Железо химический элемент общая характеристика. Физические и химические свойства железа

ОПРЕДЕЛЕНИЕ

Железо - элемент восьмой группы четвёртого периода Периодической системы химических элементов Д. И. Менделеева.

А томный номер — 26. Символ – Fe (лат. «ferrum»). Один из самых распространённых в земной коре металлов (второе место после алюминия).

Физические свойства железа

Железо – металл серого цвета. В чистом виде оно довольно мягкое, ковкое и тягучее. Электронная конфигурация внешнего энергетического уровня – 3d 6 4s 2 . В своих соединениях железо проявляет степени окисления «+2» и «+3». Температура плавления железа – 1539С. Железо образует две кристаллические модификации: α- и γ-железо. Первая из них имеет кубическую объемноцентрированную решетку, вторая – кубическую гранецентрированную. α-Железо термодинамически устойчиво в двух интервалах температур: ниже 912 и от 1394С до температуры плавления. Между 912 и 1394С устойчиво γ-железо.

Механические свойства железа зависят от его чистоты – содержания в нем даже весьма малых количеств других элементов. Твердое железо обладает способностью растворять в себе многие элементы.

Химические свойства железа

Во влажном воздухе железо быстро ржавеет, т.е. покрывается бурым налетом гидратированного оксида железа, который вследствие своей рыхлости не защищает железо от дальнейшего окисления. В воде железо интенсивно корродирует; при обильном доступе кислорода образуются гидратные формы оксида железа (III):

2Fe + 3/2O 2 + nH 2 O = Fe 2 O 3 ×H 2 O.

При недостатке кислорода или при затрудненном доступе образуется смешанный оксид (II, III) Fe 3 O 4:

3Fe + 4H 2 O (v) ↔ Fe 3 O 4 + 4H 2 .

Железо растворяется в соляной кислоте любой концентрации:

Fe + 2HCl = FeCl 2 + H 2 .

Аналогично происходит растворение в разбавленной серной кислоте:

Fe + H 2 SO 4 = FeSO 4 + H 2 .

В концентрированных растворах серной кислоты железо окисляется до железа (III):

2Fe + 6H 2 SO 4 = Fe 2 (SO 4) 3 + 3SO 2 + 6H 2 O.

Однако, в серной кислоте, концентрация которой близка к 100%, железо становится пассивным и взаимодействия практически не происходит. В разбавленных и умеренно концентрированных растворах азотной кислоты железо растворяется:

Fe + 4HNO 3 = Fe(NO 3) 3 + NO +2H 2 O.

При высоких концентрациях азотной кислоты растворение замедляется и железо становится пассивным.

Как и другие металлы железо вступает в реакции с простыми веществами. Реакции взаимодействия железа с галогенами (вне зависимости от типа галогена) протекают при нагревании. Взаимодействие железа с бромом протекает при повышенном давлении паров последнего:

2Fe + 3Cl 2 = 2FeCl 3 ;

3Fe + 4I 2 = Fe 3 I 8 .

Взаимодействие железа с серой (порошок), азотом и фосфором также происходит при нагревании:

6Fe + N 2 = 2Fe 3 N;

2Fe + P = Fe 2 P;

3Fe + P = Fe 3 P.

Железо способно реагировать с такими неметаллами, как углерод и кремний:

3Fe + C = Fe 3 C;

Среди реакций взаимодействия железа со сложными веществами особую роль играют следующие реакции — железо способно восстанавливать металлы, стоящие в ряду активности правее него, из растворов солей (1), восстанавливать соединения железа (III) (2):

Fe + CuSO 4 = FeSO 4 + Cu (1);

Fe + 2FeCl 3 = 3FeCl 2 (2).

Железо, при повышенном давлении, реагирует с несолеобразующим оксидом – СО с образованием веществ сложного состава – карбонилов — Fe(CO) 5 , Fe 2 (CO) 9 и Fe 3 (CO) 12 .

Железо при отсутствии примесей устойчиво в воде и в разбавленных растворах щелочей.

Получение железа

Основной способ получения железа – из железной руды (гематит, магнетит) или электролиз растворов его солей (в этом случае получают «чистое» железо, т.е. железо без примесей).

Примеры решения задач

ПРИМЕР 1

Задание Железная окалина Fe 3 O 4 массой 10 г была сначала обработана 150 мл раствора соляной кислоты (плотность 1,1 г/мл) с массовой долей хлороводорода 20%, а затем в полученный раствор добавили избыток железа. Определите состав раствора (в % по массе).
Решение Запишем уравнения реакций согласно условию задачи:

8HCl + Fe 3 O 4 = FeCl 2 +2FeCl 3 + 4H 2 O (1);

2FeCl 3 + Fe = 3FeCl 2 (2).

Зная плотность и объем раствора соляной кислоты, можно найти его массу:

m sol (HCl) = V(HCl) × ρ (HCl);

m sol (HCl) = 150×1,1 = 165 г.

Рассчитаем массу хлороводорода:

m(HCl) = m sol (HCl) ×ω(HCl)/100%;

m(HCl) = 165×20%/100% = 33 г.

Молярная масса (масса одного моль) соляной кислоты, рассчитанная с помощью таблицы химических элементов Д.И. Менделеева – 36,5 г/моль. Найдем количество вещества хлороводорода:

v(HCl) = m(HCl)/M(HCl);

v(HCl) = 33/36,5 = 0,904 моль.

Молярная масса (масса одного моль) окалины, рассчитанная с помощью таблицы химических элементов Д.И. Менделеева – 232 г/моль. Найдем количество вещества окалины:

v(Fe 3 O 4) = 10/232 = 0,043 моль.

Согласно уравнению 1, v(HCl): v(Fe 3 O 4) = 1:8, следовательно, v(HCl) = 8 v(Fe 3 O 4) = 0,344 моль. Тогда, количество вещества хлородорода, рассчитанное по уравнению (0,344 моль) будет меньше, чем указанное в условии задачи (0,904 моль). Следовательно, соляная кислота находится в избытке и будет протекать еще одна реакция:

Fe + 2HCl = FeCl 2 + H 2 (3).

Определим количество вещества хлоридов железа, образующихся в результате первой реакции (индексами обозначим конкретную реакцию):

v 1 (FeCl 2):v(Fe 2 O 3) = 1:1 = 0,043 моль;

v 1 (FeCl 3):v(Fe 2 O 3) = 2:1;

v 1 (FeCl 3) = 2×v(Fe 2 O 3) = 0,086 моль.

Определим количество хлороводорода, которое не прореагировало в реакции 1 и количество вещества хлорида железа (II), образовавшееся в ходе реакции 3:

v rem (HCl) = v(HCl) – v 1 (HCl) = 0,904 – 0,344 = 0,56 моль;

v 3 (FeCl 2): v rem (HCl) = 1:2;

v 3 (FeCl 2) = 1/2×v rem (HCl) = 0,28 моль.

Определим количество вещества FeCl 2 , образовавшегося в ходе реакции 2, общее количество вещества FeCl 2 и его массу:

v 2 (FeCl 3) = v 1 (FeCl 3) = 0,086 моль;

v 2 (FeCl 2): v 2 (FeCl 3) = 3:2;

v 2 (FeCl 2) = 3/2× v 2 (FeCl 3) = 0,129 моль;

v sum (FeCl 2) = v 1 (FeCl 2) + v 2 (FeCl 2) + v 3 (FeCl 2) = 0,043+0,129+0,28 = 0,452 моль;

m(FeCl 2) = v sum (FeCl 2) ×M(FeCl 2) = 0,452×127 = 57,404 г.

Определим количество вещества и массу железа, вступившего в реакции 2 и 3:

v 2 (Fe): v 2 (FeCl 3) = 1:2;

v 2 (Fe) = 1/2× v 2 (FeCl 3) = 0,043 моль;

v 3 (Fe): v rem (HCl) = 1:2;

v 3 (Fe) = 1/2×v rem (HCl) = 0,28 моль;

v sum (Fe) = v 2 (Fe) + v 3 (Fe) = 0,043+0,28 = 0,323 моль;

m(Fe) = v sum (Fe) ×M(Fe) = 0,323 ×56 = 18,088 г.

