис. 52. Подвижный блок

два раза. При этом, однако, мы в те же два раза проигры-

ваем в расстоянии. Действительно, нетрудно сообразить, что

для поднятия груза на один метр точку C придётся переместить вверх на два метра (то есть

вытянуть два метра нити).

У блока на рис. 52 есть один недостаток: тянуть нить вверх

(за точку C) не самая лучшая идея. Согласитесь, что го-

раздо удобнее тянуть за нить вниз! Вот тут-то нас и выручает

неподвижный блок.

На рис. 53 изображён подъёмный механизм, который пред-

ставляет собой комбинацию подвижного блока с неподвиж-

ным. К подвижному блоку подвешен груз, а трос дополни-

тельно перекинут через неподвижный блок, что даёт возмож-

ность тянуть за трос вниз для подъёма груза вверх. Внешнее

усилие на тросе снова обозначено вектором F .

Принципиально данное устройство ничем не отличается от

Рис. 53. Комбинация блоков

подвижного блока: с его помощью мы также получаем дву-

кратный выигрыш в силе.

17.4 Наклонная плоскость

Как мы знаем, тяжёлую бочку проще вкатить по наклонным мосткам, чем поднимать вертикально. Мостки, таким образом, являются механизмом, который даёт выигрыш в силе.

В механике подобный механизм называется наклонной плоскостью. Наклонная плоскость это ровная плоская поверхность, расположенная под некоторым углом к горизонту. В таком

случае коротко говорят: ¾наклонная плоскость с углом ¿.

Найдём силу, которую надо приложить к грузу массы m, чтобы равномерно поднять его по

гладкой наклонной плоскости с углом. Эта сила F , разумеется, направлена вдоль наклонной плоскости (рис. 54 ).

Проектируем на ось X:

Именно такую силу нужно приложить, что двигать груз вверх по наклонной плоскости. Чтобы равномерно поднимать тот же груз по вертикали, к нему нужно приложить силу,

равную mg. Видно, что F < mg, поскольку sin < 1. Наклонная плоскость действительно даёт выигрыш в силе, и тем больший, чем меньше угол.

Широко применяемыми разновидностями наклонной плоскости являются клин и винт.

17.5 Золотое правило механики

Простой механизм может дать выигрыш в силе или в расстоянии, но не может дать выигрыша в работе.

Например, рычаг с отношением плеч 2: 1 даёт выигрыш в силе в два раза. Чтобы на меньшем плече поднять груз весом P , нужно к большему плечу приложить силу P=2. Но для поднятия груза на высоту h большее плечо придётся опустить на 2h, и совершённая работа будет равна

A = P 2 2h = P h;

т. е. той же величине, что и без использования рычага.

В случае наклонной плоскости мы выигрываем в силе, так как прикладываем к грузу силу F = mg sin , меньшую силы тяжести. Однако, чтобы поднять груз на высоту h над начальным положением, нам нужно пройти путь l = h= sin вдоль наклонной плоскости. При этом мы совершаем работу

A = mg sin sin h = mgh;

т. е. ту же самую, что и при вертикальном поднятии груза.

Данные факты служат проявлениями так называемого золотого правила механики.

Золотое правило механики. Ни один из простых механизмов не даёт выигрыша в работе. Во сколько раз выигрываем в силе, во столько же раз проигрываем в расстоянии, и наоборот.

Золотое правило механики есть не что иное, как простой вариант закона сохранения энергии.

17.6 КПД механизма

На практике приходится различать полезную работу Aполезн , которую нужно совершить при помощи механизма в идеальных условиях отсутствия каких-либо потерь, и полную работу Aполн , которая совершается для тех же целей в реальной ситуации.

Полная работа равна сумме:

полезной работы;

работы, совершённой против сил трения в различных частях механизма;

работы, совершённой по перемещению составных элементов механизма.

Так, при подъёме груза рычагом приходится вдобавок совершать работу по преодолению силы трения в оси рычага и по перемещению самого рычага, имеющего некоторый вес.

Полная работа всегда больше полезной. Отношение полезной работы к полной называется

коэффициентом полезного действия (КПД) механизма:

A полезн:

A полн

КПД принято выражать в процентах. КПД реальных механизмов всегда меньше 100%. Вычислим КПД наклонной плоскости с углом при наличии трения. Коэффициент трения

между поверхностью наклонной плоскости и грузом равен.

