Зависимость мощности излучения от температуры. Температура излучения

Законы теплового излучения. Лучистое тепло.

Может, для кого-то это будет новостью, но передача температуры происходит не только теплопроводностью через прикосновение одного тела к другому. Каждое тело (Твердое, жидкое и газообразное) испускает тепловые лучи определенной волны. Эти лучи, уходя от одного тела, поглощаются другим телом, и принимают тепло на себя. И я попытаюсь Вам объяснить, как это происходит, и сколько тепла мы теряем этим излучением у себя дома на . (Я думаю, многим будет интересно увидеть эти цифры). В конце статьи решим задачку из реального примера.

В статье будут трехэтажные формулы и интегральные выражения для математиков, но не стоит их бояться, можете даже не вникать в эти формулы. В задаче я вам дам формулы, которые решаются на-раз-два и даже не нужно знать высшую математику, достаточно знать элементарную арифметику.

Я не однократно в этом убеждался, что сидя у костра (обычно большого) мое лицо обжигали эти лучи. И если я закрывал костер своими ладонями и при этом руки были вытянуты, то получалось, что мое лицо переставало обжигать. Не трудно догадаться, что эти лучи прямые как световые. Меня обжигает не воздух, циркулирующий вокруг костра, и даже не воздуха, а именно прямые не видимые тепловые лучи, идущие от костра.

В космосе между планетами обычно вакуум и поэтому передача температур осуществляется исключительно тепловыми лучами (Все лучи - это электромагнитные волны).

Тепловое излучение имеет природу такую, как световые и электромагнитные лучи (волны). Просто, эти волны (лучи) имеют разную длину волны.

Например, длины волн в диапазоне 0,76 – 50 мкм, называется инфракрасными. Все тела, имеющие комнатную температуру + 20 °С, излучают в основном инфракрасные волны с длинами волн, близкими к 10 мкм.

Всякое тело, если только температура его отлична от абсолютного нуля (-273,15 °С), способно посылать в окружающее пространство излучение. Поэтому любое тело излучает на окружающие его тела лучи и в свою очередь находится под воздействием излучения этих тел.

Любая мебель в доме (стул, стол, стены и даже диван) испускает тепловые лучи.

Тепловое излучение может поглощаться или проходить в сквозь тело, а также может просто отражаться от тела. Отражение тепловых лучей подобно тому, как если бы световой луч отражался от зеркала. Поглощение теплового излучения подобно тому, как черная крыша сильно нагревается от солнечных лучей. А проникновение или прохождение лучей подобно тому, как лучи проходят в сквозь стекло или воздух. Наиболее распространенным в природе видом электромагнитного излучения является тепловое излучение.

Очень близко по своим свойствам к черному телу относится так называемое реликтовое излучение, или космический микроволновой фон - заполняющее Вселенную излучение с температурой около 3 К.

Вообще в науке теплотехнике, чтобы объяснить процессы тепловых излучений, удобно использовать понятие черного тела, для того чтобы качественно объяснить процессы тепловых излучений. Только черное тело способно в некотором роде облегчить расчеты.

Как было описано выше любое тело способно:

Черное тело - это тело, которое полностью поглощает тепловую энергию, то есть оно не отражает лучи и в сквозь нее не проходит тепловое излучение. Но не забываем, что черное тело излучает тепловую энергию.

Поэтому к этому телу так легко применить расчеты.

Какие возникают сложности при расчете, если тело не является черным телом?

Тело, которое не является черным телом, имеет такие факторы:

Эти два фактора усложняют расчет на столько, что "мама не горюй". Очень сложно так считать. А ученые по этому поводу толком не объяснили, как рассчитать серое тело. Кстати серое тело - это и есть тело, которое не является черным телом.

Также есть понятие: Белое тело и прозрачное тело, но об этом ниже.

Тепловое излучение имеет разные частоты (разные волны), и каждое отдельное тело может иметь разную волну излучения. К тому же при изменении температуры, эта длина волны может меняться, может меняться и ее интенсивность (сила излучения).

Все эти факторы усложнят процесс на столько, что трудно подобрать универсальную формулу для расчета потерь энергии на излучательности. И поэтому в учебниках и в любых литературах используют для расчета черное тело, а другие серые тела используют как часть черного тела. Чтобы рассчитать серое тело используют коэффициент черноты. Эти коэффициенты приведены в справочниках для некоторых матералов.

Рассмотрим изображение, которое подтверждает сложность вычисления излучательности.

На рисунке изображены два шарика, которые в себе имеют частички этого шарика. Красные стрелки это лучи испускаемые частичками.

Рассмотрим черное тело.

Внутри черного тела глубоко внутри расположены некоторые частички, которые обозначены оранжевым цветом. Они испускают лучи, которые поглощают рядом находящиеся другие частички, которые обозначены желтым цветом. Лучи оранжевых частичек черного тела не способны пройти в сквозь другие частички. И поэтому только наружные частички этого шарика испускают лучи по всей площади шарика. Поэтому расчет черного тела легко считается. Также принято считать, что черное тело испускает весь спектр волн. То есть испускает все имеющиеся волны различных длин. Серое тело может испускать часть спектра волн, только определенной длины волн.

Рассмотрим серое тело.

Внутри серого тела, имеющиеся внутри частички излучают какую то часть лучей, которые проходят в сквозь другие частички. И только поэтому расчет усложняется многократно.

Тепловое излучение - это электромагнитное излучение, возникающее вследствие преобразования энергии теплового движения частиц тела в энергию излучения. Именно тепловой характер возбуждения элементарных излучателей (атомов, молекул и т.п.) противопоставляет тепловое излучение всем другим видам свечения и обуславливает его специфическое свойство зависеть лишь от температуры и оптических характеристик излучающего тела.

Опыт показывает, что тепловое излучение наблюдается у всех тел при любой температуре, отличной от 0 К. Конечно, интенсивность и характер излучения зависят от температуры излучающего тела. Например, все тела, имеющие комнатную температуру + 20 °С, излучают в основном инфракрасные волны с длинами волн, близкими к 10 мкм, а Солнце излучает энергию, максимум которой приходится на 0,5 мкм, что соответствует видимому диапазону. При Т → 0 К тела практически не излучают.

Тепловое излучение ведет к уменьшению внутренней энергии тела и, следовательно, к снижению температуры тела, к охлаждению. Нагретое тело за счет теплового излучения отдает внутреннюю энергию и охлаждается до температуры окружающих тел. В свою очередь, поглощая излучение, могут нагреваться холодные тела. Такие процессы, которые могут происходить и в вакууме, называют радиационным .