Вычислим количество вещества и массу водорода, выделившегося в реакции 3:

v(H 2) = 1/2×v rem (HCl) = 0,28 моль;

m(H 2) = v(H 2) ×M(H 2) = 0,28 ×2 = 0,56 г.

Определяем массу полученного раствора m’ sol и массовую долю FeCl 2 в нём:

m’ sol = m sol (HCl) + m(Fe 3 O 4) + m(Fe) – m(H 2);

Железо (латинское ferrum), fe, химический элемент viii группы периодической системы Менделеева; атомный номер 26, атомная масса 55,847; блестящий серебристо-белый металл. Элемент в природе состоит из четырёх стабильных изотопов: 54 fe (5,84%), 56 fe (91,68%), 57 fe (2,17%) и 58 fe (0,31%).

Историческая справка. Ж. было известно ещё в доисторические времена, однако широкое применение нашло значительно позже, т. к. в свободном состоянии встречается в природе крайне редко, а получение его из руд стало возможным лишь на определённом уровне развития техники. Вероятно, впервые человек познакомился с метеоритным Ж., о чём свидетельствуют его названия на языках древних народов: древнеегипетское «бени-пет» означает «небесное железо»; древнегреческое sideros связывают с латинским sidus (родительный падеж sideris) - звезда, небесное тело. В хеттских текстах 14 в. до н. э. упоминается о Ж. как о металле, упавшем с неба. В романских языках сохранился корень названия, данного римлянами (например, французское fer, итальянское ferro).

Способ получения Ж. из руд был изобретён в западной части Азии во 2-м тысячелетии до н. э.; вслед за тем применение Ж. распространилось в Вавилоне, Египте, Греции; на смену бронзовому веку пришёл железный век. Гомер (в 23-й песне «Илиады») рассказывает, что Ахилл наградил диском из железной крицы победителя в соревновании по метанию диска. В Европе и Древней Руси в течение многих веков Ж. получали по сыродутному процессу. Железную руду восстанавливали древесным углём в горне, устроенном в яме; в горн мехами нагнетали воздух, продукт восстановления - крицу ударами молота отделяли от шлака и из неё выковывали различные изделия. По мере усовершенствования способов дутья и увеличения высоты горна температура процесса повышалась и часть Ж. науглероживалась, т. е. получался чугун ; этот сравнительно хрупкий продукт считали отходом производства. Отсюда название чугуна «чушка», «свинское железо» - английское pig iron. Позже было замечено, что при загрузке в горн не железной руды, а чугуна также получается низкоуглеродистая железная крица, причём такой двухстадийный процесс оказался более выгодным, чем сыродутный. В 12-13 вв. кричный способ был уже широко распространён. В 14 в. чугун начали выплавлять не только как полупродукт для дальнейшего передела, но и как материал для отливки различных изделий. К тому же времени относится и реконструкция горна в шахтную печь («домницу»), а затем и в доменную печь. В середине 18 в. в Европе начал применяться тигельный процесс получения стали , который был известен на территории Сирии ещё в ранний период средневековья, но в дальнейшем оказался забытым. При этом способе сталь получали расплавлением металлические шихты в небольших сосудах (тиглях) из высокоогнеупорной массы. В последней четверти 18 в. стал развиваться пудлинговый процесс передела чугуна в Ж. на поду пламенной отражательной печи. Промышленный переворот 18 - начала 19 вв., изобретение паровой машины, строительство железных дорог, крупных мостов и парового флота вызвали громадную потребность в Ж. и его сплавах. Однако все существовавшие способы производства Ж. не могли удовлетворить потребности рынка. Массовое производство стали началось лишь в середине 19 в., когда были разработаны бессемеровский, томасовский и мартеновский процессы. В 20 в. возник и получил широкое распространение электросталеплавильный процесс, дающий сталь высокого качества.

Распространённость в природе. По содержанию в литосфере (4,65% по массе) Ж. занимает второе место среди металлов (на первом алюминий). Оно энергично мигрирует в земной коре, образуя около 300 минералов (окислы, сульфиды, силикаты, карбонаты, титанаты, фосфаты и т. д.). Ж. принимает активное участие в магматических, гидротермальных и гипергенных процессах, с которыми связано образование различных типов его месторождений. Ж. - металл земных глубин, оно накапливается на ранних этапах кристаллизации магмы, в ультраосновных (9,85%) и основных (8,56%) породах (в гранитах его всего 2,7%). В биосфере Ж. накапливается во многих морских и континентальных осадках, образуя осадочные руды.

Важную роль в геохимии Ж. играют окислительно-восстановительные реакции - переход 2-валентного Ж. в 3-валентное и обратно. В биосфере при наличии органических веществ fe 3+ восстанавливается до fe 2+ и легко мигрирует, а при встрече с кислородом воздуха fe 2+ окисляется, образуя скопления гидроокисей 3-валентного Ж. Широко распространённые соединения 3-валентного Ж. имеют красный, жёлтый, бурый цвета. Этим определяется окраска многих осадочных горных пород и их наименование - «красно-цветная формация» (красные и бурые суглинки и глины, жёлтые пески и т. д.).

Физические и химические свойства. Значение Ж. в современной технике определяется не только его широким распространением в природе, но и сочетанием весьма ценных свойств. Оно пластично, легко куется как в холодном, так и нагретом состоянии, поддаётся прокатке, штамповке и волочению. Способность растворять углерод и др. элементы служит основой для получения разнообразных железных сплавов.

Ж. может существовать в виде двух кристаллических решёток: a - и g - объёмноцентрированной кубической (ОЦК) и гранецентрированной кубической (ГЦК). Ниже 910 °С устойчиво a - fe с ОЦК-решёткой (а = 2,86645 å при 20°С). Между 910°С и 1400°С устойчива g -модификация с ГЦК-решёткой (а = 3,64 å). Выше 1400°С вновь образуется ОЦК-решётка d -fe (а = 2,94 å), устойчивая до температуры плавления (1539°С). a - fe ферромагнитно вплоть до 769°С (точка Кюри). Модификация g -fe и d -fe парамагнитны.

Полиморфные превращения Ж. и стали при нагревании и охлаждении открыл в 1868 Д. К. Чернов . Углерод образует с Ж. твёрдые растворы внедрения, в которых атомы С, имеющие небольшой атомный радиус (0,77 å), размещаются в междоузлиях кристаллической решётки металла, состоящей из более крупных атомов (атомный радиус fe 1,26 å). Твёрдый раствор углерода в g -fe наз. аустенитом , а в (a -fe- ферритом . Насыщенный твёрдый раствор углерода в g - fe содержит 2,0% С по массе при 1130°С; a -fe растворяет всего 0,02- 0,04%С при 723°С, и менее 0,01% при комнатной температуре. Поэтому при закалке аустенита образуется мартенсит - пересыщенный твёрдый раствор углерода в a - fe, очень твёрдый и хрупкий. Сочетание закалки с отпуском (нагревом до относительно низких температур для уменьшения внутренних напряжений) позволяет придать стали требуемое сочетание твёрдости и пластичности.

Физические свойства Ж. зависят от его чистоты. В промышленных железных материалах Ж., как правило, сопутствуют примеси углерода, азота, кислорода, водорода, серы, фосфора. Даже при очень малых концентрациях эти примеси сильно изменяют свойства металла. Так, сера вызывает т. н. красноломкость , фосфор (даже 10 -20 % Р) - хладноломкость ; углерод и азот уменьшают пластичность , а водород увеличивает хрупкость Ж. (т. н. водородная хрупкость). Снижение содержания примесей до 10 -7 - 10 -9 % приводит к существенным изменениям свойств металла, в частности к повышению пластичности.

