Значение квантовые генераторы и усилители в словаре кольера.

Ква́нтовый генера́тор - общее название источников электромагнитного излучения, работающих на основе вынужденного излучения атомов и молекул.

Сл

В зависимости от того, какую длину волны излучает квантовый генератор, он может называться по-разному:

лазер (оптический диапазон);

мазер (микроволновой диапазон);

разер (рентгеновский диапазон);

газер (гамма-диапазон).

Сл

Реально работа данных устройств базируются на использовании постулатов Бора:

Атом и атомные системы могут длительно пребывать только в особенных стационарных или квантовых состояниях, каждому из которых отвечает определенная энергия. В стационарном состоянии атом не излучает электромагнитных волн.

Излучение света происходит при переходе электрона из стационарного состояния с большей энергией в стационарное состояние с меньшей энергией. Энергия излученного фотона равна разности энергий стационарных состояний.

Наиболее распространены сегодня именно лазеры, то есть оптические квантовые генераторы. Кроме детских игрушек они получили распространение в медицине, физике, химии, компьютерной технике и прочих отраслях. Лазеры выступили в качестве «готового решения» множества проблем.

Рассмотрим детально принцип работы лазера

Сл4-14

Лазер - оптический квантовый генератор, создающий мощный узконаправленный когерентный монохроматический луч света. (слайды 1, 2)

    ( 1. Спонтанное и вынужденное излучение.

Если электрон находится на нижнем уровне, то атом поглотит падающий фотон, и электрон перейдет с уровня Е 1 на уровень Е 2 . Это состояние неустойчивое, электрон самопроизвольно перейдет на уровень Е 1 с испусканием фотона. Спонтанное излучение происходит самопроизвольно, следовательно, атом будет испускать свет несогласованно, хаотично, поэтому световые волны несогласованны друг с другом ни по фазе, ни по поляризации, ни по направлению. Это естественный свет.


Но возможно и индуцированное (вынужденное) излучение. Если электрон находится на верхнем уровне Е 2 (атом в возбужденном состоянии), то при падении фотона может произойти вынужденный переход электрона на нижний уровень испусканием второго фотона.

Сл

Излучение при переходе электрона в атоме с верхнего энергетического уровня на нижний с испусканием фотона под влиянием внешнего электромагнитного поля (падающего фотона) называют вынужденным, или индуцированным .

Свойства вынужденного излучения:

    одинаковая частота и фаза фотонов первичного и вторичного;

    одинаковое направление распространения;

    одинаковая поляризация.

Следовательно, при вынужденном излучении образуются два одинаковых фотона-близнеца.

Сл

2. Использование активных сред.

Состояние вещества среды, в котором меньше половины атомов находится в возбужденном состоянии, называется состоянием с нормальной заселенностью энергетических уровней . Это обычное состояние среды.

Сл

Среду, в которой больше половины атомов находится в возбужденном состоянии, называют активной средой с инверсной заселенностью энергетических уровней . (слайд 9)

В среде с инверсной заселенностью энергетических уровней обеспечивается усиление световой волны. Это активная среда.

Усиление света можно сравнить с нарастанием лавины.


Сл

Для получения активной среды используют трехуровневую систему.


На третьем уровне система живет очень мало, после чего самопроизвольно переходит в состояние Е 2 без испускания фотона. Переход из состояния 2 в состояние 1 сопровождается излучением фотона, что и используется в лазерах.

Процесс перехода среды в инверсное состояние называется накачкой . Чаще всего для этого используют облучение светом (оптическая накачка), электрический разряд, электрический ток, химические реакции. Например, после вспышки мощной лампы система переходит в состояние 3 , спустя малый промежуток времени в состояние 2 , в котором живет сравнительно долго. Так создается перенаселенность на уровне 2 .

Сл

3. Положительно обратная связь.

Для того чтобы из режима усиления света перейти к режиму генерации в лазере используют обратную связь.

Обратная связь осуществляется с помощью оптического резонатора, который обычно представляет собой пару параллельных зеркал. (слайд 11)

В результате одного из спонтанных переходов с верхнего уровня на нижний возникает фотон. При движении в сторону одного из зеркал фотон вызывает целую лавину фотонов. После отражения от зеркала лавина фотонов движется в противоположном направлении, попутно заставляя испускать фотоны все новые атомы. Процесс будет продолжаться до тех пор, пока существует инверсная заселенность уровня

Инверсная заселенность энергетических уровней - неравновесное состояние среды, при котором число частиц (атомов, молекул), находящихся на верхних энергетических уровнях, т. Е. В возбужденном состоянии, больше, чем число частиц, находящихся на нижних энергетических уровнях. .

Активный элемент

накачка

накачка

Оптический резонатор

Потоки света, идущие в боковых направлениях, быстро покидают активный элемент, не успевая набрать значительной энергии. Световая волна, распространяющаяся вдоль оси резонатора, многократно усиливается. Дно из зеркал делается полупрозрачным, и из него лазерная волна выходит наружу в окружающую среду.

Сл

4. Рубиновый лазер .

Основная деталь рубинового лазера – рубиновый стержень . Рубин состоит из атомов Al и O с примесью атомов Cr . Именно атомы хрома придают рубину цвет и имеют метастабильное состояние.

Сл

На стержень навита трубка газоразрядной лампы, называемой лампой накачки . Лампа кратковременно вспыхивает, происходит накачка.

Рубиновый лазер работает в импульсном режиме. Существуют и другие типы лазеров: газовые, полупроводниковые... Они могут работать в непрерывном режиме.

Сл

5. Свойства лазерного излучения :

    самый мощный источник света;

Р Солнца = 10 4 Вт/см 2 , Р лазера = 10 14 Вт/см 2 .

    исключительная монохроматичность(монохроматические волны неограниченные в пространстве волны одной определенной и строго постоянной частоты) ;

    дает очень малую степень расхождения угла;

    когерентность (т.е. согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов) .

Сл3

Для работы лазера

необходима система накачки. То есть мы придадим атому либо атомной системе какую-либо энергию, тогда, согласно 2 постулату Бора атом перейдет на более высокий уровень с большим количеством энергии. Далее задача состоит в том, чтобы вернуть атом на прежний уровень, при этом, он излучает фотоны в качестве энергии.

    При достаточной мощности лампы большинство ионов хрома переводится в возбужденное состояние.

    Процесс сообщения рабочему телу лазера энергии для перевода атомов в возбужденное состояние называется накачкой.