Пусть груз массы m равномерно поднимается вдоль наклонной плоскости под действием

силы ~ из точки в точку на высоту (рис.55 ). В направлении, противоположном пере-

мещению, на груз действует сила трения скольжения ~ . f

Из (80 ) имеем:

Тогда из (81 ):

Подставляя это в (79 ), получаем:

F = mg sin + f = mg sin + mg cos = mg(sin + cos):

Полная работа равна произведению силы F на путь, пройденный телом вдоль поверхности

наклонной плоскости:

Aполн = F P Q = mg(sin + cos)

Полезная работа, очевидно, равна:

Aполезн = mgh:

Для искомого КПД получаем:

A полезн

A полн

1 + ctg

О том, что рычаги, блоки и прессы позволяют получить выигрыш в силе, вы уже знаете. Однако «даром» ли дается такой выигрыш? Взгляните на рисунок. На нем ясно видно, что при пользовании рычагом более длинный его конец проходит больший путь. Таким образом, получив выигрыш в силе, мы получаем проигрыш в расстоянии. Это значит, что, поднимая маленькой силой груз большого веса, мы вынуждены совершать большое перемещение.

Еще древним было известно правило, применимое не только к рычагу, но и ко всем механизмам: во сколько раз механизм дает выигрыш в силе, во столько же раз получается проигрыш в расстоянии. Этот закон получил название «золотого правила» механики.

Проиллюстрируем его теперь на примере подвижного блока. Постараемся теперь подтвердить его не только с качественной стороны, но и с количественной. Для этого проделаем опыт. Пусть, например, мы имеем груз весом 10 Н. Прикрепим его к крючку подвижного блока и начнем поднимать вверх. Поскольку блок является подвижным, то он даст нам выигрыш в силе в 2 раза, то есть динамометр, прикрепленный к нити, покажет не 10 Н, а лишь 5 Н. Допустим, мы хотим поднять груз на высоту 4 метра (скажем, в окно второго этажа). Проделывая это действие, мы обнаружим, что втянули в окно не 4, а целых 8 метров веревки. Итак, выиграв в силе в два раза, мы во столько же раз проиграли в расстоянии.

«Золотое правило» механики применимо не только к механизмам, состоящим из твердых тел. В предыдущем параграфе мы рассмотрели жидконаполненный механизм — гидравлический пресс.

Сделаем одно важное наблюдение. Взгляните на рисунок. Опуская рукоятку малого поршня на некоторую высоту, мы обнаружим, что большой поршень поднимается на меньшую высоту. То есть, получив выигрыш в силе, мы получаем проигрыш в расстоянии.

Если опыт с прессом поставить так, чтобы силы, действующие на поршни, и перемещения поршней можно было бы измерять, то мы получим и количественный вывод: малый поршень сдвигается на расстояние во столько раз большее, чем сдвигается большой поршень, во сколько раз сила, действующая на больший поршень, больше силы, действующей на меньший.

Последнее равенство значит, что работа, совершаемая малой силой, равна работе, совершаемой большой силой. Этот вывод применим не только к прессу, но и к любому другому механизму, если не при-нимать во внимание трение. Поэтому, обобщая, мы скажем: использование любого механизма не позволяет получать выигрыша в работе; то есть КПД никакого механизма не может быть более 100%.

Работа и энергия Механическая работа и мощностьЧто такое работа и мощность с точки зрения физики? Как их рассчитать? В чем сходство и отличия понятий «работа» и «мощность» в жизни и в физике?Простые механизмы Что такое «золотое правило» механики? Есть ли «золотые правила» в жизни? Какие механизмы используют для облегчения труда? Как посчитать коэффициент полезного действия?Энергия В чем сходство и отличия физического понятия «механическая энергия» и общежитейского понятия «энергия» ? Какие существуют виды механической энергии? Какие примеры превращения одного вида энергии в другой вы знаете?
Механическая работа и мощность1. Механическая работа = произведение силы на путь.
2. Механическая работа может совершаться только в том случае, когда тело движется под действием силы, причем сила должна либо способствовать движению, либо препятствовать ему.
Работа положительна, когда сила направлена в сторону движения тела. В противном случае - работа отрицательна.
3. Мощность - это быстрота совершения работы.
Мощность показывает, какая работа совершается в единицу времени.
Простые механизмы 4. "Золотое правило" механики: если при совершении работы получают выигрыш в силе в несколько раз, то во столько же раз проигрывают в расстоянии.
Механизмы (рычаг, ворот, наклонная плоскость) – приспособления, позволяющие преобразовывать силу.
5. Рычаг – твердое тело, имеющее ось вращения.
Правило равновесия рычага таково: рычаг находится в равновесии в том случае, когда момент силы, вращающей его по часовой стрелке, равен моменту силы, вращающей рычаг против часовой стрелки.
Плечо силы = расстояние от оси вращения до прямой, вдоль которой действует сила.
Момент силы = произведение силы на ее плечо.
6. Блок – это колесо с желобом, в который пропущен трос (цепь, ремень, веревка) .
Неподвижный блок лишь изменяет направление действия силы, в то время как подвижный еще дает выигрыш в силе в два раза.
7. Коэффициент полезного действия (КПД) = отношение полезной работы к полной.
При использовании механизма совершенная полная работа всегда больше, чем полезная. Иными словами, КПД всегда меньше 100%.
Энергия 8. Энергия - это способность совершать работу.
Чем больше энергия тела, тем большую работу оно может совершить.При совершении работы энергия тела уменьшается.
9. Кинетическая энергия - это энергия движения тела или системы тел.
Чем больше масса и чем больше скорость данного тела, тем больше его кинетическая энергия.
10. Потенциальная энергия - это энергия взаимодействия тел (или частей одного тела) в зависимости от их взаимного расположения.
Потенциальная энергия тела массы m, поднятого на высоту h, равна произведению mgh.
11. Механическая энергия может переходить из одного вида в другой.