Ниже приводятся физические свойства Ж., относящиеся в основном к металлу с общим содержанием примесей менее 0,01% по массе:

Атомный радиус 1,26 å

Ионные радиусы fe 2+ o,80 å, fe 3+ o,67 å

Плотность (20 o c) 7,874 г/см 3

t пл 1539°С

t kип около 3200 о С

Температурный коэффициент линейного расширения (20°С) 11,7·10 -6

Теплопроводность (25°С) 74,04 вт /(м·К )

Теплоёмкость Ж. зависит от его структуры и сложным образом изменяется с температурой; средняя удельная теплоёмкость (0-1000 o c) 640,57 дж/ (кг ·К) .

Удельное электрическое сопротивление (20 ° С)

9,7·10 -8 ом·м

Температурный коэффициент электрического сопротивления

(0-100°С) 6,51·10 -3

Модуль Юнга 190-210·10 3 Мн/м. 2

(19-21·10 3 кгс/мм 2)

Температурный коэффициент модуля Юнга

Модуль сдвига 84,0·10 3 Мн/м 2

Кратковременная прочность на разрыв

170-210 Мн/м 2

Относительное удлинение 45-55%

Твёрдость по Бринеллю 350-450 Мн/м 2

Предел текучести 100 Мн/м 2

Ударная вязкость 300 Мн/м 2

Конфигурация внешней электронной оболочки атома fe 3 d 6 4s 2 . Ж. проявляет переменную валентность (наиболее устойчивы соединения 2- и 3-валентного Ж.). С кислородом Ж. образует закись feo, окись fe 2 o 3 и закись-окись fe 3 o 4 (соединение feo с fe 2 o 3 , имеющее структуру шпинели ) . Во влажном воздухе при обычной температуре Ж. покрывается рыхлой ржавчиной (fe 2 o 3 · n h 2 o). Вследствие своей пористости ржавчина не препятствует доступу кислорода и влаги к металлу и поэтому не предохраняет его от дальнейшего окисления. В результате различных видов коррозии ежегодно теряются миллионы тонн Ж. При нагревании Ж. в сухом воздухе выше 200°С оно покрывается тончайшей окисной плёнкой, которая защищает металл от коррозии при обычных температурах; это лежит в основе технического метода защиты Ж. - воронения. При нагревании в водяном паре Ж. окисляется с образованием fe 3 o 4 (ниже 570°С) или feo (выше 570°С) и выделением водорода.

Гидроокись fe (oh) 2 образуется в виде белого осадка при действии едких щелочей или аммиака на водные растворы солей fe 2+ в атмосфере водорода или азота. При соприкосновении с воздухом fe (oh) 2 сперва зеленеет, затем чернеет и наконец быстро переходит в красно-бурую гидроокись fe (oh) 3 . Закись feo проявляет основные свойства. Окись fe 2 o 3 амфотерна и обладает слабо выраженной кислотной функцией; реагируя с более основными окислами (например, с mgo), она образует ферриты - соединения типа fe 2 o 3 · n meo, имеющие ферромагнитные свойства и широко применяющиеся в радиоэлектронике. Кислотные свойства выражены и у 6-валентного Ж., существующего в виде ферратов, например k 2 feo 4 , солей не выделенной в свободном состоянии железной кислоты.

Ж. легко реагирует с галогенами и галогеноводородами, давая соли, например хлориды fecl 2 и fecl 3 . При нагревании Ж. с серой образуются сульфиды fes и fes 2 . Карбиды Ж. - fe 3 c (цементит ) и fe 2 c (e -карбид) - выпадают из твёрдых растворов углерода в Ж. при охлаждении. fe 3 c выделяется также из растворов углерода в жидком Ж. при высоких концентрациях С. Азот, подобно углероду, даёт с Ж. твёрдые растворы внедрения; из них выделяются нитриды fe 4 n и fe 2 n. С водородом Ж. даёт лишь малоустойчивые гидриды, состав которых точно не установлен. При нагревании Ж. энергично реагирует с кремнием и фосфором, образуя силициды (например, fe 3 si) и фосфиды (например, fe 3 p).

Соединения Ж. с многими элементами (О, s и др.), образующие кристаллическую структуру, имеют переменный состав (так, содержание серы в моносульфиде может колебаться от 50 до 53,3 ат.%). Это обусловлено дефектами кристаллической структуры. Например, в закиси Ж. часть ионов fe 2+ в узлах решётки замещена ионами fe 3+ ; для сохранения электронейтральности некоторые узлы решётки, принадлежавшие ионам fe 2+ , остаются пустыми и фаза (вюстит) в обычных условиях имеет формулу fe 0,947 o.

Своеобразно взаимодействие Ж. с азотной кислотой. Концентрированная hno 3 (плотность 1,45 г/см 3 ) пассивирует Ж. вследствие возникновения на его поверхности защитной окисной плёнки; более разбавленная hno 3 растворяет Ж. с образованием ионов fe 2+ или fe 3+ , восстанавливаясь до mh 3 или n 2 o и n 2 .

Растворы солей 2-валентного Ж. на воздухе неустойчивы - fe 2+ постепенно окисляется до fe 3+ . Водные растворы солей Ж. вследствие гидролиза имеют кислую реакцию. Добавление к растворам солей fe 3+ тиоцианат-ионов scn - даёт яркую кроваво-красную окраску вследствие возникновения fe (scn) 3 , что позволяет открывать присутствие 1 части fe 3+ примерно в 10 6 частях воды. Для Ж. характерно образование комплексных соединений.

Получение и применение. Чистое Ж. получают в относительно небольших количествах электролизом водных растворов его солей или восстановлением водородом его окислов. Разрабатывается способ непосредственного получения Ж. из руд электролизом расплавов. Постепенно увеличивается производство достаточно чистого Ж. путём его прямого восстановления из рудных концентратов водородом, природным газом или углём при относительно низких температурах.

Ж. - важнейший металл современной техники. В чистом виде Ж. из-за его низкой прочности практически не используется, хотя в быту «железными» часто называют стальные или чугунные изделия. Основная масса Ж. применяется в виде весьма различных по составу и свойствам сплавов. На долю сплавов Ж. приходится примерно 95% всей металлической продукции. Богатые углеродом сплавы (свыше 2% по массе) - чугуны, выплавляют в доменных печах из обогащенных железных руд. Сталь различных марок (содержание углерода менее 2% по массе) выплавляют из чугуна в мартеновских и электрических печах и конвертерах путём окисления (выжигания) излишнего углерода, удаления вредных примесей (главным образом s, Р, О) и добавления легирующих элементов. Высоколегированные стали (с большим содержанием никеля, хрома, вольфрама и др. элементов) выплавляют в электрических дуговых и индукционных печах. Для производства сталей и сплавов Ж. особо ответственного назначения служат новые процессы - вакуумный, электрошлаковый переплав, плазменная и электронно-лучевая плавка и др. Разрабатываются способы выплавки стали в непрерывно действующих агрегатах, обеспечивающих высокое качество металла и автоматизацию процесса.

На основе Ж. создаются материалы, способные выдерживать воздействие высоких и низких температур, вакуума и высоких давлений, агрессивных сред, больших переменных напряжений, ядерных излучений и т. п. Производство Ж. и его сплавов постоянно растет. В 1971 в СССР выплавлено 89,3 млн. т чугуна и 121 млн. т стали.

Л. А. Шварцман, Л. В. Ванюкова.

Железо как художественный материал использовалось с древности в Египте (подставка для головы из гробницы Тутанхамона около Фив, середина 14 в. до н. э., Музей Ашмола, Оксфорд), Месопотамии (кинжалы, найденные около Кархемиша, 500 до н. э., Британский музей, Лондон), Индии (железная колонна в Дели, 415). Со времён средневековья сохранились многочисленные высокохудожественные изделия из Ж. в странах Европы (Англии, Франции, Италии, России и др.) - кованые ограды, дверные петли, настенные кронштейны, флюгера, оковки сундуков, светцы. Кованые сквозные изделия из прутьев и изделия из просечного листового Ж. (часто со слюдяной подкладкой) отличаются плоскостными формами, чётким линейно-графическим силуэтом и эффектно просматриваются на свето-воздушном фоне. В 20 в. Ж. используется для изготовления решёток, оград, ажурных интерьерных перегородок, подсвечников, монументов.