    Излученный при этом фотон может вызвать вынужденное испускание дополнительных фотонов, которые в свою очередь вызовут вынужденное излучение)

Сл15

Физической основой работы лазера служит явление . Суть явления состоит в том, что возбуждённый способен излучить под действием другого фотона без его поглощения, если последнего равняется разности энергий

Мазер излучает микроволны , разер – рентгеновские , а газер – гамма-излучение.

Сл16

Мазер - квантовый генератор, излучающий

когерентные электромагнитные волны сантиметрового диапазона (микроволны).

Мазеры используются в технике (в частности, в космической связи), в физических исследованиях, а также как квантовые генераторы стандартной частоты.

Сл

Разер (рентгеновский лазер) - источник когерентного электромагнитного излучения в рентгеновском диапазоне, основанный на эффекте вынужденного излучения. Является коротковолновым аналогом лазера.

Сл

Применение когерентного рентгеновского излучения включают в себя исследования в области плотной плазмы, рентгеновской микроскопии, медицинской визуализации фазы с разрешением, исследование поверхности материала, и оружия. Мягкий рентгеновский лазер может выполнять функции лазера двигательной установки.

Сл

Работы в области газера ведутся, так как не создана эффективная система накачки.

Лазеры же используются в целом списке отраслей :

6. Применение лазеров : (слайд 16)

    в радиоастрономии для определения расстояний до тел Солнечной системы с максимальной точностью (светолокатор);

    обработка металлов (резка, сварка, плавка, сверление);

    в хирургии вместо скальпеля (например, в офтальмологии);

    для получения объемных изображений (голография);

    связь (особенно в космосе);

    запись и хранение информации;

    в химических реакциях;

    для осуществления термоядерных реакций в ядерном реакторе;

    ядерное оружие.

Сл

Таким образом, квантовые генераторы прочно вошли в быт человечества, позволив решить множество актуальных на тот момент проблем.

Значение КВАНТОВЫЕ ГЕНЕРАТОРЫ И УСИЛИТЕЛИ в Словаре Кольера

КВАНТОВЫЕ ГЕНЕРАТОРЫ И УСИЛИТЕЛИ

генераторы и усилители электромагнитных волн, основанные на явлении вынужденного (индуцированного) излучения. Принцип действия квантового генератора СВЧ-диапазона, названного мазером (аббревиатура от английских слов Microwave Amplification by Stimulated Emission of Radiation, означающих "микроволновое усиление за счет вынужденного излучения"), был предложен в 1954 Ч.Таунсом. (Этот же принцип лежит в основе оптических квантовых усилителей и лазеров-генераторов.) Поскольку частота излучения на выходе квантового генератора определяется строго фиксированными, дискретными энергетическими уровнями атомов или молекул активной среды, используемой в таком генераторе, она имеет точно определенное и постоянное значение.

Спонтанное и вынужденное излучение. Энергия электромагнитного излучения выделяется или поглощается в виде отдельных "порций", называемых квантами или фотонами, причем энергия одного кванта равна h?, где h - постоянная Планка, а? - частота излучения. Когда атом поглощает квант энергии, он переходит на более высокий энергетический уровень, т.е. один из его электронов перескакивает на орбиту, более удаленную от ядра. Принято говорить, что атом при этом переходит в возбужденное состояние.

Оказавшийся в возбужденном состоянии атом может отдать запасенную энергию разными путями. Один возможный путь - спонтанно испустить квант с той же самой частотой, после чего он возвращается в исходное состояние. Это - процесс спонтанного излучения (испускания), схематически изображенный на рис. 1,б. На высоких частотах, т.е. при малых длинах волн, соответствующих видимому свету, спонтанное излучение происходит очень быстро. Возбужденный атом, поглотив фотон видимого света, обычно теряет приобретенную энергию в результате спонтанного излучения менее чем через одну миллионную секунды. Процесс спонтанного излучения на меньших частотах задерживается. Кроме того, атом может перейти в некое промежуточное состояние, потеряв лишь часть своей энергии в виде испущенного им фотона меньшей энергии.

Есть еще один процесс, приводящий к тому, что возбужденный атом испускает эту запасенную энергию. Если на атом падает излучение определенной частоты (как на рис. 1,в), то оно вынуждает атом испустить фотон и перейти на более низкий уровень. Таким образом, приходит один фотон, а уходят два. Вынужденное излучение всегда происходит на той же частоте и с той же фазой, что и у приходящей волны, а потому, проходя мимо возбужденного атома, волна наращивает свою интенсивность.

Итак, волна соответствующей частоты, проходя через среду, в которой имеется избыток возбужденных атомов, усиливается за счет энергии вынужденного излучения этих атомов. Однако, если в среде имеются невозбужденные атомы, они могут поглощать энергию волны. Очевидно, что усиление за счет вынужденного излучения противоположно поглощению, и перевес одного из процессов над другим зависит от того, каких атомов больше на пути волны - возбужденных или невозбужденных.

То, что наряду со спонтанным излучением должно быть и вынужденное, постулировал Альберт Эйнштейн в 1916, приняв, что происходят все три процесса - поглощение, вынужденное и спонтанное излучение. На основании статистических соображений он вывел формулу, описывающую частотный спектр излучения, испускаемого веществом. Использовать вынужденное излучение для создания генераторов электромагнитных волн предложили Ч.Таунс в США и независимо от него русские физики Н.Г.Басов и А.М.Прохоров. Все трое за эту работу были удостоены Нобелевской премии по физике (1964).

Квантовый усилитель. Как говорилось выше, можно усиливать излучение, просто пропуская его через подходящую активную среду. Однако при этом коэффициент усиления зачастую бывает незначителен - порядка 1%. Чтобы увеличить усиление, нужно дольше удерживать излучение в контакте с активной средой. Для этого можно заключить активную среду в камеру с отражающими стенками. Тогда поперечная волна будет отражаться от стенки к стенке, немного усиливаясь при каждом проходе. Когда же она достаточно усилится, часть излучения можно выпустить из камеры в качестве выходного.

В диапазоне СВЧ (сверхвысокочастотном), т.е. когда длина волны находится в диапазоне от 0,1 до 100 см, размеры камеры обычно сравнимы с длиной волны. Камера, настраиваемая на нужную частоту путем изменения размеров (ее длина должна быть равна длине волны), называется объемным резонатором.

Если же длина волны излучения составляет примерно 1 мм или меньше, то такой резонатор даже трудно изготовить. Однако можно сделать объемный резонатор для инфракрасного или коротковолнового видимого света так, чтобы его длина была намного больше длины волны, - например, в виде двух параллельных зеркальных пластин (рис. 2). В таком устройстве поперечная пластинам волна, поочередно отражаясь от зеркал, будет оставаться в активной среде и нарастать за счет вынужденного излучения. Волна же, распространяющаяся в любом другом направлении, быстро уходит из резонатора почти без усиления.