Когда люди начали использовать блоки, рычаги, вороты обнаружили, что перемещения, совершаемые при работе простых механизмов, оказались связаны с силами развиваемыми этими механизмами.

Это правило в древности было сформулировано так: то, что мы выигрываем в силе, мы проигрываем в пути. Данное положение общее, но очень важное, и получило в название золотое правило механики.

Уравновесим рычаг с помощью двух разных по модулю сил. На плече l 1 действует сила F 1 , на плече l 2 действует сила F 2 , под действием этих сил рычаг находится в равновесии Затем приведем рычаг в движение. За одно и то же время точка приложения силы F 1 пройдет путь S 1 , а точка приложения силы F 2 пройдет путь S 2 (рис.1).

Рис. 1

Если измерить модули этих сил и пути, пройденные точками приложения сил, то получим равенство: .

Из этого равенства видим, во сколько раз отличаются силы, приложенные к рычагу, во столько же раз обратно пропорционально будут отличаться пути, совершенные точками приложения силы.

С помощью свойств пропорции переводим это выражение в другой вид: - произведение силы F 1 на путь S 1 равно произведению силы F 2 на путь S 2. Произведение силы на путь называется работой , в этом случае работы равны A 1 =A 2 . Рычаг не дает выигрыша в работе, такой же вывод можно сделать про любой другой простейший механизм.

Золотое правило механики: ни один механизм не даёт выигрыша в работе. Выигрывая в силе, мы проигрываем в пути и наоборот.

Рассмотрим неподвижный блок. Закрепим блок в оси и прикрепим два груза к веревкам блока, затем переместим один груз вниз, груз, перемещенный вниз прошел расстояние S, а груз, который переместился вверх, прошел такое же расстояние S.

Силы равны, пути, пройденные телами, тоже равны, это значит, что работы тоже равны, а неподвижный блок не дает выигрыша в работе.

Рассмотрим подвижный блок. Закрепим один конец веревки, пропустим его через подвижный блок и прикрепим второй конец к динамометру, к блоку подвесим грузы. Отметим положение грузов на штативе, поднимем грузы на расстояние S 1 , также отметим и вернем в исходное положение, теперь отметим на штативе положение крючка динамометра. Снова поднимаем грузы на расстояние S 1 и отмечаем положение крючка динамометра в этом случае (рис. 2).

Рис. 2

Для подъема груза на высоту S 1 пришлось вытянуть веревку практически в два раза отличающегося от расстояния, которое проделал груз. Подвижный блок дает выигрыш в силе, а в работе не дает, во сколько раз выигрываем в силе, во столько раз проигрываем в пути.

Условие. С помощью подвижного блока грузчик поднял ящик с инструментами на высоту S 1 = 7 м, прикладывая силу F 2 = 160 Н. Какую работу совершил грузчик A 2 ?

Для того чтобы найти работу, необходимо следующее: .

S 2 - величина перемещения веревки.

Во сколько раз выигрываем в силе, во столько раз проигрываем в пути, поэтому , тогда .

Ответ: работа, которую совершил грузчик, 2,24 кДж.

Многовековая практика доказывает, что ни один простой механизм не дает выигрыша в работе, можно, выигрывая в силе, проиграть в пути и наоборот - в зависимости от условий задачи, которую необходимо решить.

  1. Лукашик В.И., Иванова Е.В. Сборник задач по физике для 7-9 классов общеобразовательных учреждений. - 17-е изд. - М.: Просвещение, 2004.
  2. Перышкин А.В. Физика. 7 кл. - 14-е изд., стереотип. - М.: Дрофа, 2010.
  3. Перышкин А.В. Сборник задач по физике, 7-9 кл.: 5-е изд., стереотип. - М: Издательство «Экзамен», 2010.
  1. Home-edu.ru ().
  2. Getaclass.ru ().
  3. School-collection.edu.ru ().
  4. School-collection.edu.ru ().

Домашнее задание

  1. Для чего применяют простые механизмы, если они не дают выигрыша в работе?
  2. С помощью рычага подняли груз массой 200 кг. На какую высоту был поднят груз, если сила, действующая на длинное плечо рычага, совершила работу 400 Дж.
  3. С помощью подвижного блока груз подняли на 3 м. Насколько пришлось вытянуть свободный конец веревки?