Т. Л.

Железо в организме. Ж. присутствует в организмах всех животных и в растениях (в среднем около 0,02%); оно необходимо главным образом для кислородного обмена и окислительных процессов. Существуют организмы (т. н. концентраторы), способные накапливать его в больших количествах (например, железобактерии - до 17-20% Ж.). Почти всё Ж. в организмах животных и растений связано с белками. Недостаток Ж. вызывает задержку роста и явления хлороза растений, связанные с пониженным образованием хлорофилла. Вредное влияние на развитие растений оказывает и избыток Ж., вызывая, например, стерильность цветков риса и хлороз. В щелочных почвах образуются недоступные для усвоения корнями растений соединения Ж., и растения не получают его в достаточном количестве; в кислых почвах Ж. переходит в растворимые соединения в избыточном количестве. При недостатке или избытке в почвах усвояемых соединений Ж. заболевания растений могут наблюдаться на значительных территориях.

В организм животных и человека Ж. поступает с пищей (наиболее богаты им печень, мясо, яйца, бобовые, хлеб, крупы, шпинат, свёкла). В норме человек получает с рационом 60-110 мг Ж., что значительно превышает его суточную потребность. Всасывание поступившего с пищей Ж. происходит в верхнем отделе тонких кишок, откуда оно в связанной с белками форме поступает в кровь и разносится с кровью к различным органам и тканям, где депонируется в виде Ж.- белкового комплекса - ферритина. Основное депо Ж. в организме - печень и селезёнка. За счёт Ж. ферритина происходит синтез всех железосодержащих соединений организма: в костном мозге синтезируется дыхательный пигмент гемоглобин, в мышцах - миоглобин, в различных тканях цитохромы и др. железосодержащие ферменты. Выделяется Ж. из организма главным образом через стенку толстых кишок (у человека около 6-10 мг в сутки) и в незначительной степени почками. Потребность организма в Ж. меняется с возрастом и физическим состоянием. На 1 кг веса необходимо детям - 0,6, взрослым - 0,1 и беременным - 0,3 мг Ж. в сутки. У животных потребность в Ж. ориентировочно составляет (на 1 кг сухого вещества рациона): для дойных коров - не менее 50 мг, для молодняка - 30-50 мг, для поросят - до 200 мг, для супоросных свиней - 60 мг.

В. В. Ковальский.

В медицине лекарственные препараты Ж. (восстановленное Ж., лактат Ж., глицерофосфат Ж., сульфат 2-валентного Ж., таблетки Бло, раствор яблочнокислого Ж., ферамид, гемостимулин и др.) используют при лечении заболеваний, сопровождающихся недостатком Ж. в организме (железодефицитная анемия), а также как общеукрепляющие средства (после перенесённых инфекционных заболеваний и др.). Изотопы Ж. (52 fe, 55 fe и 59 fe) применяют как индикаторы при медико-биологических исследованиях и диагностике заболеваний крови (анемии, лейкозы, полицитемия и др.).

Лит.: Общая металлургия, М., 1967; Некрасов Б. В., Основы общей химии, т. 3, М., 1970; Реми Г., Курс неорганической химии, пер. с нем., т. 2, М., 1966; Краткая химическая энциклопедия, т. 2, М., 1963; Левинсон Н. Р., [Изделия из цветного и чёрного металла], в кн.: Русское декоративное искусство, т. 1-3, М., 1962-65; Вернадский В. И., Биогеохимические очерки. 1922-1932, М. - Л., 1940; Граник С., Обмен железа у животных и растений, в сборнике: Микроэлементы, пер. с англ., М., 1962; Диксон М., Уэбб Ф., ферменты, пер. с англ., М., 1966; neogi p., iron in ancient india, calcutta, 1914; friend j. n., iron in antiquity, l.,1926; frank e. b., old french ironwork, camb. (mass.), 1950; lister r., decorative wrought ironwork in great britain, l., 1960.

cкачать реферат

Польза железа для организма

Главной функцией железа в организме принято считать образование гемоглобина. Это не удивительно, ведь в его составе содержится три четвертых запасов железа. А вот в составе других белковых структур процент железа относительно невысок – около 5%.

Зачем нужен гемоглобин? Белок, содержащий большое количество железа, связывает молекулы кислорода, которые с кровью переносятся к рабочим тканям и органам. Вот почему снижение количества гемоглобина в крови немедленно сказывается на общем самочувствии и работоспособности. Так что даже незначительная потеря крови чревата для организма нарушениями. Для спортсменов нехватка железа чревата нарушением восстановления после интенсивной физической нагрузки.

В числе других функций железа, можно перечислить такие как:

  • Энергетическая подпитка мышц. Самый «дешевый» источник топлива для мышц – это кислород. Благодаря его преобразованию в процессе ряда химических реакций мышца получает энергию для сокращения. Помимо кислорода используются и другие источники энергии. Это фосфаты, содержащиеся в клетках, – креатинфосфат и АТФ, а также гликоген мышц и печени. Однако их запасы слишком малы для поддержания работы длительностью более 1 минуты. Креатинфосфата хватает на работу длительностью до 10 секунд, АТФ – на 2-3 секунды. Чем выше концентрация гемоглобина в крови, тем больше кислорода он способен подать в рабочие ткани и органы. А вот дефицит железа может вызывать мышечные спазмы, усиливающиеся в период покоя (сна, сидения).
  • Энергетическая подпитка мозга. Кислород необходим мозгу так же, как и мышцам. Более того, дефицит железа чреват развитием болезни Альцгеймера, деменции (приобретённое слабоумие) и других заболеваний, вызванных нарушениями мозговой деятельности.
  • Регуляция температуры тела. Эта функция выполняется железом опосредованно. Стабильность концентрации железа в крови обусловливает адекватность протекания всех метаболических процессов.
  • Укрепление иммунитета. Микроэлемент необходим для кроветворения. Белые (лимфоциты) и красные (эритроциты) кровяные клетки формируются в присутствии железа. Первые отвечают за иммунитет, а вторые снабжают кровь кислородом. Если в организме количество железа соответствует норме, он способен самостоятельно противостоять заболеваниям. Как только концентрация железа снижается, инфекционные заболевания дают о себе знать.
  • Развитие плода. Во время беременности важно употреблять достаточное количество железа, так как часть расходуется при кроветворении у плода. А вот недостаток железа повышает риск преждевременных родов, провоцирует недостаточный вес у новорожденного и нарушение в развитии.

Как железо взаимодействует в организме

Сама по себе нормальная концентрация железа в организме еще не гарантирует хорошее самочувствие, высокий иммунитет, отсутствие заболеваний и работоспособность. Не менее важно взаимодействие этого микроэлемента с другими веществами, ведь функции одних могут отрицательно влиять на функции других.

Избегайте сочетания железа с:

  • витамином Е и фосфатами: нарушается усваивание железа;
  • Тетрациклином и фторхинолонами: тормозится процесс всасывание последних;
  • Кальцием: нарушается процесс абсорбции железа;
  • молоком, кофе и чаем – всасывание железа ухудшается;
  • цинком и медью – нарушается процесс всасывания в кишечнике;
  • соевым белком – усваивание подавляется;
  • хромом: железо подавляет его всасывание.

А вот аскорбиновая кислота, сорбит, фруктоза и янтарная кислота улучшают всасывание железа организмом.

Эти нюансы обязательно учитываются во время приема железосодержащих препаратов, так как можно вместо улучшения самочувствия получить противоположный эффект.

Роль железа в возникновении и течении различных заболеваний

Существует множество заболеваний, при которых употребление продуктов богатых железом может усугубить ситуацию.