Такое направленное действие системы двух параллельных пластин особенно важно для квантовых генераторов электромагнитного излучения с очень малой длиной волны. В этом случае усиление в активной среде должно быть достаточно большим, чтобы при прохождении волны от одной пластины к другой оно с лихвой возмещало неизбежные потери, претерпеваемые ею при отражении от зеркала. Непрерывное нарастание волны приводит к тому, что в промежутке между зеркалами устанавливаются резонансные электромагнитные колебания. Волны, распространяющиеся в любых других направлениях, не усиливаются настолько, чтобы компенсировались потери. И хотя в закрытой камере такого размера могли бы устанавливаться и поддерживаться миллионы разных видов колебаний и их быстро меняющихся сочетаний, система двух параллельных пластин выбирает из них только поперечные волны (остальные затухают). Поскольку такая система особенно подходит для выделения колебаний с определенной малой длиной волны, она широко применяется в квантовых генераторах инфракрасного и видимого светового диапазона - лазерах.

Чтобы часть света могла выходить из резонатора лазера, одна из пластин должна быть полупрозрачной, т.е. пропускающей часть падающего на нее света и отражающей свет с другими длинами волн. Свет, проходящий через полупрозрачную пластину, образует узко направленный луч. Такое устройство лазера предложено Таунсом и А.Шавловым.

Можно также выводить излучение через малое отверстие в одной из отражающих стенок. Эта схема часто применяется в квантовых генераторах сантиметрового (СВЧ) диапазона длин волн. В лазерах же она не дает столь высокой направленности выходного луча.

Активная среда. Для резонансного поглощения и усиления за счет вынужденного излучения необходимо, чтобы волна проходила сквозь материал, атомы или системы атомов которого "настроены" на нужную частоту. Иначе говоря, разность энергетических уровней E2 - E1 для атомов материала должна быть равна частоте электромагнитной волны, умноженной на постоянную Планка:

Далее, для того чтобы вынужденное излучение преобладало над поглощением, атомов на верхнем энергетическом уровне должно быть больше, чем на нижнем. Обычно этого не бывает. Более того, всякая система атомов, на достаточно длительное время предоставленная самой себе, приходит в равновесие со своим окружением при низкой температуре, т.е. достигает состояния наинизшей энергии. При повышенных температурах часть атомов системы возбуждается тепловым движением. При бесконечно высокой температуре все квантовые состояния были бы одинаково заполнены. Но поскольку температура всегда конечна, преобладающая доля атомов находится в низшем состоянии, и чем выше состояния, тем менее они заполнены. Если при абсолютной температуре T в низшем состоянии находится n0 атомов, то число атомов в возбужденном состоянии, энергия которого на величину E превышает энергию низшего состояния, дается распределением Больцмана:

где k - постоянная Больцмана.

Поскольку атомов, находящихся в низших состояниях, в условиях равновесия всегда больше, чем в высших, в таких условиях всегда преобладает поглощение, а не усиление за счет вынужденного излучения. Избыток атомов в определенном возбужденном состоянии можно создавать и поддерживать, только искусственно переводя их в это состояние, причем быстрее, чем они возвращаются к тепловому равновесию. Система, в которой имеется избыток возбужденных атомов, стремится к тепловому равновесию, и ее необходимо поддерживать в неравновесном состоянии, создавая в ней такие атомы.

Трехуровневый квантовый генератор. Метод создания и поддержания избытка атомов в возбужденном состоянии для газов (метод трехуровневой системы) предложен Н.Г.Басовым и А.М.Прохоровым, а для твердых материалов - Н.Бломбергеном. Первый трехуровневый квантовый усилитель создали Д.Сковил, Дж.Феер и Г.Зайдель. Трехуровневая система схематически представлена на рис. 3. Первоначально все атомы находятся на самом низком уровне E1, а уровни E2 и E3 не заполнены. Энергетическое расстояние между уровнями E2 и E3 не равно расстоянию между уровнями E1 и E2. Лампа или генератор "накачки" (в зависимости от того, о каком диапазоне идет речь - оптическом или радиочастотном) дает излучение с частотой, соответствующей переходу с нижнего уровня на верхний. Поглощая это излучение, атомы возбуждаются и переходят с нижнего уровня на верхний. Поскольку первоначально на промежуточном уровне E2 нет атомов, на уровне E3 их оказывается больше. Когда на уровне E3 накопится достаточно много атомов, начинается генерация на частоте, соответствующей переходу с верхнего уровня на промежуточный. Для того чтобы квантовая генерация происходила непрерывно, уровень E2 должен быстро опустошаться, т.е. атомы должны удаляться с него быстрее, чем они создаются за счет вынужденного излучения с уровня E3. Уровень E2 может опустошаться разными процессами, такими, как столкновения с другими атомами и передача энергии кристаллической решетке (если активная среда твердая). Во всех случаях энергия преобразуется в тепло, так что необходимо охлаждение прибора.

Накачкой можно перевести с уровня E1 на E3 не более половины атомов, так как далее эффект вынужденного излучения заставляет их возвращаться на нижний уровень. Но если вследствие столкновений или других процессов атомы с уровня E3 быстро переходят на уровень E2, то накачка их на верхний уровень с последующим переходом на промежуточный может продолжаться. Таким путем можно перекачать на уровень E3 больше половины атомов (и даже все). Тогда на промежуточном уровне оказывается больше атомов, чем на нижнем, и начинается генерация на частоте, соответствующей переходу Применение находят обе схемы трехуровневого квантового генератора и усилителя, причем та или другая выбирается в зависимости от свойств имеющегося материала с резонансами на нужных частотах. Вообще говоря, желательно, чтобы активная среда, удовлетворяя всем прочим требованиям, имела высокие резонансы. Если квантовый генератор предполагается использовать в качестве эталона частоты, то резонансы должны быть к тому же острыми. Такие резонансы характерны для спектров свободных атомов и молекул в газах. Резонансы же твердых материалов обычно довольно широкие, хотя ионы редкоземельных элементов и переходных металлов, таких как хром, в кристаллах имеют подходящие спектры.У некоторых материалов такого рода отмечаются высокие и острые резонансы как в СВЧ-, так и в оптическом диапазоне. Например, рубин (оксид алюминия), в котором какая-то доля процента ионов алюминия заменена ионами хрома, может служить активной средой для трехуровневого квантового генератора СВЧ-диапазона. Мейман показал, что рубин пригоден также для изготовления лазера. В обоих случаях используются энергетические уровни ионов хрома.