Абсолютно черное тело - физическая абстракция, применяемая в термодинамике, тело, поглощающее все падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно черное тело само может испускать электромагнитное излучение любой частоты и визуально иметь цвет. Спектр излучения абсолютно черного тела определяется только его температурой.

Таблица:

(Температурный интервал в Кельвинах и их Цвет)

до 1000 Красный

1000-1500 Оранжевый

1500-2000 Жёлтый

2000-4000 Бледно-жёлтый

4000-5500 Желтовато-белый

5500-7000 Чисто белый

7000-9000 Голубовато-белый

9000-15000 Бело-голубой

15000-∞ Голубой

Кстати по длине волны (цвета) определили температуру солнца оно около 6000 Кельвин. Угли обычно светятся красным цветом. Вам это ничего не напоминает? По цвету можно определять температуру. То есть существуют такие приборы, которые измеряют длину волны, тем самым определяют температуру материала.

Наиболее черные реальные вещества, например, сажа, поглощают до 99 % падающего излучения (т. е. имеют альбедо, равное 0,01) в видимом диапазоне длин волн, однако инфракрасное излучение поглощается ими значительно хуже. Глубокий черный цвет некоторых материалов (древесного угля, черного бархата) и зрачка человеческого глаза объясняется тем же механизмом. Среди тел Солнечной системы свойствами абсолютно черного тела в наибольшей степени обладает Солнце. По определению Солнце практически не отражает никакого излучения. Термин был введен Густавом Кирхгофом в 1862.

По спектральной классификации Солнце относится к типу G2V («жёлтый карлик»). Температура поверхности Солнца достигает 6000 K, поэтому Солнце светит почти белым светом, но из-за поглощения части спектра атмосферой Земли у поверхности нашей планеты этот свет приобретает жёлтый оттенок.

Абсолютно чёрное тела - 100% поглощает и при этом нагревается, так и наоборот! нагретое тело - 100% излучает это означает, что есть строгая закономерность (формула излучения абсолютно чёрного тела) между температурой Солнца - и его спектром - так как и спектр и температуру уже определили - да, у Солнца нет отклонений от этих параметров!

В астрономии есть такая диаграмма - "Спектр-Светимость", так вот наше Солнце принадлежит "главной последовательности" звезд, к которой принадлежат и большинство других звезд, то есть почти все звезды "абсолютно чёрные тела", как это не странно... Исключения - белые карлики, красные гиганты и Новые, Сверх-Новые...

Это кто-то физику в школе недоучил.

Абсолютно чёрное тело поглощает ВСЁ излучение и излучает больше всех остальных тел (чем больше тело поглощает, тем сильнее оно нагревается; чем больше оно нагревается, тем больше оно излучает).

Пусть у нас есть две поверхности - серая (с коэффициентом черноты 0,5) и абсолютно чёрная (коэффициент 1).

Коэффициент черноты - это коэффициент поглощения.

Теперь на эти поверхности направив одинаковый поток фотонов, допустим, 100 штук.

Серая поверхность поглотит 50 из них, чёрная - все 100.

Какая поверхность, испускает больше света - в которой "сидит" 50 фотонов или 100?

Излучение абсолютно чёрного тела впервые правильно рассчитал Планк.

Излучение Солнца примерно подчиняется формуле Планка.

И так начнем изучать теорию...

Под излучением (радиацией) понимают испускание и распространение электромагнитных волн любого вида. В зависимости от длины волны различают: Ренгеновские, ультрафиолетовые, инфракрасные, световое (видимое) излучение и радиоволны.

Рентгеновское излучение - электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением, что соответствует длинам волн от 10−2 до 103 Ангстрем. 10 Ангстрем = 1 нм. (0,001-100 нм)

Ультрафиолетовое излучение (ультрафиолет, УФ, UV) - электромагнитное излучение, занимающее диапазон между фиолетовой границей видимого излучения и рентгеновским излучением (10 - 380 нм).

Инфракрасное излучение - электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны λ = 0,74 мкм) и микроволновым излучением (λ ~ 1-2 мм).

Сейчас весь диапазон инфракрасного излучения делят на три составляющих:

Коротковолновая область: λ = 0,74-2,5 мкм;

Средневолновая область: λ = 2,5-50 мкм;

Длинноволновая область: λ = 50-2000 мкм;

Видимое излучение - электромагнитные волны, воспринимаемые человеческим глазом. Чувствительность человеческого глаза к электромагнитному излучению зависит от длины волны (частоты) излучения, при этом максимум чувствительности приходится на 555 нм (540 терагерц), в зелёной части спектра. Поскольку при удалении от точки максимума чувствительность спадает до нуля постепенно, указать точные границы спектрального диапазона видимого излучения невозможно. Обычно в качестве коротковолновой границы принимают участок 380-400 нм (750-790 ТГц), а в качестве длинноволновой - 760-780 нм (385-395 ТГц). Электромагнитное излучение с такими длинами волн также называется видимым светом, или просто светом (в узком смысле этого слова).

Радиоизлучение (радиоволны, радиочастоты) - электромагнитное излучение с длинами волн 5 10−5-1010 метров и частотами, соответственно, от 6 1012 Гц и до нескольких Гц. Радиоволны используются при передаче данных в радиосетях.

Тепловое излучение представляет собой процесс распространения в пространстве внутренней энергии излучающего тела путем электромагнитных волн. Возбудителями этих волн являются материальные частицы, входящие в состав вещества. Для распространения электромагнитных волн не требуется материальной среды, в вакууме они распространяются со скоростью света и характеризуются длиной волны λ или частотой колебаний ν. При температуре до 1500 °С основная часть энергии соответствует инфракрасному и частично световому излучению (λ=0,7÷50 мкм).

Следует отметить, что энергия излучения испускается не непрерывно, а в виде определенных порций - квантов. Носителями этих порций энергии являются элементарные частицы излучения - фотоны, обладающие энергией, количеством движений и электромагнитной массой. При попадании на другие тела энергия излучения частично поглощается ими, частично отражается и частично проходит сквозь тело. Процесс превращения энергии излучения во внутреннюю энергию поглощающего тела называется поглощением. Большинство твердых и жидких тел излучают энергию всех длин волн в интервале от 0 до ∞, то есть имеют сплошной спектр излучения. Газы испускают энергию только в определенных интервалах длин волн (селективный спектр излучения). Твердые тела излучают и поглощают энергию поверхностью, а газы - объемом.

Излучаемая в единицу времени энергия в узком интервале изменения длин волн (от λ до λ+dλ) называется потоком монохроматического излучения Qλ. Поток излучения, соответствующий всему спектру в пределах от 0 до ∞, называется интегральным, или полным, лучистым потоком Q(Вт). Интегральный лучистый поток, излучаемый с единицы поверхности тела по всем направлениям полусферического пространства, называется плотностью интегрального излучения (Вт/м 2).