Люди с повышенным уровнем железа в организме больше подвержены риску инфекций, сердечных заболеваний и некоторых видов онкологии (особенно мужчины).

В виде свободных радикалов железо провоцирует развитие атеросклероза. То же самое касается ревматоидного артрита. Употребление железа при этом заболевании провоцирует воспаление суставов.

При индивидуальной непереносимости железа употребление некоторых продуктов вызывает изжогу, тошноту, запоры и диарею.

При беременности избыток железа повышает риск развития патологии плаценты (увеличивается свободно-радикальное окисление в результате чего гибнут митохондрии – кислородные «депо» клеток).

При патологических нарушениях усвоения железа повышен риск заболевания гемохроматоз – накопление железа во внутренних органах (печени, сердце, поджелудочной железе).

В каких продуктах содержится железо


Запасы железа пополняют за счет продуктов животного и растительного происхождения. Первые содержат «гемовое» железо, вторые – «негемовое».

Для усвоения гемового употребляют продукты животного происхождения – телятину, говядину, свинину, крольчатину и субпродукты (печень, почки). Для получения пользы от негемового нужно одновременно с железосодержащими продуктами употреблять витамин С .

Рекордсменами по содержанию железа считаются такие продукты растительного происхождения, мг Fe2+:

  • арахис – в 200 г продукта содержится 120;
  • соя – в 200 г продукта – 8,89;
  • картофель – в 200 г продукта – 8,3;
  • фасоль белая– в 200 г продукта – 6,93;
  • бобы – в 200 г продукта – 6,61;
  • чечевица – в 200 г продукта – 6,59;
  • шпинат – в 200 г продукта – 6,43;
  • свекла (ботва) – в 200 г продукта – 5,4;
  • нут – в 100 г продукта – 4,74;
  • брюссельская капуста– в 200 г продукта – 3,2;
  • капуста белокочанная– в 200 г продукта – 2,2;
  • зеленый горошек – в 200 г продукта – 2,12.

Из злаковых в рацион лучше включать овсяную и гречневую крупы, непросеянную муку, ростки пшеницы. Из трав тимьян, сезам (кунжут). Много железа содержится в сушеных белых грибах и лисичках, абрикосах, персиках, яблоках, сливе, айве. А также инжире, гранате и сухофруктах.

В числе продуктов животного происхождения запасы железа в говяжьих почках и печени, рыбе, яйцах (желток). В мясных продуктах – телятине, свинине, крольчатине, индейке. Морепродукты (моллюски, улитки, устрицы). Рыба (скумбрия, горбуша).

Усвояемость железа

Интересно, что при употреблении мясных продуктов железо усваивается на 40-50%, при употреблении рыбных продуктов – на 10%. Рекордсмен по усвоению железа– печень животных.

Из продуктов растительного происхождения процент железа, который усваивается, еще меньше. Из бобовых человек усваивает до 7%, из орехов – 6, из фруктов и яиц – 3, из приготовленных круп – 1.

Совет! Пользу для организма несет рацион, в котором сочетаются продукты растительного и животного происхождения. При добавлении 50 г мяса к овощам усвояемость железа возрастает в два раза. При добавлении 100 г рыбы – в три раза, при добавлении фруктов, содержащих витамин C – в пять раз

Как сохранить железо в пище и его сочетание с другими веществами


При приготовлении продукты теряют часть полезных веществ, и железо не исключение. Железо в продуктах животного происхождения более устойчиво к воздействию высокой температуры. С овощами и фруктами все сложнее – часть железа переходит в воду, в которой готовятся продукты. Единственный выход – минимизировать термическую обработку продуктов растительного происхождения.

Чтобы повысить усвоение железа, употребляйте железосодержащие продукты вместе с витамином С. Достаточно половинки грейпфрута или апельсина, чтобы организм усвоил его в три раза больше. Единственный нюанс – данное правило действует только с железосодержащими продуктами растительного происхождения.

В рационе обязателен витамин А , недостаток которого блокирует способности организма использовать запасы железа для формирования эритроцитов (красные кровяные тельца).

При недостатке меди железо теряет «мобильность», в результате чего нарушается процесс транспортировки полезных веществ из «хранилищ» в клетки и органы. Чтобы этого избежать, включайте в рацион больше бобовых.

Сочетание железа с витаминами группы В : «работоспособность» последних многократно усиливается.

А вот молочную пищу и зерна лучше употреблять отдельно от железосодержащих продуктов, так как они блокируют всасывание микроэлемента в кишечнике.

Суточная норма железа

  • до 6 месяцев – 0,3;
  • 7-11 месяцев – 11;
  • до 3 лет – 7;
  • до 13 лет – 8–10.

Подростки:

  • от 14 до 18 лет (мальчики) – 11; девочки – 15.

Взрослые:

  • мужчины – 8–10;
  • женщины до 50 лет – 15–18; старше 50 лет – 8–10, беременные – 25–27.

Чем опасен недостаток железа в организме

Недостаток железа в организме опасен следующим состоянием:

  • острой анемией, или малокровием – снижением концентрации гемоглобина в крови, при котором также уменьшается количество эритроцитов и изменяется их качественный состав. Результат малокровия – снижение дыхательной функции крови и развитие кислородного голодания тканей. Распознать острую анемию можно по бледности кожных покровов и повышенной утомляемости. Слабость, регулярная головная боль и головокружение – признаки нехватки железа. Тахикардия (учащенное сердцебиение) и одышка – предвестники проблем с сердцем и легкими;
  • утомляемостью и слабостью в мышцах;
  • чрезмерными менструальными кровотечениями у женщин.

Недостаток железа в организме приводит к ухудшению состояния кожных покровов, ломкости ногтей, выпадению волос. Ухудшение памяти, повышенная раздражительность – признаки дефицита железа. Снижение работоспособности и постоянная сонливость – предвестники кислородного голодания.

Недостаток железа может быть спровоцирован такими факторами:

  • повышенной потерей крови. Первопричиной такого варианта развития событий может быть донорское переливание крови, обильное кровотечение у женщин и повреждения мягких тканей;
  • интенсивные физические нагрузки аэробной и аэробно-силовой направленности (те, которые развивают выносливость). Во время таких упражнений эритроцитам приходится быстрее переносить кислород, в результате чего дневной расход гемоглобина может увеличиться почти в два раза;
  • активная умственная деятельность. Во время творческой работы активно расходуются не только запасы железа, но и гликогена, запасенного в печени и мышцах;
  • заболевания органов желудочно-кишечного тракта: гастрит с пониженной кислотностью, язва двенадцатиперстной кишки, цирроз печени, аутоиммунные заболевания кишечника провоцируют плохое всасывание железа.

Как быстро восполнить недостаток железа

Чтобы восполнить дефицит железа в организме, диетологи рекомендуют употреблять продукты растительного и животного происхождения. Первые являются источником так называемого «негемового» железа, то есть железа, которое не входит в состав гемоглобина. В таких продуктах железо обычно идет в сочетании с витамином С.

Лучше всего дефицит железа восполняют такие «негемовые» продукты как бобовые и зеленые листовые овощи, а также цельные зерна.

«Гемовые» продукты содержат железо, входящее в состав гемоглобина. Наибольшие запасы гемоглобина характерны для всей пищи животного происхождения, а также морепродуктов. В отличие от «негемовых», «гемовые» продукты быстрее восполняют запасы железа, так как организм легче их усваивает.

Совет! Несмотря на то, что «гемовые» продукты быстрее усваиваются организмом, не стоит чрезмерно ими увлекаться. Для восполнения запасов железа лучше всего сочетать продукты растительного и животного происхождения, например, зеленые листовые овощи и красные сорта мяса

Однако важно помнить о секретах приготовления пищи, ведь именно от способов приготовления зависит конечный процент железа в продуктах питания. Например, цельные зерна при переработке теряют около 75% запасов железа. Вот почему мука из цельных зерен практически не несет пользы для организма. Примерно то же самое происходит при приготовлении пищи растительного происхождения при помощи варки – часть железа остается в составе воды. Если варить шпинат в течение 3 мин., от запасов железа останется не более 10%.