Лазер. Лазерами называются оптические квантовые генераторы, которые дают излучение, относящееся к видимой и инфракрасной областям спектра (где длины волн меньше 1 мм). По интенсивности такие генераторы намного превосходят все другие виды источников подобного излучения. Кроме того, их выходное излучение приходится на очень узкую полосу частот и имеет форму почти нерасходящегося пучка. К тому же лазерные лучи можно фокусировать в очень малое пятно, в котором плотность световой мощности и напряженность электрического поля колоссальны по сравнению с тем, что могут дать другие источники света. Выходное излучение почти полностью монохроматично и, что еще важнее, когерентно, т.е. полностью согласовано по фазе и лишено хаотической разупорядоченности обычного света. См. также ЛАЗЕР.

Молекулярный квантовый генератор. В первом квантовом генераторе, разработанном Гордоном, Цайгером и Таунсом, использовалась откачанная камера с пучком молекул аммиака. Молекулы пучка, находящиеся в нижнем энергетическом состоянии, выводились из пучка путем их отклонения в неоднородном электрическом поле. Молекулы же, находящиеся в верхнем энергетическом состоянии, фокусировались в объемном резонаторе, где и происходило вынужденное излучение (рис. 4).

Квантовый генератор с молекулярным пучком дает излучение с резко выделенной выходной частотой. Отчасти это обусловлено тем, что в пучке сравнительно мало молекул и они не могут влиять друг на друга. По причине малости числа молекул мала и выходная мощность.

Газоразрядный лазер. Активной средой газоразрядного лазера является смесь благородных газов, таких, как гелий и неон. У атома гелия имеется возбужденное состояние с большим временем жизни, и атомы, возбужденные до этого "метастабильного" состояния, не могут отдать свою энергию возбуждения путем спонтанного излучения. Однако они могут передавать ее в атомных столкновениях невозбужденным атомам неона. После такого столкновения атом гелия оказывается в своем основном состоянии, а атом неона - в возбужденном. Генерация происходит за счет вынужденных переходов с этого энергетического уровня на пустой более низкий уровень атомов неона.

Применение. Квантово-электронные приборы с атомарными и молекулярными системами в качестве активных сред используются в качестве усилителей и генераторов. На более низких частотах такие функции выполняют электронные лампы и транзисторы. Неудивительно, что семейство квантово-электронных приборов уже сейчас может поспорить в отношении многочисленности и разнообразия с более старыми электронными. Квантово-электронные приборы нашли ряд применений, для которых другие электронные приборы подходят плохо или вообще не годятся. Это функции СВЧ-усилителей с низким уровнем шумов, первичных эталонов частоты и времени, а также генераторов и усилителей излучения инфракрасной и видимой области спектра.

Малошумящие СВЧ-усилители. Назначение усилителя состоит в том, чтобы усиливать слабые сигналы, не искажая их при этом и не внося шума (хаотической составляющей). Электронные усилители всегда добавляют к сигналу собственный шум. При работе с крайне слабыми радиосигналами важно, чтобы усилитель вносил как можно меньше шума. Таковы радиосигналы, получаемые от небесных объектов, и радиолокационные сигналы, отраженные от предметов, удаленных на большие расстояния. В этих двух случаях сигнал наблюдается на фоне неба, которое вносит лишь незначительный шум. Это позволяет обнаружить очень слабый сигнал, если он не маскируется шумами самого приемника. Обычные усилители не отвечают требованиям такой задачи, и на помощь приходят квантовые усилители, почти не вносящие шума. Заменив на входе приемника усилитель на электронных лампах квантовым, можно повысить в сто раз чувствительность приемника в СВЧ-диапазоне. СВЧ-приемники с квантовыми усилителями столь чувствительны, что позволяют регистрировать тепловое излучение других планет и определять температуру их поверхности.

Эталоны частоты и атомные часы. Атомы и системы атомов, как уже говорилось, могут поглощать и испускать излучение только с некоторыми определенными частотами или длинами волн. Эти резонансы нередко имеют форму пиков, что позволяет измерять их частоту с высокой точностью. Соответствующие частоты являются характеристическими для тех или иных атомов и молекул и в отличие от построенных человеком эталонов не изменяются со временем. Поэтому такие резонансы могут служить эталонами частоты, длины волны и времени. Частоту внешнего электронного генератора можно проверять для калибровки даже по резонансам поглощения. Квантовые же генераторы непосредственно дают излучение эталонной частоты. При правильной настройке квантового генератора частота на его выходе постоянна. Ее можно использовать для контроля за ходом точных часов или более сложного устройства, предназначенного для измерения с высокой точностью временных интервалов. Активной средой одного из самых точных квантовых генераторов служит атомарный водород (система аналогична устройству первого квантового генератора - мазера - с молекулярным пучком аммиака). Точность его частоты составляет 10?10 %, что соответствует погрешности "хода часов", равной одной секунде за 30 000 лет.

Кольер. Словарь Кольера. 2012

Смотрите еще толкования, синонимы, значения слова и что такое КВАНТОВЫЕ ГЕНЕРАТОРЫ И УСИЛИТЕЛИ в русском языке в словарях, энциклопедиях и справочниках:

  • КВАНТОВЫЕ
    КВ́АНТОВЫЕ ЧИСЛА, целые или дробные числа, определяющие возможные дискретные значения физ. величин, характеризующих квантовые системы (атомное ядро, атом, молекулу и …
  • КВАНТОВЫЕ в Большом российском энциклопедическом словаре:
    КВ́АНТОВЫЕ ЧАСЫ (атомные часы), устройство для измерения времени, содержащее кварцевый генератор, управляемый квантовым стандартом частоты. Роль "маятника" в К.ч. …
  • КВАНТОВЫЕ в Большом российском энциклопедическом словаре:
    КВ́АНТОВЫЕ СТАНДАРТЫ ЧАСТОТЫ, устройства для точного измерения частоты колебаний, осн. на измерении частоты квантовых переходов (в СВЧ- и оптич. спектрах) …
  • КВАНТОВЫЕ в Большом российском энциклопедическом словаре:
    КВ́АНТОВЫЕ ПЕРЕХОДЫ, скачкообразные переходы квантовой системы (атома, молекулы, атомного ядра, кристалла) из одного возможного состояния в …
  • КВАНТОВАЯ ЭЛЕКТРОНИКА
    электроника, область физики, изучающая методы усиления и генерации электромагнитных колебаний, основанные на использовании эффекта вынужденного излучения, а также свойства …
  • ЭЛЕКТРОМАШИННЫЕ ГЕНЕРАТОРЫ И ЭЛЕКТРОДВИГАТЕЛИ: ГЕНЕРАТОРЫ ПОСТОЯННОГО ТОКА в Словаре Кольера:
    К статье ЭЛЕКТРОМАШИННЫЕ ГЕНЕРАТОРЫ И ЭЛЕКТРОДВИГАТЕЛИ Теория. На рис. 1,а показан виток провода abcd, вращающийся по часовой стрелке вокруг оси …
  • ЭЛЕКТРО-ГЕНЕРАТОРЫ: СИНХРОННЫЕ ГЕНЕРАТОРЫ ПЕРЕМЕННОГО ТОКА в Словаре Кольера:
    К статье ЭЛЕКТРОМАШИННЫЕ ГЕНЕРАТОРЫ И ЭЛЕКТРОДВИГАТЕЛИ Как уже упоминалось, в витке провода, вращающемся в постоянном магнитном поле, наводится переменная ЭДС. …
  • КВАНТОВЫЕ СТАНДАРТЫ ЧАСТОТЫ
  • СССР. ТЕХНИЧЕСКИЕ НАУКИ в Большой советской энциклопедии, БСЭ:
    науки Авиационная наука и техника В дореволюционной России был построен ряд самолётов оригинальной конструкции. Свои самолёты создали (1909-1914) Я. М. …
  • СССР. ЛИТЕРАТУРА И ИСКУССТВО в Большой советской энциклопедии, БСЭ:
    и искусство Литература Многонациональная советская литература представляет собой качественно новый этап развития литературы. Как определённое художественное целое, объединённое единой социально-идеологической …
  • РАДИОИЗМЕРЕНИЯ в Большой советской энциклопедии, БСЭ:
    измерения электрических, магнитных и электромагнитных величин и их отношений, характеризующих работу радиотехнических устройств в диапазоне частот от инфразвуковых до сверхвысоких. …
  • ПОСТОЯННОГО ТОКА МАШИНА в Большой советской энциклопедии, БСЭ:
    тока машина, электрическая машина, в которой происходит преобразование механической энергии в электрическую энергию постоянного тока (генератор) или обратное преобразование (двигатель). …
  • ПЕРЕХОДЫ КВАНТОВЫЕ в Большой советской энциклопедии, БСЭ:
    квантовые, см. Квантовые переходы …
  • ПАРАМЕТРИЧЕСКИЕ ГЕНЕРАТОРЫ СВЕТА в Большой советской энциклопедии, БСЭ:
    генераторы света, источники когерентного оптического излучения, основным элементом которых является нелинейный кристалл, в котором мощная световая волна фиксированной частоты параметрически …
  • МОЛЕКУЛЯРНЫЙ ГЕНЕРАТОР в Большой советской энциклопедии, БСЭ:
    генератор, устройство, в котором когерентные электромагнитные колебания генерируются за счёт вынужденных квантовых переходов молекул из исходного энергетического состояния в состояние …
  • КВАНТОВЫЕ ЧИСЛА в Большой советской энциклопедии, БСЭ:
    числа, целые (0, 1, 2,...) или полуцелые (1/2, 3/2, 5/2,...) числа, определяющие возможные дискретные значения физических величин, которые характеризуют квантовые …
  • КВАНТОВЫЕ СТАНДАРТЫ ЧАСТОТЫ в Большой советской энциклопедии, БСЭ:
    стандарты частоты, устройства, в которых для точного измерения частоты колебаний или для генерирования колебаний с весьма стабильной частотой используются квантовые …
  • КВАНТОВЫЕ ПЕРЕХОДЫ в Большой советской энциклопедии, БСЭ:
    переходы, скачкообразные переходы квантовой системы (атома, молекулы, атомного ядра, твёрдого тела) из одного состояния в другое. Наиболее важными являются К. …
  • КВАНТОВЫЕ ЧАСЫ
  • КВАНТОВЫЕ СТАНДАРТЫ ЧАСТОТЫ в Современном энциклопедическом словаре:
  • КВАНТОВЫЕ ПЕРЕХОДЫ в Современном энциклопедическом словаре:
    скачкообразные переходы квантовой системы (атома, молекулы, атомного ядра, кристалла) из одного возможного состояния в другое. Квантовые переходы могут быть излучательными …
  • КВАНТОВЫЕ ЧАСЫ
    (атомные часы), устройства для измерения времени, содержащие кварцевый генератор, управляемый стандартом частоты. Роль "маятника" в квантовых часах играют атомы. Частота …
  • КВАНТОВЫЕ СТАНДАРТЫ ЧАСТОТЫ в Энциклопедическом словарике:
    устройства для точного измерения частоты излучения при квантовых переходах (в СВЧ- и оптических спектрах) атомов, ионов или молекул из одного …
  • ЭЛЕКТРОМАШИННЫЕ ГЕНЕРАТОРЫ И ЭЛЕКТРОДВИГАТЕЛИ: ЭЛЕКТРОДВИГАТЕЛИ ПОСТОЯННОГО ТОКА в Словаре Кольера:
    К статье ЭЛЕКТРОМАШИННЫЕ ГЕНЕРАТОРЫ И ЭЛЕКТРОДВИГАТЕЛИ Генераторы постоянного тока удовлетворительно работают как двигатели и при тех же номинальных параметрах не …
  • ЭЛЕКТРОМАШИННЫЕ ГЕНЕРАТОРЫ И ЭЛЕКТРОДВИГАТЕЛИ в Словаре Кольера:
    машины вращательного типа, преобразующие либо механическую энергию в электрическую (генераторы), либо электрическую в механическую (двигатели). Действие генераторов основано на принципе …
  • КВАНТОВЫЕ СТАНДАРТЫ ЧАСТОТЫ в Современном толковом словаре, БСЭ:
    устройства для точного измерения частоты колебаний, основанное на измерении частоты квантовых переходов (в сверхвысокочастотных и оптических спектрах) атомов, ионов или …
  • АРМАГЕДДОН в Справочнике Секретов игр, программ, оборудования, кино, пасхальных яйцах:
    1.Во время съёмок режиссёр Майкл Бэй добился разрешения снимать в нескольких местах на территории NASA. Посмотрите сцену взлёта космических кораблей …
  • УМОРЫ в Галактической энциклопедии из научно-фантастической литературы:
    Усилители морали, нравственные предохранители шустров 16-го и последующих поколений; предотвращают попытки мерзификации (кретинизации) шустров, предпринимаемые преступными и диссидентскими элементами", …
  • ФЕРРОМАГНИТНЫЙ РЕЗОНАНС в Большом энциклопедическом словаре:
    избирательное поглощение ферромагнетиком энергии электромагнитного поля при частотах (обычно радиодиапазона), совпадающих с собственной частотой прецессии магнитного момента ферромагнетика (см. Лармора …
  • УСИЛИТЕЛЬ в Большом энциклопедическом словаре:
    в технике - устройство, в котором осуществляется увеличение энергетических параметров сигнала (воздействия) за счет использования энергии вспомогательного источника. В соответствии …
  • ТЕРМОЭЛЕКТРИЧЕСКИЙ ПРИБОР ИЗМЕРИТЕЛЬНЫЙ в Большом энциклопедическом словаре:
    служит для измерения силы тока (реже - напряжения и мощности); представляет собой магнитоэлектрический измерительный прибор, измеряющий электродвижущую силу термопреобразователя, нагревательный …
  • СУММИРОВАНИЯ БЛОК в Большом энциклопедическом словаре:
    аналоговое вычислительное устройство, на выходе которого образуется величина, пропорциональная сумме входных величин. В составе АВМ наиболее распространены электронные суммирования блоки …
  • РАДИОПРИЕМНИК в Большом энциклопедическом словаре:
    в сочетании с антенной (наружной или встроенной) служит для приема радиосигналов. Примеры: радиовещательный приемник, телевизор, радиолокационный радиоприемник. Основные элементы: частотно-селективные …
  • НЕЛИНЕЙНОЙ ФУНКЦИИ БЛОК в Большом энциклопедическом словаре:
    (в вычислительной технике) узел АВМ, выходной сигнал которого связан с входным заданной нелинейной зависимостью. Устройства с линейной функциональной зависимостью составляют …