Чтобы понять эту формулу рассмотрим изображение.

Я не случайно изобразил два варианта тела. Формула справедлива только для тела квадратной формы. Так как излучающая площадь должна быть плоской. При условии, что излучает только поверхность тела. Внутренние частицы не излучают.

Зная плотность излучения материала, можно рассчитать, сколько энергии уходит на излучение:

Необходимо понимать, что лучи исходящие от плоскости имеют разную интенсивность излучения по отношению к нормали плоскости.

Закон Ламберта. Излучаемая телом лучистая энергия распространяется в пространстве по различным направлениям с различной интенсивностью. Закон, устанавливающий зависимость интенсивности излучения от направления, называется законом Ламберта.

Закон Ламберта устанавливает, что количество лучистой энергии, излучаемое элементом поверхности в направлении другого элемента, пропорционально произведению количества энергии, излучаемой по нормали, на величину пространственного угла, составленного направлением излучения с нормалью

Смотри изображение.

Интенсивность каждого лучика можно найти с помощью тригонометрической функции:

То есть - это своего рода коэффициент угла и он строго подчиняется тригонометрии угла. Коэффициент работает только для черного тела. Так как рядом находящиеся частички будут поглощать боковые лучи. Для серого тела, необходимо учитывать количество проходящих в сквозь частички лучей. Отражение лучей, тоже необходимо учитывать.

Следовательно, наибольшее количество лучистой энергии излучается в перпендикулярном направлении к поверхности излучения. Закон Ламберта полностью справедлив для абсолютно черного тела и для тел, обладающих диффузным излучением при температуре 0 - 60°С. Для полированных поверхностей закон Ламберта неприменим. Для них лучеиспускание при угле будет большим, чем в направлении, нормальном к поверхности.

Ниже мы обязательно рассмотрим более объемные формулы для расчета количества тепла теряемые телом. Но пока необходимо кое-что узнать дополнительно о теории.

Немного об определениях. Определения пригодятся, чтобы правильно выражаться.

Отметим, что большинство твердых и жидких тел имеет сплошной (непрерывный) спектр излучения. Это значит, что они обладают способностью излучать лучи всех длин волн.

Даже обычный стол в комнате как твердое тело может излучать рентгеновское или ультрафиолетовое излучение, но интенсивность его настолько мала, что мы этого не то, что не замечаем, его значение по отношению к другим волнам может приближаться к нулевому значению.

Лучистым потоком (или потоком излучения) называют отношение лучистой энергии ко времени излучения, Вт:

где Q- энергия излучения, Дж; т - время, с.

Если лучистый поток, излучаемый произвольной поверхностью во всех направлениях (т.е. в пределах полусферы произвольного радиуса) осуществляется в узком интервале длин волн от λ до λ+Δλ, то его называют потоком монохроматического излучения

Суммарное излучение с поверхности тела по всем длинам волн спектра называется интегральным или полным потоком излучения Ф

Интегральный поток, испускаемый с единицы поверхности, носит название поверхностной плотности потока интегрального излучения или излучательности, Вт/м 2 ,

Формулу можно применять и при монохроматическом излучении. Если на поверхность тела падает тепловое монохроматическое излучение, то в общем случае часть, равная В λ этого излучения, поглотится телом, т.е. превратится в другую форму энергии в результате взаимодействия с веществом, часть F λ будет отражена, и часть D λ пройдет сквозь тело. Если принять, что падающее на тело излучение равно единице, то

В λ +F λ +D λ =1

где В λ , F λ , D λ - коэффициенты соответственно поглощения, отражения

и пропускания тела.

Когда в пределах спектра величины В, F, D остаются постоянными, т.е. не зависят от длины волны, то надобность в индексах отпадает. В этом случае

Если В= 1 (F = D = 0), то тело, полностью поглощающее все падающее на него излучение независимо от длины волны, направления падения и состояния поляризации излучения, называется черным телом или полным излучателем.

Если F=1 (В=D=0), то падающее на тело излучение полностью отражается. В том случае, когда поверхность тела шероховатая, то лучи отражаются рассеянно (диффузное отражение), и тело называют белым, а когда поверхность тела гладкая и отражение следует законам геометрической оптики, то тело (поверхность) называют зеркальным. В том случае, когда D = 1 (В=F=0), тело проницаемо для тепловых лучей (диатермично).

Твердые тела и жидкости для тепловых лучей практически непрозрачны (D = 0), т.е. атермичны. Для таких тел

Абсолютно черных, так же как и прозрачных или белых тел, в природе нет. Такие тела должны рассматриваться как научные абстракции. Но все же некоторые реальные тела могут достаточно близко подходить по своим свойствам к таким идеализированным телам.

Надо отметить, что некоторые тела обладают по отношению к лучам определенной длины волны одними свойствами, а к лучам другой длины - иными. Например, тело может быть прозрачным для инфракрасных лучей и непрозрачным для видимых (световых) лучей. Поверхность тела может быть гладкой по отношению к лучам одной длины волны и шероховатой - для лучей другой длины волны.

Газы, в особенности находящиеся под небольшим давлением, в противоположность твердым и жидким телам излучают линейчатый спектр. Таким образом, газы поглощают и излучают лучи лишь определенной длины волны, других же лучей они не могут ни излучать, ни поглощать. В этом случае говорят о селективном (выборочном) поглощении и излучении.

В теории теплового излучения важную роль играет величина, называемая спектральной плотностью потока излучения, или спектральной излучательностью, представляющей собой отношение плотности лучистого потока, испускаемого в бесконечно малом интервале длин волн от λ до λ+Δλ, к размеру этого интервала длин волн Δλ, Вт/м 2 ,

где E - поверхностная плотность лучистого потока, Вт/м 2 .

Теперь надеюсь Вам понятно, что процесс вычисления становится сверх затруднительным. Нам еще в этом направление работать и работать. Это каждый материал надо тестировать на различные температуры. Но почему-то данных по материалам практически нет. Вернее я не нашел эксперементальный справочник по материалам.

Почему нет такого справочника по материалам? Потому что тепловым излучением очень маленькие, и я думаю вряд ли превышают 10% в наших бытовых условиях. Поэтому в расчет их не закладывают. Вот когда мы будем часто летать в космос, тогда и появятся все расчеты. Вернее в нашей космонавтике накопились данные по материалам, но в свободной доступности их пока нет.

Закон поглощения лучистой энергии

Каждое тело способно поглощать какую-либо часть излучающей энергии об этом ниже.