Если хотите получить максимальную пользу от продуктов питания растительного происхождения, старайтесь избегать длительной термической обработки и минимизируйте количество воды. Идеальный способ приготовления – на пару.

С продуктами животного происхождения все намного проще – железо, входящее в состав гемоглобина, обладает высокой устойчивостью к термической обработке.

Что нужно знать об избытке железа в организме


Несправедливым было бы полагать, что опасность для здоровья представляет исключительно недостаток железа. Его избыток также чреват неприятными симптомами. Из-за чрезмерного накопления железа в организме нарушается работа многих функциональных систем.

Причины передозировки. Чаще всего причиной повышенной концентрации микроэлемента становится генетический сбой, в результате которого увеличивается всасываемость железа кишечником. Реже – переливание крови в большом количестве и неконтролируемое использование железосодержащих препаратов. Последнее случается при самостоятельном увеличении дозы железосодержащего препарата при пропуске очередного приема.

При избытке железа в организме обычно бывает такое:

  • изменяется пигментации кожи (симптомы часто путают с гепатитом) – желтеют ладони, подмышки, темнеют старые шрамы. Склеры, нёбо ротовой полости и язык также приобретают желтоватый оттенок;
  • нарушается сердечный ритм, увеличивается печень;
  • снижается аппетит, повышается утомляемость, учащаются приступы головной боли;
  • нарушается деятельность органов пищеварения – тошнота и рвота чередуются с диареей, в области желудка появляется ноющая боль;
  • снижается иммунитет;
  • повышается вероятность развития инфекционных и опухолевых патологий, например, рака печени и кишечника, а также развитие ревматоидного артрита.

Препараты, содержащие железо

К препаратам железа относят медикаменты, содержащие соли и комплексы соединений микроэлемента, а также его сочетания с другими минералами.

Во избежание патологических состояний и осложнений железосодержащие препараты следует принимать только по предписанию врача после ряда анализов. В противном случае избыток железа может привести к нарушению работы сердца, печени, желудка, кишечника и головного мозга.

  • запиваются небольшим количеством воды;
  • несочетаемы с препаратами кальция, Тетрациклином, Левомицетином, а также антацидами (Альмагель, Фосфалюгель и т. д.);
  • принимаются в строгой дозировке. Если по каким-то причинам очередной прием препарат был пропущен, следующая доза остается неизменной. Передозировка железа (300 миллиграммов в сутки) может привести к летальному исходу;
  • минимальный курс – два месяца. В течение первого месяца нормализуются показатели гемоглобина и эритроцитов. В дальнейшем приём препаратов направлен на восполнение запасов железа (наполнение «депо»). Дозировка в течение второго месяца снижается.

Следует помнить, что даже при соблюдении всех мер предосторожности прием железосодержащих препаратов может стать причиной таких побочных эффектов как гиперемия кожи, тошнота, снижение аппетита, сонливость, головная боль, нарушение деятельности органов пищеварения (запор, диарея, кишечная колика, изжога и отрыжка), металлический привкус во рту. В некоторых случаях могут потемнеть зубы (в полости рта содержится сероводород, который при взаимодействии с железом преобразуется в сульфид железа).

Совет! Чтобы избежать потемнения зубов (особенно актуально при кариесе), сразу же после приема железосодержащих препаратов ротовую полость нужно прополоскать. Если препарат выпускается в жидкой лекарственной форме, его лучше принимать через трубочку. При появлении любого из этих симптомов прием лекарств нужно немедленно прекратить

Обзор железосодержащих средств подан ниже.

В числе наиболее часто назначаемых препаратов железа Конферон, Феракрил, Феррум лек, Гемостимулин. Их преимущества – максимально точная дозировка и минимум побочных эффектов.

Дозировка препарата рассчитывается индивидуально – 2 мг на 1 кг массы тела пациента (но не более 250 мг в сутки). Для лучшего всасывания лекарства принимают во время пищи, запивая небольшим количеством жидкости.

Положительные изменения (увеличение количества ретикулоцитов) диагностируют уже через неделю после начала приема средств. Еще через две-три недели увеличивается концентрация гемоглобина.

Препарат Форма выпуска Состав
Гемоферпролонгатум Таблетки, покрытые оболочкой, массой 325 мг Сульфат железа, в одной таблетке – 105 мг Fe2+
Тардиферон Таблетки пролонгированного действия Мукопротеоза и аскорбиновая кислота, в одной таблетке – 80 мг Fe2+
Ферроглюконат и Ферронал Таблетки по 300 мг Глюконат железа, в одной таблетке – 35 мг Fe2+
Ферроградумет Таблетки, покрытые оболочкой Сульфат железа плюс пластическая матрица – градумет, в одной таблетке – 105 мг Fe2+
Хеферол Капсулы по 350 мг Фумаровая кислота, в одной таблетке – 100 мг Fe2+
Актиферрин Капсулы, капли оральные, сироп Сульфат железа, D, L-серин (капсулы и капли оральные) и сульфат железа, D, L-серин, глюкозу, фруктозу, сорбат калия (сироп). В 1 капсуле и 1 мл сиропа – 38,2 мг Fe2+, в 1 мл капель, в 1 мл сиропа – и 34,2 мг Fe2+
Гемсинерал-ТД Капсулы Микрогранулы фумарата железа, фолиевой кислоты, цианокобаламина. В одной капсуле – 67 мг Fe2+
Гино-тардиферон Таблетки Сульфат железа, фолиевая и аскорбиновая кислоты, мукопротеоза. В одной таблетке – 80 мг Fe2+
Глобирон Желатиновые капсулы по 300 мг Железа фумарат, витамины В6, В12, фолиевая кислота, докузат натрия. В одной капсуле – 100 мг Fe2+
Ранферон-12 Капсулы по 300 мг Железа фумарат, аскорбиновая и фолиевая кислоты, цианокобаламин, цинка сульфат, железа аммонийного цитрат. В одной капсуле – 100 мг Fe2+
Сорбифердурулес Таблетки, покрытые оболочкой, с пролонгированным высвобождением ионов железа Железа сульфат, аскорбиновая кислота, матрица (дурулес). В одной таблетке – 100 мг Fe2+
Тотема Раствор для перорального приема в ампулах по 10 мл Железа глюконат, марганец, медь, а также бензоат, цитрат натрия и сахароза. В одной ампуле – 50 мг Fe2+
Хеферол Капсулы по 350 мг Фумаровая кислота. В одной капсуле – 100 мг Fe2+
Фенюльс Капсулы Железа сульфат, фолиевая и аскорбиновая кислоты, тиамин. А также рибофлавин, цианокобаламин, пиридоксин, фруктоза, цистеин, кальция пантотенат, дрожжи. В одной капсуле – 45 мг Fe2+

Противопоказания к приему железосодержащих препаратов

  • апластическая и/или гемолитическая анемия;
  • прием медикаментов из группы тетрациклинов или антацидов;
  • хроническое воспаление почек и печени;
  • употребление продуктов с высоким содержанием кальция, клетчатки и кофеина;
  • прием лекарственных препаратов, снижающих уровень кислотности желудочного сока; антибиотиков и препаратов тетрациклинового ряда (эти группы препаратов снижают всасываемость железа в кишечнике).

Условные противопоказания:

  • язвенный колит;
  • язвенная болезнь желудка и/или двенадцатиперстной кишки;
  • энтериты различной этиологии.

Инъекции железа и их особенности описано ниже. Помимо железосодержащих капсул и таблеток, назначаются инъекции. Их прием необходим при:

  • хронических патологиях органов пищеварения, сопровождаемых пониженной всасываемостью железа. Диагнозы: панкреатит (воспаление поджелудочной железы), синдром мальабсорбции, целиакия, энтерит;
  • язвенном колите неспецифического характера;
  • непереносимости солей железа или гиперчувствительности с аллергическими проявлениями;
  • язвенной болезни желудка и двенадцатиперстной кишки в периоды обострения;
  • постоперационный период после удаления части желудка или тонкого кишечника.