Успехи, достигнутые при разработке и исследовании кванто­вых усилителей и генераторов в радиодиапазоне, послужили базой для реализации предложения об усилении и генерации света на ос­нове индуцированного излучения и привели к созданию квантовых генераторов оптического диапазона. Оптические квантовые гене­раторы (ОКГ) или лазеры являются единственными источниками мощ­ного монохроматического света. Принцип усиления света с помощью атомных систем был впервые предложен в 1940 г. В.А. Фабри­кантом. Однако обоснование возможности создания оптического квантового генератора было дано лишь в 1958 г. Ч. Таунсом и А. Шавловым на основе достижений разработок квантовых приборов в радиодиапазоне. Первый оптический квантовый генератор был ре­ализован в I960 г. Это был ОКГ с кристаллом рубина в качестве рабочего вещества. Создание инверсии населенностей в нем осу­ществлялось методом трехуровневой накачки, применявшимся обыч­но в парамагнитных квантовых усилителях.

В настоящее время разработано множество разнообразных оп­тических квантовых генераторов, отличающихся рабочими вещест­вами (в этом качестве используются кристаллы, стекла, пласт­массы, жидкости, газы, полупроводники) и способами создания ин­версии населенностей (оптическая накачка, разряд в газах, химические реакции и т.д.).

Излучение существующих оптических квантовых генераторов охватывает диапазон длин волн от ультрафиолетовой до дальней инфракрасной области спектра, примыкающей к миллиметровым вол­нам. Аналогично квантовому генератору в радиодиапазоне оптический квантовый генератор состоит из двух основных частей: рабочего (активного) вещества, в котором тем или иным способом

создается инверсия населенностей, и резонансной системы (рис.62). В качестве последней в ОКГ используются открытые резонаторы ти­па интерферометра Фабри - Перо, образуемые системой из двух зеркал, удаленных друг от друга.

Рабочее вещество осуще­ствляет усиление оптического излучения благодаря индуциро­ванному испусканию активных частиц. Резонансная система, вызывая многократное прохо­ждение возникающего оптиче­ского индуцированного излуче­ния через активную среду, об­условливает эффективное вза­имодействие поля с ней. Если рассматривать ОКГ как автоколеба­тельную систему, то резонатор обеспечивает положительную обрат­ную связь в результате возвращения части распространяющегося между зеркалами излучения в активную среду. Дяя возникновения колебаний мощность в ОКГ, получаемая от активной среды, должна быть равна мощности потерь в резонаторе иди превышать ее. Это эквивалентно тому, что интенсивность волны генерации после про­хождения через усиливающую среду, отражения от зеркал -/ и 2 , возвращения в исходное сечение должна оставаться неизменной или превышать первоначальное значение.

При прохождении через активную среду интенсивность волны 1^ изменяется по экспоненциальному закону (при пренебрежении насыщением) L, ° 1^ ежр [ (ос,^ - b())-c ] , а при отражении от зеркала она изменяется в г раз (т - коэффициент. отражения зеркала), поэтому условие возникновения генерации можно запи­сать как

где L - длина рабочей активной среды; r1 и r2 - коэффициенты отражения зеркал 1 и 2 ; a u - коэффициент усиления активной среды; b 0 - постоянная затухания, учитывающая потери энергии в рабочем веществе в результате рассеяния на неоднородностях и дефектах.


I. Резонаторы оптических квантовых генераторов

Резонансные системы ОКГ, как отмечалось, представляют со­бой открытые резонаторы. В настоящее время наиболее широко при­меняются открытые резонаторы с плоскими и сферическими зерка­лами. Характерная особенность открытых резонаторов - их геоме­трические размеры во много раз превышают длину волны. Подобно объемным открытые резонаторы обладают набором собственных ти­пов колебаний, характеризующихся определенным распределением поля в них и собственными частотами. Собственные типы колеба­ний открытого резонатора представляют собой решения уравнений поля, удовлетворяющие граничным условиям на зеркалах.

Существует несколько методов расчета объемных резонаторов, позволяющих находить собственные типы колебаний. Строгая и наи­более полная теория открытых резонаторов дана в работах Л.А.Вайв-штейна.* Наглядный метод расчета типов колебаний в открытых резонаторах развит в работе А.Фокса и Т.Ли.

(113)
В ней используется. численный расчет, моделирующий процесс установления типов ко­лебаний в резонаторе в результате многократного отражения от зеркал. Первоначально задается произвольное распределение поля на поверхности одного из зеркал. Затем, применяя принцип Гюй­генса, вычисляют распределение поля на поверхности другого зер­кала. Подученное распределение принимают за исходное и вычис­ление повторяется. После многократных отражений распределение амплитуды и фазы поля на поверхности зеркала стремится к ста­ционарному значению, т.е. поле на каждом зеркале самовоспроиз­водится в неизменном виде. Полученное распределение поля пред­ставляет собой нормальный тип колебаний открытого резонатора.