Если на какое-либо тело толщиной l, падает лучистый поток (смотри рисунок), то в общем случае при прохождении сквозь тело он уменьшается. Принимают, что относительное изменение лучистого потока на пути Δl прямо пропорционально пути потока:

Коэффициент пропорциональности b называется показателем погло-щения, зависящим в общем случае от физических свойств тела и длины волны.

Интегрируя в пределах от l до 0 и принимая b постоянным, получаем

Установим связь между спектральным коэффициентом поглощения тела В λ и спектральным показателем поглощения вещества b λ .

Из определения спектрального коэффициента поглощения В λ имеем

После подстановки в это уравнение значения получим соотношение между спектральным коэффициентом поглощения В λ и спектральным показателем поглощения B λ .

Коэффициент поглощения В λ равен нулю при l 1 = 0 и b λ = 0. При большом значении bλ достаточно весьма малого значения l, но все же не равного нулю, чтобы значение В λ было как угодно близко к единице. В этом случае можно говорить, что поглощение происходит в тонком поверхностном слое вещества. Только в этом понимании возможно говорить о поверхностном поглощении. Для большинства твердых тел благодаря большому значению показателя поглощения b λ имеет место в ука-занном смысле «поверхностное поглощение», в связи с чем на коэффициент поглощения большое влияние оказывает состояние его поверхности.

Тела, хотя и с малым значением показателя поглощения, как, например, газы, могут при их достаточной толщине обладать большим коэффициентом поглощения, т.е. делаются непрозрачными для лучей данной длины волны.

Если b λ =0 для интервала Δλ, а для остальных длин волн b λ не равно нулю, то тело будет поглощать падающее излучение только определен-ных длин волн. В этом случае, как было указано выше, говорят о селективном (выборочном) коэффициенте поглощения.

Подчеркнем принципиальную разницу между показателем поглоще-ния вещества b λ и коэффициентом поглощения В λ тела. Первый характе-ризует физические свойства вещества по отношению к лучам определенной длины волны. Значение В λ зависит не только от физических свойств вещества, из которого состоит тело, но и от формы, размеров и состояния поверхности тела.

Законы излучения лучистой энергии

Макс Планк теоретически на основе электромагнитной теории установил закон (носящий название закона Планка), выражающий зависимость спектральной излучательности черного тела Е 0λ от длины волны λ и температуры Т.

где E 0λ (λ,T) - излучательность черного тела, Вт/м 2 ; T - термодинамическая температура, K; C 1 и C 2 - постоянные; С 1 =2πhc 2 =(3,74150±0,0003) 10-16 Вт м 2 ; С 2 =hc/k=(1,438790±0,00019) 10 -2 ; м K (здесь h=(6,626176±0,000036) 10 -34 Дж с - постоянная Планка; с=(299792458±1,2) м/с - скорость распространения электромагнитных волн в свободном пространстве: k - постоянная Больцмана.)

Из закона Планка следует, что спектральная излучательность может равняться нулю при термодинамической температуре, равной нулю (Т=0), либо при длине волны λ = 0 и λ→∞ (при Т≠0).

Следовательно, черное тело излучает при любой температуре больше 0 К. (Т > 0) лучи всех длин волн, т.е. имеет сплошной (непрерывный) спектр излучения.

Из выше указанной формулы можно получить расчетное выражение для излучательности черного тела:

Интегрируя в пределах изменения λ от 0 до ∞ получаем

В результате разложения подынтегрального выражения в ряд и его интегрирования получают расчетное выражение для излучательности черного тела, называемое законом Стефана-Больцмана:

где Е 0 - излучательность черного тела, Вт/м 2 ;

σ - постоянная Стефана Больцмана, Вт/(м 2 К 4);

σ = (5,67032 ± 0,00071) 10 -8 ;

Т- термодинамическая температура, К.

Формулу часто записывают в более удобной для расчета форме:

Эту формулу мы будем использовать для расчетов. Но это не окончательная формула. Она справедлива только для черных тел. О том как использовать для серых тел будет описано ниже.

где E 0 - коэффициент излучения черного тела; С 0 = 5,67 Вт/(м 2 К 4).

Закон Стефана-Больцмана формулируют так: излучательность чер-ного тела прямо пропорциональна его термодинамической температуре в четвертой степени.

Спектральное распределение излучения черного тела при различных температурах

λ - длина волны от 0 до 10 мкм (0-10000 нм)

E 0λ - следует понимать так: Как если бы в объеме (м 3) черного тела находиться определенное количество энергии (Вт). Это не означает, что оно излучает такую энергию только наружными частичками. Просто если собрать все частички черного тела в объеме и измерить каждой частички излучаетельность во всех направлениях и сложить их все, то мы получим полную энергию на объеме, которая и указана на графике.

Как видно из расположения изотерм, каждая из них имеет максимум, причем, чем больше термодинамическая температура, тем больше значение E0λ, отвечающее максимуму, а сама точка максимума перемещается в область более коротких волн. Перемещение максимальной спектральной излучательности E0λmax в область более коротких волн известно под названием

закона смещения Вина, по которому

T λ max = 2,88 10 -3 м К = const и λ max = 2,88 10 -3 /Т,

где λ max - длина волны, соответствующая максимальному значению спектральной излучаетльности E 0λmax .

Так, например, при Т = 6000 К (примерная температура поверхности Солнца) максимум Е 0λ располагается в области видимого излучения, на которую падает около 50% излучательности Солнца.

Элементарная площадка под изотермой, заштрихованная на графике равна Е 0λ Δλ. Ясно, что сумма этих площадок, т.е. интеграл представляет собой излучательность черного тела E 0 . Следовательно, площадь между изотермой и осью абсцисс изображает в условном масштабе диаграммы излучательность черного тела. При небольших значениях термодинамической температуры изотермы проходят в непосредственной близости к оси абсцисс, и указанная площадь становится столь малой, что практически ее можно считать равной нулю.

Большую роль в технике играют понятия о так называемых серых телах и сером излучении. Серым называется неселективный тепловой излучатель, способный излучать сплошной спектр, со спектральной излучательностыо E λ для волн всех длин и при всех температурах, составляющей неизменную долю от спектральной излучательности черного тела Е 0λ т.е.

Постоянная ε называется коэффициентом черноты теплового излучателя. Для серых тел коэффициент черноты ε

На графике схематически показаны кривые распределения по длинам волн спектральной излучательности абсолютно черного тела Е λ (ε = 1) и спектральной излучательности серого тела Еλ той же температуры, что и черное тело (при ε = 0,5 и ε = 0,25). Излучательность серого тела

Произведение

называется коэффициентом излучения серого тела.

Полученные из опыта значения коэффициента излучения даны в справочной литературе.