Преимуществом инъекций является быстрое и максимальное насыщение железом по сравнению с другими формами выпуска препаратов.

Важно! При приеме таблеток и капсул максимальная доза не должна превышать 20-50 мг (при приеме 300 мг железа возможен летальный исход). При инъекции максимальной дозой считается 100 мг препарата железа

Побочные эффекты при введении железа с помощью инъекции: уплотнения (инфильтраты) тканей в месте введения препарата, флебиты, абсцессы, аллергическая реакция (в худшем случае – сразу развивается анафилактический шок), ДВС-синдром, передозировка железа.

Разновидности препаратов поданы в таблице

Препарат Форма выпуска Состав
Феррум Лек (внутримышечно) Ампулы по 2 мл Гидроксид железа и декстран. В одной ампуле – 100 мг Fe2+
Венофер (внутривенно) Ампулы по 5 мл Железа гидроксид сахарозных комплексов. В одной ампуле – 100 мг Fe2+
Ферковен (внутривенно) Ампулы по 1 мл Железа сахарат, раствор углеводов и глюконат кобальта. В одной ампуле – 100 мг Fe2+
Жектофер (внутримышечно) Ампулы по 2 мл Железо-сорбитол-лимонно-кислый комплекс
Феррлецит (раствор – внутримышечно, ампулы – внутривенно) Раствор для инъекций в ампулах по 1 и по 5 мл Железоглюконатный комплекс
Фербитол (внутримышечно) Ампулы по 1 мл Железосорбитоловый комплекс

ОПРЕДЕЛЕНИЕ

Железо - двадцать шестой элемент Периодической таблицы. Обозначение - Fe от латинского «ferrum». Расположен в четвертом периоде, VIIIB группе. Относится к металлам. Заряд ядра равен 26.

Железо - самый распространенный после алюминия металл на земном шаре: оно составляет 4% (масс.) земной коры. Встречается железо в виде различных соединений: оксидов, сульфидов, силикатов. В свободном состоянии железо находят только в метеоритах.

К важнейшим рудам железа относятся магнитный железняк Fe 3 O 4 , красный железняк Fe 2 O 3 , бурый железняк 2Fe 2 O 3 ×3H 2 O и шпатовый железняк FeCO 3 .

Железо - серебристый (рис. 1) пластичный металл. Оно хорошо поддается ковке, прокатке и другим видам механической обработки. Механические свойства железа сильно зависят от его чистоты - от содержания в нем даже весьма малых количеств других элементов.

Рис. 1. Железо. Внешний вид.

Атомная и молекулярная масса железа

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии железо существует в виде одноатомных молекул Fe значения его атомной и молекулярной масс совпадают. Они равны 55,847.

Аллотропия и аллотропные модификации железа

Железо образует две кристаллические модификации: α-железо и γ-железо. Первая из них имеет кубическую объемноцентрированную решетку, вторая - кубическую гранецентрированную. α-Железо термодинамически устойчиво в двух интервалах температур: ниже 912 o С и от 1394 o С до температуры плавления. Температура плавления железа равна 1539 ± 5 o С. Между 912 o С и от 1394 o С устойчиво γ-железо.

Температурные интервалы устойчивости α- и γ-железа обусловлены характером изменения энергии Гиббса обеих модификаций при изменении температуры. При температурах ниже 912 o С и выше 1394 o С энергия Гиббса α-железа меньше энергии Гиббса γ-железа, а в интервале 912 — 1394 o С - больше.

Изотопы железа

Известно, что в природе железо может находиться в виде четырех стабильных изотопов 54 Fe, 56 Fe, 57 Fe и 57 Fe. Их массовые числа равны 54, 56, 57 и 58 соответственно. Ядро атома изотопа железа 54 Fe содержит двадцать шесть протонов и двадцать восемь нейтронов, а остальные изотопы отличаются от него только числом нейтронов.

Существуют искусственные изотопы железа с массовыми числами от 45-ти до 72-х, а также 6 изомерных состояний ядер. Наиболее долгоживущим среди вышеперечисленных изотопов является 60 Fe с периодом полураспада равным 2,6 млн. лет.

Ионы железа

Электронная формула, демонстрирующая распределение по орбиталям электронов железа выглядит следующим образом:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 .

В результате химического взаимодействия железо отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

Fe 0 -2e → Fe 2+ ;

Fe 0 -3e → Fe 3+ .

Молекула и атом железа

В свободном состоянии железо существует в виде одноатомных молекул Fe. Приведем некоторые свойства, характеризующие атом и молекулу железа:

Сплавы железа

До XIX века из сплавов железа были известны в основном его сплавы с углеродом, получившие названия стали и чугуна. Однако в дальнейшем были созданы новые сплавы на основе железа, содержащие хром, никель и другие элементы. В настоящее время сплавы железа подразделяют на углеродистые стали, чугуны, легированные стали и стали с особыми свойствами.

В технике сплавы железа принято называть черными металлами, а их производство - черной металлургией.

Примеры решения задач

ПРИМЕР 1

Задание Элементарный состав вещества следующий: массовая доля элемента железа 0,7241 (или 72,41%), массовая доля кислорода 0,2759 (или 27,59%). Выведите химическую формулу.
Решение Массовая доля элемента Х в молекуле состава НХ рассчитывается по следующей формуле:

ω (Х) = n × Ar (X) / M (HX) × 100%.

Обозначим число атомов железа в молекуле через «х», число атомов кислорода через «у».

Найдем соответствующие относительные атомные массы элементов железа и кислорода (значения относительных атомных масс, взятые из Периодической таблицы Д.И. Менделеева, округлим до целых чисел).

Ar(Fe) = 56; Ar(O) = 16.

Процентное содержание элементов разделим на соответствующие относительные атомные массы. Таким образом мы найдем соотношения между числом атомов в молекуле соединения:

x:y= ω(Fe)/Ar(Fe) : ω(O)/Ar(O);

x:y = 72,41/56: 27,59/16;

x:y = 1,29: 1,84.

Наименьшее число примем за единицу (т.е. все числа разделим на наименьшее число 1,29):

1,29/1,29: 1,84/1,29;

Следовательно, простейшая формула соединения железа с кислородом имеет вид Fe 2 O 3 .

Ответ Fe 2 O 3

Чистое железо получают различными методами. Наибольшее значение имеют метод термического разложения пентакарбонила железа (см. § 193) и электролиз водных растворов его солей.

Во влажном воздухе железо быстро ржавеет, т. е. покрывается бурым налетом гидратированного оксида железа, который вследствие своей рыхлости не защищает железо от дальнейшего окисления. В воде железо интенсивно корродирует; при обильном доступе кислорода образуются гидратные формы оксида железа(III):

При недостатке кислорода или при его затрудненном доступе образуется смешанный оксид Fe 3 O 4 (FeO·Fe 2 O 3):

Железо растворяется в соляной кислоте любой концентрации:

Аналогично происходит растворение в разбавленной серной кислоте:

В концентрированных растворах серной кислоты железо окисляется до железа(III):

Однако в серной кислоте, концентрация которой близка к 100%, железо становится пассивным и взаимодействия практически не происходит.

В разбавленных и умеренно концентрированных растворах азотной кислоты железо растворяется:

При высоких концентрациях HNO 3 растворение замедляется и железо становится пассивным.

Для железа характерны два ряда соединений: соединения железа(II) и соединения железа(III). Первые отвечают оксиду железа (II), или закиси железа, FeO, вторые - оксиду железа(III), или окиси железа, Fe 2 O 3 .

Кроме того, известны соли железной кислоты H 2 FeO 4 , в которой степень окисленности железа равна +6.

Соединения железа(II).