Расчет А.Фокса и Т.Ли базируется на следующей формуле Кирх­гофа, являющейся математическим выражением принципа Гюйгенса, которая позволяет находить поде в точке наблюдения А по задан­ному полю на некоторой поверхности Sb

где Eb - поле в точке B на поверхности Sb; k- волновое чи­сло; R - расстояние между точками А и В; Q - угол между ли­нией, соединяющей точки А и В, и нормалью к поверхности Sb

С увеличением числа проходов поде на зеркалах стремится к стационарному распределению, которое можно представить так:

где V(x ,у) - функция распределения, зависящая от координат на поверхности зеркал, не меняющаяся от отражения к отражению;

у - комплексная постоянная, не зависящая от пространственных координат.

Подставив формулу (112) в выражение (III). получим инте­гральное уравнение

Оно имеет решение лишь при определенных значениях [Гамма] =[гамма миним.] назы­ваемых собственными значениями, Функции Vmn, удовлетворяющие интегральному уравнению, характеризуют структуру поля различ­ных типов колебаний резонатора, которые называют поперечными колебаниями и обозначают как колебания типа ТЕМmn Символ ТЕM указывает на то, что водны внутри резонатора близки к попереч­ным электромагнитным, т.е. не имеющим составляющих поля вдоль направления распространения волны. Индексы m и n обозначают число изменений направления поля вдоль сторон зеркала (для пря­моугольных зеркал) или по углу и вдоль радиуса (для круглых зеркал). На рис.64 показана конфигурация электрического поля для простейших поперечных типов колебаний открытых резонаторов с круглыми зеркалами. Собственные типы колебаний открытых резо­наторов характеризуются не только поперечник распределением поля, но и распределением его вдоль оси резонаторов, которое представляет собой стоячую волну и отличается числом полуволн, укладывающихся по длине резонатора. Для учета этого в обозна­чения типов колебаний вводится третий ивдекс а , характеризую­щий число полуволн, укладывающихся вдоль оси резонатора.


Оптические квантовые генераторы на твердом теле

В оптических квантовых генераторах на твердом теле, или твердотельных ОКГ, в качестве активной усиливающей среды ис­пользуются кристаллы или аморфные диэлектрики. Рабочими части­цами, переходы меяду энергетическими состояниями которых опре­деляют генерацию, как правило, являются ионы атомов переходных групп Периодической таблицы Менделеева, Наиболее часто используются ионы Na 3+ , Cr 3+ , Но 3+ , Pr 3+ . Активные частицы состав­ляют доли или единицы процента от общего числа атомов рабочей среды, так что они как бы образуют "раствор" слабой концентра­ции и потому мало взаимодействуют друг с другом. Используемые энергетические уровни представляют собой уровни рабочих частиц, расщепленные и уширенные сильными неоднородными внутренними полями твердого вещества. В качестве основы активной усиливаю­щей среды используются наиболее часто кристаллы корунда (Al2O3), иттриево-алюминиевого граната YAG (Y3Al5O12), разные марки стекол и т.д.

Инверсия населенностей в рабочем веществе твердотельных ОКГ создается методом, анало­гичным используемому в парамаг­нитных усилителях. Она осуще­ствляется с помощью оптической накачки, т.е. воздействием на вещество светового излучения вы­сокой интенсивности.

Как показывают исследова­ния, большинство существующих в настоящее время активных сред, используемых- в твердотельных ОКГ, удовлетворительно описыва­ются двумя основными идеализи­рованными энергетическими схе­мами: трех- и четырехуровневой (рис.71).

Рассмотрим вначале метод создания инверсии населенностей в средах, описываемых трехуровневой схемой (см.рис.71,а). В нормальном состоянии заселен лишь нижний основной уровень 1 (энер­гетическое расстояние между уровнями значительно больше kT), так как переходы 1->2, и 1->3) принадлежат оптическому диапа­зону. Переход между уровнями 2 и 1 является рабочим. Уровень 3 вспомогательный и используется для создания инверсии рабо­чей пары уровней. Он в действительности занимает широкую поло­су допустимых значений энергии, обусловленную взаимодействием рабочих частиц с внутрикристаллическими полями.

В квантовых генераторах для создания электромагнитных ко­лебаний используется внутренняя энергия микросистем - атомов, молекул, ионов.

Квантовые генераторы называют еще лазерами. Слово лазер составлено из начальных букв английского названия квантовых генераторов - усилитель света за счет создания стимулированно­го излучения.

Принцип действия квантового генератора состоит в следующем. При рассмотрении энергетической структуры вещества было по­казано, что изменение энергии микрочастиц (атомов, молекул, ио­нов, электронов) происходит не непрерывно, а дискретно - пор­циями, названными квантами (от латинского quantim - количе­ство) .

Микросистемы, в которых элементарные частицы взаимодейст­вуют между собой, называются квантовыми системами.

Переход квантовой системы из одного энергетического состоя­ния в другое сопровождается излучением или поглощением кван­та электромагнитной энергии hv: Е 2 - Ei=hv, где Е 1 и Е 2 - энер­гетические состояния: h - постоянная Планка; v - частота.

Известно, что наиболее устойчивым состоянием любой систе­мы, в том числе атома и молекулы, является состояние с наимень­шей энергией. Поэтому каждая система стремится занять и со­хранять состояние с наименьшей энергией. Следовательно, в нор­мальном состоянии электрон движется по наиболее близкой к ядру орбите. Такое состояние атома называется основным или ста­ционарным.

Под действием внешних факторов - нагрева, освещения, элек­тромагнитного поля - энергетическое состояние атома может из­меняться.

Если атом, например, водорода взаимодействует с электромаг­нитным полем, то он поглощает энергию Е 2 - E 1 = hv и его элек­трон переходит на более высокий энергетический уровень. Такое состояние атома называется возбужденным. В нем атом может находиться некоторое очень малое время, называемое временем жизни возбужденного атома. После этого электрон возвращает­ся на нижний уровень, т. е. в основное устойчивое состояние, от­давая избыток энергии в виде излучаемого кванта энергии - фо­тона.

Излучение электромагнитной энергии при переходе квантовой системы из возбужденного состояния в основное без внешнего воз­действия называется самопроизвольным или спонтанным. При спонтанном излучении фотоны испускаются в случайные моменты времени, в произвольном направлении, с произвольной поляриза­цией. Поэтому оно называется некогерентным.

Однако под действием внешнего электромагнитного поля элек­трон может быть возвращен на нижний энергетический уровень еще до истечения времени жизни атома в возбужденном состоя­нии. Если, например, два фотона воздействуют на возбужденный атом, то при определенных условиях электрон атома возвращается на нижний уровень, излучая квант в виде фотона. При этом все три фотона имеют общую фазу, направление и поляризацию из­лучения. В результате энергия электромагнитного излучения ока­зывается увеличенной.