Большинство тел, применяемых в технике, могут быть приняты за серые тела, и их излучение - за серое излучение. Более точные исследования показывают, что это возможно только в первом приближении, однако достаточно для практических целей. Отклонение от закона Стефана- Больцмана для серых тел обычно учитывается тем, что коэффициент излучения С принимают зависящим от температуры. В связи с этим в таблицах указывается интервал температур, для которых экспериментально определено значение коэффициента излучения С.

В дальнейшем для упрощения выводов будем считать, что коэффициент излучения серого тела не зависит от температуры.

Коэффициенты черноты некоторых материалов

(Материал / Температура в °С / Величина Е)

Алюминий окисленный / 200-600 / 0,11 -0,19

Алюминий полированный / 225-575 / 0,039-0,057

Кирпич красный / 20 / 0,93

Кирпич огнеупорный / - / 0,8-0,9

Медь окисленная / 200-600 / 0,57-0,87

Свинец окисленный / 200 / 0,63

Сталь шлифованная / 940-1100 / 0,55-0,61

Чугун обточенный / 830-910 / 0,6-0,7

Чугун окисленный / 200-600 / 0,64-0,78

Алюминий полированный / 50-500 / 0,04-0,06

Бронза / 50 / 0,1

Железо листовое оцинкованное, блестящее / 30 / 0,23

Жесть белая, старая / 20 / 0,28

Золото полированное / 200 - 600 / 0,02-0,03

Латунь матовая / 20-350 / 0,22

Медь полированная / 50-100 / 0,02

Никель полированный / 200-400 / 0,07-0,09

Олово блестящее / 20-50 / 0,04-0,06

Серебро полированное / 200-600 / 0,02-0,03

Стальной листовой прокат / 50 / 0,56

Сталь окисленная / 200-600 / 0,8

Сталь сильно окисленная / 500 / 0,98

Чугунное литье / 50 / 0,81

Асбестовый картон / 20 / 0,96

Дерево строганое / 20 / 0,8-0,9

Кирпич огнеупорный / 500-1000 / 0,8-0,9

Кирпич шамотный / 1000 / 0,75

Кирпич красный, шероховатый / 20 / 0,88-0,93

Лак черный, матовый / 40-100 / 0,96-0,98

Лак белый / 40-100 / 0,8-0,95

Масляные краски различных цветов / 100 / 0,92-0,96

Сажа ламповая / 20-400 / 0,95

Стекло / 20-100 / 0,91-0,94

Эмаль белая / 20 / 0,9

Закон Кирхгофа

Закон Кирхгофа устанавливает зависимость между излучательностью и коэффициентом поглощения серого тела.

Рассмотрим два параллельных серых тела бесконечной протяженности с плоскими поверхностями площадью А каждое.

Бесконечно протяженная плоскость дает возможность приблизить расчеты по нахождению реального излучения на практических и теоретических опытах. При теоретических опытах находят реальное значение за счет интегральных выражений, а при опытах, большая плоскость приближает расчеты к реальным значениям. Тем самым, мы как бы, большой бесконечной плоскостью гасим влияние ненужных боковых и угловых излучений, которые улетают и не поглощаются экспериментальными пластинами.

То есть, если коэффициент умножить на излучательность, то получим результирующее значение излучения (Вт).

Можно положить, что все лучи, посылаемые одним телом, полностью попадают на другое. Примем, что коэффициенты пропускания этих тел D 1 = D 2 = 0 и между поверхностями двух плоскостей находится теплопрозрачная (диатермическая) среда. Обозначим через E 1 , B 1 , F 1 , T 1 , и E 2 , B 2 , F 2 , T 2 соответственно излучательности, коэффициенты поглощения, отражения и температуры пов ерхностей первого и второго тел.

Поток лучистой энергии от поверхности 1 к поверхности 2 равен произведению излучательности поверхности 1 на ее площадь А, т.е. Е 1 А, из которого часть Е 1 В 2 А поглощается поверхностью 2, а часть Е 1 F 2 А отражается обратно на поверхность 1. Из этого отраженного потока Е 1 F 2 А поверхность 1 поглощает E 1 F 2 B 1 A и отражает E 1 F 1 F 2 A. ИЗ отраженного потока энергии E 1 F 1 F 2 A поверхность 2 вновь поглотит E 1 F 1 F 2 B 2 A и отразит E 1 F 1 F 2 A и т.д.

Аналогично происходит передача лучистой энергии потоком Е 2 от поверхности 2 к поверхности 1. В итоге поток лучистой энергии, поглощенный поверхностью 2 (или отданный поверхностью 1),

Поток лучистой энергии, поглощенной поверхностью 1 (или отданной поверхностью 2),

В окончательном итоге поток лучистой энергии, переданной поверхностью 1 к поверхности 2, будет равен разности лучистых потоков Ф 1→2 и Ф 2→1 т.е.

Полученное выражение справедливо при всех значениях температур Т 1 и Т 2 и, в частности, при Т 1 = Т 2 . В последнем случае рассматриваемая система находится в динамическом тепловом равновесии, и на основании второго начала термодинамики необходимо положить Ф 1→2 = Ф 2→1 откуда следует

Е 1 В 2 = Е 2 B 1 или

Полученное равенство носит название закона Кирхгофа: отношение излучательности тела к его коэффициенту поглощения для всех серых тел, находящихся при одной и той же температуре, одинаково и равно излучательности черного тела при той же температуре.

Если какое-либо тело имеет малый коэффициент поглощения, как например, хорошо полированный металл, то это тело имеет и малую излучательность. На этом основании для уменьшения потерь теплоты излучением во внешнюю среду теплоотдающие поверхности покрывают листами полированного металла для тепловой изоляции.

При выводе закона Кирхгофа рассматривалось серое излучение. Вывод останется справедливым и в том случае, если тепловое излучение обоих тел рассматривается только в некоторой части спектра, но однако имеет одинаковый характер, т.е. оба тела испускают лучи, длины волн которых лежат в одной и той же произвольной спектральной области. В предельном случае приходим к случаю монохроматического излучения. Тогда

т.е. для монохроматического излучения закон Кирхгофа должен быть сформулирован так: отношение спектральной излучательности какого-либо тела при определенной длине волны к его коэффициенту поглощения при той же длине волны одинаково для всех тел, находящихся при одинаковых температурах, и равно спектральной излучательности черного тела при той же длине волны и той же температуре.

Заключаем, что для серого тела В = ε, т.е. понятия «коэффициент поглощения» В и «коэффициент черноты» ε для серого тела совпадают. По определению коэффициент черноты не зависит ни от температуры, ни от длины волны, а следовательно, и коэффи-циент поглощения серого тела также не зависит ни от длины волны, ни от температуры.