Соли железа(II) образуются при растворении железа в разбавленных кислотах, кроме азотной. Важнейшая из них - сульфат железа(II), или железный купорос, FeSO 4 ·7H 2 O, образующий светло-зеленые кристаллы, хорошо растворимые в воде. На воздухе железный купорос постепенно выветривается и одновременно окисляется с поверхности, переходя в желто-бурую основную соль железа(III).

Сульфат железа(II) получают путем растворения обрезков стали в 20-30%-ной серной кислоте:

Сульфат железа(II) применяется для борьбы с вредителями растений, в производстве чернил и минеральных красок, при крашении тканей.

При нагревании железного купороса выделяется вода и получается белая масса безводной соли FeSO 4 . При температурах выше 480°C безводная соль разлагается с выделением диоксида и триоксида серы; последний во влажном воздухе образует тяжелые белые пары серной кислоты:

При взаимодействии раствора соли железа(II) со щелочью выпадает белый осадок гидроксида железа(II) Fe(OH) 2 , который на воздухе вследствие окисления быстро принимает зеленоватую, а затем бурую окраску, переходя в гидроксид железа (III)

Безводный оксид железа(II) FeO можно получить в виде черного легко окисляющегося порошка восстановлением оксида железа(III) оксидом углерода(II) при 500°C:

Карбонаты щелочных металлов осаждают из растворов солей железа(II) белый карбонат железа(II) FeCO 3 . При действии воды, содержащей CO 2 , карбонат железа, подобно карбонату кальция, частично переходит в более растворимую кислую соль Fe(HCO 3)2 . В виде этой соли железо содержится в природных железистых водах.

Соли железа (II) легко могут быть переведены в соли железа (III) действием различных окислителей - азотной кислоты, перманганата калия, хлора, например:

Ввиду способности легко окисляться, соли железа(II) часто применяются как восстановители.

Соединения железа (III).

Хлорид железа (III) FeCl 3 представляет собой темно-коричневые с зеленоватым отливом кристаллы. Это вещество сильно гигроскопично; поглощая влагу из воздуха, оно превращается в кристаллогидраты, содержащие различное количество воды и расплывающиеся на воздухе. В таком состоянии хлорид железа (III) имеет буро-оранжевый цвет. В разбавленном растворе FeCl 3 гидролизуется до основных солей. В парах хлорид железа (III) имеет структуру, аналогичную структуре хлорида алюминия (стр. 615) и отвечающую формуле Fe 2 Cl 6 ; заметная диссоциация Fe 2 Cl 6 на молекулы FeCl 3 начинается при температурах около 500°C.

Хлорид железа (III) применяют в качестве коагулянта при очистке воды, как катализатор при синтезах органических веществ, в текстильной промышленности.

Сульфат железа (III) Fe 2 (SO 4)3 - очень гигроскопичные, расплывающиеся на воздухе белые кристаллы. Образует кристаллогидрат Fe 2 (SO 4)3 ·9H 2 O (желтые кристаллы). В водных растворах сульфат железа (III) сильно гидролизован. С сульфатами щелочных металлов и аммония он образует двойные соли - квасцы, например железоаммонийные квасцы (NH 4)Fe(SO 4)2 ·12H 2 O - хорошо растворимые в воде светло-фиолетовые кристаллы. При прокаливании выше 500°C сульфат железа (III) разлагается в соответствии с уравнением:

Сульфат железа (III) применяют, как и FeCl 3 , в качестве коагулянта при очистке воды, а также для травления металлов. Раствор Fe 2 (SO 4)3 способен растворять Cu 2 S и CuS с образованием сульфата меди(II) это используется при гидрометаллургическом получении меди.

При действии щелочей на растворы солей железа (III) выпадает красно-бурый гидроксид железа (III) Fe(OH) 3 , нерастворимый в избытке щелочи.

Гидроксид железа (III) - более слабое основание, чем гидроксид железа (II) это выражается в том, что соли железа (III) сильно гидролизуются, а со слабыми кислотами (например, с угольной, сероводородной) Fe(OH) 3 солей не образует. Гидролизом объясняется и цвет растворов солей железа (III): несмотря на то, что Fe 3+ почти бесцветен, содержащие его растворы окрашены в желто-бурый цвет, что объясняется присутствием гидроксо-ионов железа или молекул Fe(OH) 3 , которые образуются благодаря гидролизу:

При нагревании окраска темнеет, а при прибавлении кислот становится более светлой вследствие подавления гидролиза.

При прокаливании гидроксид железа (III), теряя воду, переходит в оксид железа (III), или окись железа, Fe 2 O 3 . Оксид железа (III) встречается в природе в виде красного железняка и применяется как коричневая краска - железный сурик, или мумия.

Характерной реакцией, отличающей соли железа (III) от солей железа (II), служит действие роданида калия KSCN или роданида аммония NH 4 SCN на соли железа. Раствор роданида калия содержит бесцветные ионы SCN - , которые соединяются с ионами Fe(III), образуя кроваво-красный, слабо диссоциированный роданид железа(III) Fe(SCN) 3 . При взаимодействии же с роданидами ионов железа (II) раствор остается бесцветным.

Цианистые соединения железа. При действии на растворы солей железа (II) растворимых цианидов, например цианида калия, получается белый осадок цианида железа(II):

В избытке цианида калия осадок растворяется вследствие образования комплексной соли K 4 гексацианоферрата (II) калия

Гексацианоферрат(II) калия K 4 ·3H 2 O кристаллизуется в виде больших светло-желтых призм. Эта соль называется также желтой кровяной солью. При растворении в воде соль диссоциирует на ионы калия и чрезвычайно устойчивые комплексные ионы 4- . Практически такой раствор совершенно не содержит ионов Fe 2+ и не дает реакций, характерных для железа(II).

Гексацианоферрат (II) калия служит чувствительным реактивом на ионы железа(III), так как ионы 4- , взаимодействуя с ионами Fe 3+ , образуют нерастворимую в воде соль гексацианоферрат(II) железа (III) Fe 4 3 характерного синего цвета; эта соль получила название берлинской лазури:

Берлинская лазурь применяется в качестве краски.

При действии хлора или брома на раствор желтой кровяной соли анион ее окисляется, превращаясь в 3-

Соответствующая этому аниону соль K 3 называется гексацианоферратом(III) калия, или красной кровяной солью. Она образует красные безводные кристаллы.

Если подействовать гексацианоферратом(III) калия на раствор соли железа(II), то получается осадок гексацианоферрата (III), железа (И) (турнбулева синь), внешне очень похожий на берлинскую лазурь, но имеющий иной состав:

С солями железа (III) K 3 образует зеленовато-бурый раствор.

В большинстве других комплексных соединений, как и в рассмотренных цианоферратах, координационное число железа(II) и железа(III) равно шести.

Ферриты. При сплавлении оксида железа(III) с карбонатами натрия или калия образуются ферриты - соли не полученной в свободном состоянии железистой кислоты HFeO 2 , например феррит натрия NaFeO 2:

При растворении сплава в воде получается красно-фиолетовый раствор, из которого действием хлорида бария можно осадить нерастворимый в воде феррат бария BaFeO 4 .

Все ферраты - очень сильные окислители (более сильные, чем перманганаты). Соответствующая ферратам железная кислота H 2 FeO 4 и ее ангидрид FeO 3 в свободном состоянии не получены.

Карбонилы железа. Железо образует летучие соединения с оксидом углерода, называемые карбонилами железа. Пентакарбонил железа Fe(CO) 5 представляет собой бледно-желтую жидкость, кипящую при 105°C, нерастворимую в воде, но растворимую во многих органических растворителях. Fe(CO) 5 получают пропусканием СО над порошком железа при 150-200°C и давлении 10 МПа. Примеси, содержащиеся в железе, не вступают в реакции с СО, вследствие чего получается весьма чистый продукт. При нагревании в вакууме пентакарбонил железа разлагается на железо и СО; это используется для получения высокочистого порошкового железа - карбонильного железа (см. § 193).

Природа химических связей в молекуле Fe(CO) 5 рассмотрена на стр. 430.

<<< Назад
Вперед >>>