Излучение электромагнитной энергии квантовой системой при снижении ее энергетического уровня под действием внешнего элек­тромагнитного поля называют вынужденным, индуцированным или стимулированным.

Индуцированное излучение совпадает по частоте, фазе и на­правлению с внешним облучением. Отсюда такое излучение на­зывают когерентным (когерентность-от латинского cogerentia - сцепление, связь).

Так как на стимулирование перехода системы на более низ­кий энергетический уровень энергия внешнего поля не затрачива­ется, то электромагнитное поле усиливается и его энергия возра­стает на значение энергии излучаемого кванта. Это явление ис­пользуется для усиления и генерирования колебаний с помощью квантовых приборов.

В настоящее время лазеры изготовляют из полупроводниковых материалов.

Полупроводниковым лазером называют полупроводниковый прибор, в котором происходит непосредственное преобразование электрической энергии в энергию излучения оптического диапа­зона.

Для работы лазера, т. е. для того, чтобы лазер создавал элек­тромагнитные колебания, необходимо, чтобы в его веществе воз­бужденных частиц было больше, чем невозбужденных.

Но в нормальном состоянии полупроводника на более высо­ких энергетических уровнях при любой температуре количество электронов меньше, чем на более низких уровнях. Поэтому в нор­мальном состоянии полупроводник поглощает электромагнитную энергию.

Наличие электронов на том или ином уровне называется насе­ленностью уровня.

Состояние полупроводника, в котором на более высоком энер­гетическом уровне находится больше электронов, чем на более низком уровне, называется состоянием с инверсной населенностью. Создавать инверсную населенность можно различными способа­ми: с помощью инжекции носителей заряда при прямом включе­нии р - я-перехода, путем облучения полупроводника светом и т. д.

Источник энергии, создавая инверсию населенностей, выполня­ет работу, передавая энергию веществу и далее электромагнитно­му полю. В полупроводнике с инверсной населенностью можно получить вынужденное излучение, так как в нем имеется боль­шое количество возбужденных электронов, которые могут отдать свою энергию.

Если полупроводник с инверсной населенностью облучить элек­тромагнитными колебаниями частотой, равной частоте перехода между энергетическими уровнями, то электроны с верхнего уров­ня переходят на нижний вынужденно, излучая фотоны. При этом происходит вынужденное когерентное излучение. Оно является усиленным. Создав в таком устройстве цепь положительной обрат­ной связи, получим лазер - автогенератор электромагнитных ко­лебаний оптического диапазона.

Для изготовления лазеров чаще всего используют арсенид гал­лия, из которого изготовляют кубик со сторонами длиной в не­сколько десятых долей миллиметра.

Глава 4. СТАБИЛИЗАЦИЯ ЧАСТОТЫ ПЕРЕДАТЧИКОВ

Квантовый генератор

Ква́нтовый генератор - общее название источников электромагнитного излучения, работающих на основе вынужденного излучения атомов и молекул. В зависимости от того, какую длину волны излучает квантовый генератор, он может называться по разному: лазер , мазер , разер, газер .

История создания

Квантовый генератор основан на принципе вынужденного излучения , предложенного А. Эйнштейном: когда квантовая система возбуждена и одновременно присутствует излучение соответствующей квантовому переходу частоты, вероятность скачка системы на более низкий энергетический уровень повышается пропорционально плотности уже присутствующих фотонов излучения. На возможность создания квантового генератора на этой основе указал советский физик В. А. Фабрикант в конце 40-х годов.

Литература

Ландсберг Г.С. Элементарный учебник физики. Том 3. Колебания и волны. Оптика. Атомная и ядерная физика. - 1985.

Херман Й., Вильгельми Б. "Лазеры для генерации сверхкоротких световых импульсов" - 1986.


Wikimedia Foundation . 2010 .

  • Ноткер Заика
  • Ресинтез

Смотреть что такое "Квантовый генератор" в других словарях:

    КВАНТОВЫЙ ГЕНЕРАТОР - генератор эл. магн. волн, в к ром используется явление вынужденного излучения (см. КВАНТОВАЯ ЭЛЕКТРОНИКА). К. г. радиодиапазона, так же как и квантовый усилитель, наз. мазером. Первый К. г. был создан в диапазоне СВЧ в 1955. Активной средой в нём … Физическая энциклопедия

    КВАНТОВЫЙ ГЕНЕРАТОР - источник когерентного электромагнитного излучения, действие которого основано на вынужденном излучении фотонов атомами, ионами и молекулами. Квантовые генераторы радиодиапазона называются мазерами, квантовые генераторы оптического диапазона… … Большой Энциклопедический словарь

    квантовый генератор - Источник когерентного излучения, основанный на использовании вынужденного испускания и обратной связи. Примечание Квантовые генераторы разделяются по типу активного вещества, способу возбуждения и по другим признакам, например, пучковые, газовые … Справочник технического переводчика

    КВАНТОВЫЙ ГЕНЕРАТОР - источник монохроматического когерентного электромагнитного излучения (оптического или радиодиапазона), действующий на основе вынужденного излучения возбуждённых атомов, молекул, ионов. В качестве рабочего вещества используют газы, кристаллические … Большая политехническая энциклопедия

    квантовый генератор - устройство для генерирования когерентного электромагнитного излучения. Когерентность – это согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов, проявляющееся при их сложении, напр. при интерференции … Энциклопедия техники

    квантовый генератор - источник когерентного электромагнитного излучения, действие которого основано на вынужденном излучении фотонов атомами, ионами и молекулами. Квантовые генераторы радиодиапазона называются мазерами, квантовые генераторы оптического диапазона … … Энциклопедический словарь

    квантовый генератор - kvantinis generatorius statusas T sritis Standartizacija ir metrologija apibrėžtis Elektromagnetinių bangų generatorius, kurio veikimas pagrįstas sužadintųjų atomų, molekulių, jonų priverstinio spinduliavimo reiškiniu. atitikmenys: angl. quantum… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    квантовый генератор - kvantinis generatorius statusas T sritis fizika atitikmenys: angl. quantum generator vok. Quantengenerator, m rus. квантовый генератор, m pranc. oscillateur quantique, m … Fizikos terminų žodynas

    Квантовый генератор - генератор электромагнитных волн, в котором используется явление вынужденного излучения (См. Вынужденное излучение) (см. Квантовая электроника). К. г. радиодиапазона сверхвысоких частот (СВЧ), так же как и Квантовый усилитель этого… … Большая советская энциклопедия