Излучение газов

Излучение газов существенно отличается от излучения твердых тел. Поглощение и излучение газов - селективное (выборочное). Газы поглощают и излучают лучистую энергию только в определенных, довольно узких интервалах Δλ длин волн - так называемых полосах. В остальной части спектра газы не излучают и не поглощают лучистой энергии.

Двухатомные газы обладают ничтожно малой способностью поглощать лучистую энергию, а следовательно, и малой способностью ее излучать. Поэтому эти газы обычно считают диатермичными. В отличие от двухатомных газов многоатомные, в том числе и трехатомные газы, обладают значительной способностью излучать и поглощать лучистую энергию. Из трехатомных газов в области теплотехнических расчетов наибольший практический интерес представляют углекислый газ (CO 2) и водяной пар (H 2 O), имеющие по три полосы излучения.

В отличие от твердых тел показатель поглощения для газов (конечно, в области полос поглощения) мал. Поэтому для газообразных тел уже нельзя говорить о «поверхностном» поглощении, так как поглощение лучистой энергии происходит в конечном объеме газа. В этом смысле поглощение и излучение газов называются объемными. Кроме того, показатель поглощения b λ для газов зависит от температуры.

По закону поглощения спектральный коэффициент поглощения тела может быть определен по:

Для газообразных тел эта зависимость несколько усложняется тем, что на коэффициент поглощения газа влияет его давление. Последнее объясняется тем, что поглощение (излучение) протекает тем интенсивнее, чем большее число молекул встретит луч на своем пути, а объемное число молекул (отношение числа молекул к объему) прямо пропорционально давлению (при t = const).

В технических расчетах газового излучения, обычно поглощающие газы (CO 2 и H 2 O) входят как компоненты в состав смеси газов. Если давление смеси p, а парциальное давление поглощающего (или излучающего) газа р i , то в необходимо вместо l подставить величину р i 1. Величина р i 1, представляющая собой произведение давления газа на его толщину, носит название эффективной толщины слоя. Таким образом, для газов спектральный коэффициент поглощения

Спектральный коэффициент поглощения газа (в пространстве) зависит от физических свойств газа, формы пространства, его размеров и температуры газа. Тогда в соответствии с законом Кирхгофа спектральная излучательность

Излучательность в пределах одной полосы спектра

По этой формуле определяют излучательность газа в свободное пространство (пустоту). (Свободное пространство можно рассматривать как черное пространство при 0 К.) Но газовое пространство всегда ограничено поверхностью твердого тела, в общем случае имеющей температуру Т ст ≠ Т г и коэффициент черноты ε ст

Излучательность газа в замкнутом пространстве равна сумме излучательностей, взятых по всем полосам спектра:

Опытные исследования показали, что излучательность газов не следует закону Стефана- Больцмана, т.е. зависимости от четвертой степени абсолютной температуры.

Однако для практических расчетов излучения газов пользуются законом четвертых степеней, вводя соответствующую поправку в значение коэффициента черноты газа ε г:

Здесь ε г = f(T,p l)

Средняя длина пути луча

где V- газовый объем; А - площадь поверхности оболочки.

Излучательность газа, компонентами которого являются CO 2 и H 2 O (газообразные продукты сгорания), к оболочке серого тела

в которой последний член учитывает собственное излучение оболочки.

Так называемый эффективный коэффициент черноты оболочки ε" ст, больший, чем ε ст, в связи с наличием излучающего газа.

Коэффициент черноты газа при температуре газа t г

Значения степени черноты ε CO2 и ε H2O в зависимости от температуры при различных значениях параметра p i l приведены на рисунке.

Поправочный коэффициент β определяют по графику.

Полосы излучения и поглощения для С0 2 и Н 2 0 несколько перекрывают одна другую, в связи с чем часть энергии, излучаемой одним газом, поглощается другим. Поэтому коэффициент черноты смеси углекислого газа и водяного пара при температуре стенки t ст

где Δε г - поправка, учитывающая указанное поглощение. Для газообразных продуктов сгорания обычного состава Δε г = 2 - 4% и ею можно пренебречь.

Можно принять, что при ε ст = 0,8 + 1,0 эффективный коэффициент черноты оболочки ε" ст = 0,5(ε ст + 1).

Указанные особенности излучения и поглощения газов позволяют установить механизм так называемого «парникового эффекта», который оказывает существенное влияние на формирование и изменение климата Земли.

Большая часть солнечной радиации проходит сквозь атмосферу и нагревает поверхность Земли. В свою очередь Землей испускается инфракрасное излучение, в результате чего она охлаждается. Однако часть это го излучения поглощается многоатомными («парниковыми») газами атмосферы, которая вследствие этого играет роль «одеяла», удерживающего теплоту. При этом наибольшее влияние на глобальное потепление оказывают такие «парниковые» газы, как двуокись углерода (55%), фреоны и родственные им газы (25%), метан (15%) и др.

На следующей странице еще будут затронуты некоторые законы. Также будет детальное пояснения как происходит тепловое излучение через окно. Будут описаны некоторые факторы, влияющие на теплообмен излучением, а также будут реальные задачи на излучение.

Итак, что такое тепловое излучение?

Тепловое излучение - это электромагнитное излучение, которое возникает за счет энергии вращательного и колебательного движения атомов и молекул в составе вещества. Тепловое излучение характерно для всех тел, которые имеют температуру, превышающую температуру абсолютного нуля.

Тепловое излучение тела человека относится к инфракрасному диапазону электромагнитных волн. Впервые такое излучение было открыто английским астрономом Вильямом Гершелем. В 1865 английский физик Дж. Максвелл доказал, что ИК - излучение имеет электромагнитную природу и представляет собой волны длиной от 760нм до 1-2мм . Чаще всего весь диапазон ИК - излучения делят на области: ближнюю (750нм -2.500нм ), среднюю (2.500нм - 50.000нм ) и дальнюю (50.000нм -2.000.000нм ).

Рассмотрим случай, когда тело А расположено в полости Б, которая ограничена идеальной отражающей (непроницаемой для излучения) оболочкой С (рис.1). В результате многократного отражения от внутренней поверхности оболочки излучение будет сохраняться в пределах зеркальной полости и частично поглощаться телом А. При таких условиях система полость Б - тело А не будет терять энергию, а будет лишь происходить непрерывный обмен энергией между телом А и излучением, которое заполняет полость Б.

Рис.1 . Многократное отражение тепловых волн от зеркальных стенок полости Б

Если распределение энергии остается неизменным для каждой длины волны, то состояние такой системы будет равновесным, а излучение также будет равновесным. Единственным видом равновесного излучения является тепловое. Если по какой-то причине равновесие между излучением и телом сместится, то начинают протекать такие термодинамические процессы, которые вернут систему в состояние равновесия. Если тело А начинает излучать больше, чем поглощает, то тело начинает терять внутреннюю энергию и температура тела (как мера внутренней энергии) начнет падать, что уменьшит количество излучаемой энергии. Температура тела будет падать до тех пор, пока количество излучаемой энергии не станет равным количеству энергии, поглощаемой телом. Таким образом, наступит равновесное состояние.

Равновесное тепловое излучение имеет такие свойства: однородное (одинаковая плотность потока энергии во всех точках полости), изотропное (возможные направления распространения равновероятны), неполяризованное (направления и значения векторов напряженностей электрического и магнитного полей во всех точках полости изменяются хаотически).

Основными количественными характеристиками теплового излучения являются:

- энергетическая светимость - это количество энергии электромагнитного излучения во всем диапазоне длин волн теплового излучения, которое излучается телом во всех направлениях с единицы площади поверхности за единицу времени: R = E/(S·t), [Дж/(м 2 с)] = [Вт/м 2 ] Энергетическая светимость зависит от природы тела, температуры тела, состояния поверхности тела и длины волны излучения.

- спектральная плотность энергетической светимости - энергетическая светимость тела для данных длин волн (λ + dλ) при данной температуре (T + dT): R λ,T = f(λ, T).

Энергетическая светимость тела в пределах каких-то длин волн вычисляется интегрированием R λ,T = f(λ, T) для T = const:

- коэффициент поглощения - отношение поглощенной телом энергии к падающей энергии. Так, если на тело падает излучение потока dФ пад, то одна его часть отражается от поверхности тела - dФ отр, другая часть проходит в тело и частично превращается в теплоту dФ погл, а третья часть после нескольких внутренних отражений - проходит через тело наружу dФ пр: α = dФ погл /dФ пад.

Коэффициент поглощения α зависит от природы поглощающего тела, длины волны поглощаемого излучения, температуры и состояния поверхности тела.

- монохроматический коэффициент поглощения - коэффициент поглощения теплового излучения данной длины волны при заданной температуре: α λ,T = f(λ,T)

Среди тел есть такие тела, которые могут поглощать все тепловое излучение любых длин волн, которое падает на них. Такие идеально поглощающие тела называются абсолютно черными телами . Для них α =1.

Есть также серые тела, для которых α<1, но одинаковый для всех длин волн инфракрасного диапазона.

Моделью АЧТ является малое отверстие полости с теплонепроницаемой оболочкой. Диаметр отверстия составляет не более 0,1 диаметра полости. При постоянной температуре из отверстия излучается некоторая энергия, соответствующая энергетической светимости абсолютно черного тела. Но АЧТ - это идеализация. Но законы теплового излучения АЧТ помогают приблизиться к реальным закономерностям.

2. Законы теплового излучения

1. Закон Кирхгофа. Тепловое излучение является равновесным - сколько энергии излучается телом, столь ее им и поглощается. Для трех тел, находящихся в замкнутой полости можно записать:

Указанное соотношение будет верным и тогда, когда одно из тел будет АЧ:

Т.к. для АЧТ α λT .
Это закон Кирхгофа: отношение спектральной плотности энергетической светимости тела к его монохроматическому коэффициенту поглощения (при определенной температуре и для определенной длины волны) не зависит от природы тела и равно для всех тел спектральной плотности энергетической светимости при тех же самых температуре и длине волны.

Следствия из закона Кирхгофа:
1. Спектральная энергетическая светимость АЧТ является универсальной функцией длины волны и температуры тела.
2. Спектральная энергетическая светимость АЧТ наибольшая.
3. Спектральная энергетическая светимость произвольного тела равна произведению его коэффициента поглощения на спектральную энергетическую светимость абсолютно черного тела.
4. Любое тело при данной температуре излучает волны той же длины волны, которое оно излучает при данной температуре.

Систематическое изучение спектров ряда элементов позволило Кирхгофу и Бунзену установить однозначную связь между спектрами поглощения и излучения газов и индивидуальностью соответствующих атомов. Так был предложен спектральный анализ , с помощью которого можно выявить вещества, концентрация которых составляет 0,1нм.

Распределение спектральной плотности энергетической светимости для абсолютно черного тела, серого тела, произвольного тела. Последняя кривая имеет несколько максимумов и минимумов, что указывает на избирательность излучения и поглощения таких тел.

2. Закон Стефана-Больцмана.
В 1879 году австрийские ученые Йозеф Стефан (экспериментально для произвольного тела) и Людвиг Больцман (теоретически для АЧТ) установили, что общая энергетическая светимость во всем диапазоне длин волн пропорциональна четвертой степени абсолютной температуры тела:

3. Закон Вина.
Немецкий физик Вильгельм Вин в 1893 году сформулировал закон, который определяет положение максимума спектральной плотности энергетической светимости тела в спектре излучения АЧТ в зависимости от температуры. Согласно закону, длина волны λ max , на которую приходится максимум спектральной плотности энергетической светимости АЧТ, обратно пропорционален его абсолютной температуре Т: λ max = в/t, где в = 2,9*10 -3 м·К- постоянная Вина.

Таким образом, при увеличении температуры изменяется не только полная энергия излучения, но и сама форма кривой распределения спектральной плотности энергетической светимости. Максимум спектральной плотности при увеличении температуры смещается в сторону более коротких длин волн. Поэтому закон Вина называют законом смещения.

Закон Вина применяется в оптической пирометрии - метода определения температуры по спектру излучения сильно нагретых тел, которые отдалены от наблюдателя. Именно этим методом впервые была определена температура Солнца (для 470нм Т=6160К).

Представленные законы не позволяли теоретически найти уравнения распределения спектральной плотности энергетической светимости по длинам волн. Труды Релея и Джинса, в которых ученые исследовали спектральный состав излучения АЧТ на основе законов классической физики, привели к принципиальным трудностям, названных ультрафиолетовой катастрофой. В диапазоне УФ-волн энергетическая светимость АЧТ должна была достигать бесконечности, хотя в опытах она уменьшалась к нулю. Эти результаты противоречили закону сохранения энергии.

4. Теория Планка. Немецкий ученый в 1900 году выдвинул гипотезу о том, что тела излучают не непрерывно, а отдельными порциями - квантами. Энергия кванта пропорциональна частоте излучения: E = hν = h·c/λ , где h = 6,63*10 -34 Дж·с постоянная Планка.

Руководствуясь представлениями о квантовом излучении АЧТ, он получил уравнение для спектральной плотности энергетической светимости АЧТ:

Эта формула находится в соответствии с опытными данными во всем интервале длин волн при всех температурах.

Солнце - основной источник теплового излучения в природе. Солнечное излучение занимает широкий диапазон длин волн: от 0,1нм до 10м и более. 99% солнечной энергии приходится на диапазон от 280 до 6000нм . На единицу площади Земной поверхности приходится в горах от 800 до 1000 Вт/м 2 . До земной поверхности доходит одна двухмиллиардная часть тепла - 9,23 Дж/см 2 . На диапазон теплового излучения от 6000 до 500000нм приходится 0,4% энергии Солнца. В атмосфере Земли большая часть ИК-излучения поглощается молекулами воды, кислорода, азота, диоксида углерода. Радиодиапазон тоже большей частью поглощается атмосферой.

Количество энергии, которую приносят солнечные лучи за 1с на площадь в 1 кв.м, расположенную за пределами земной атмосферы на высоте 82 км перпендикулярную солнечным лучам называется солнечной постоянной. Она равна 1,4*10 3 Вт/м 2 .

Спектральное распределение нормальной плотности потока солнечного излучения совпадает с таким для АЧТ при температуре 6000 градусов. Поэтому Солнце относительно теплового излучения - АЧТ.

3. Излучение реальных тел и тела человека

Тепловое излучение с поверхности тела человека играет большую роль в теплоотдаче. Существуют такие способы теплоотдачи: теплопроводность (кондукция), конвекция, излучение, испарение. В зависимости от условий, в которых окажется человек, каждый из этих способов может иметь доминирующее значение (так, например, при очень высоких температурах среды ведущая роль принадлежит испарению, а в холодной воде - кондукции, причем температура воды 15 градусов является смертельной средой для обнаженного человека, и через 2-4 часа наступает обморок и смерть вследствие переохлаждения мозга). Доля излучения в общей теплоотдаче может составлять от 75 до 25%. В нормальных условиях около 50% при физиологическом покое.

Тепловое излучение, которое играет роль в жизни живых организмов делится на коротковолновую (от 0,3 до 3 мкм) и длинноволновую (от 5 до 100мкм ). Источником коротковолнового излучения служат Солнце и открытое пламя, а живые организмы являются исключительно реципиентами такого излучения. Длинноволновая радиация и излучается, и поглощается живыми организмами.

Величина коэффициента поглощения зависит от соотношения температур среды и тела, площади их взаимодействия, ориентации этих площадей, а для коротковолнового излучения - от цвета поверхности. Так у негров происходит отражение лишь 18% коротковолнового излучения, тогда как у людей белой расы около 40% (скорее всего, цвет кожи негров в эволюции не имел отношение к теплообмену). Для длинноволнового излучения коэффициент поглощения приближен к 1.

Расчет теплообмена излучением - очень трудная задача. Для реальных тел использовать закон Стефана-Больцмана нельзя, поскольку у них более сложная зависимость энергетической светимости от температуры. Оказывается, она зависит от температуры, природы тела, формы тела и состояния его поверхности. Со сменой температуры изменяется коэффициент σ и показатель степени температуры. Поверхность тела человека имеет сложную конфигурацию, человек носит одежду, которая изменяет излучение, на процесс влияет поза, в которой находится человек.

Для серого тела мощность излучения во всем диапазоне определяется по формуле: P = α с.т. σ·T 4 ·S Считая с определенными приближениями реальные тела (кожа человека, ткани одежды) близкими к серым телам, можно найти формулу для вычисления мощности излучения реальными телами при определенной температуре: P = α·σ·T 4 ·S В условиях разных температур излучающего тела и окружающей среды: P = α·σ·(T 1 4 - T 2 4)·S
Существуют особенности спектральной плотности энергетической светимости реальных тел: при 310К , что соответствует средней температуре тела человека, максимум теплового излучения приходится на 9700нм . Любое изменение температуры тела приводит к изменению мощности теплового излучения с поверхности тела (0,1 градус достаточно). Поэтому исследование участков кожи, через ЦНС связанных с определенными органами, способствует выявлению заболеваний, в результате которых температура изменяется довольно значительно (термография зон Захарьина-Геда ).

Интересен метод бесконтактного массажа биополем человека (Джуна Давиташвили). Мощность теплового излучения ладони 0,1Вт , а тепловая чувствительность кожи 0,0001 Вт/см 2 . Если действовать на вышеупомянутые зоны, можно рефлекторно стимулировать работу этих органов.

4. Биологическое и терапевтическое действие тепла и холода

Тело человека постоянно излучает и поглощает тепловое излучение. Этот процесс зависит от температур тела человека и окружающей среды. Максимум ИК-излучения тела человека приходится на 9300нм.

При маленьких и средних дозах облучения ИК-лучами усиливаются метаболические процессы и ускоряются ферментативные реакции, процессы регенерации и репарации.

В результате действия ИК-лучей и видимого излучения в тканях образуются БАВ (брадикинин, калидин, гистамин, ацетилхолин, в основном вазомоторные вещества, которые играют роль в осуществлении и регуляции местного кровотока).

В результате действия ИК-лучей в коже активируются терморецепторы, информация от которых поступает в гипоталамус, в результате чего расширяются сосуды кожи, увеличивается объем циркулирующей в них крови, усиливается потовыделение.

Глубина проникновения ИК-лучей зависит от длины волны, влажности кожи, наполнения ее кровью степени пигментации и т.д.

На коже человека под действием ИК-лучей возникает красная эритема.

Применяется в клинической практике для влияния на местную и общую гемодинамику, усиления потовыделения, расслабления мышц, снижения болевого ощущения, ускорения рассасывания гематом, инфильтратов и т.д.

В условиях гипертермии усиливается противоопухолевое действие лучевой терапии - терморадиотерапия.

Основные показания применения ИК-терапии: острые негнойные воспалительные процессы, ожоги и обморожения, хронические воспалительные процессы, язвы, контрактуры, спайки, травмы суставов, связок и мышц, миозиты, миалгии, невралгии. Основные противопоказания: опухоли, гнойные воспаления, кровотечения, недостаточность кровообращения.

Холод применяется для остановки кровотечений, обезболивания, лечения некоторых заболеваний кожи. Закаливание ведет к долголетию.

Под действием холода снижается частота сердечных сокращений, артериальное давление, угнетаются рефлекторные реакции.

В определенных дозах холод стимулирует заживление ожогов, гнойных ран, трофических язв, эрозий, коньюктивитов.

Криобиология - изучает процессы, которые происходят в клетках, тканях, органах и организме под действием низких, нефизиологических температур.

В медицине используются криотерапия и гипертермия . Криотерапия включает методы, основанные на дозированном охлаждении тканей, органов. Криохирургия (часть криотерапии) использует локальное замораживание тканей с целью их удаления (часть миндалины. Если вся - криотонзилоэктомия. Можно удалять опухоли, например, кожи, шейки матки и т.д.) Криоэкстракция, основанная на криоадгезии (прилипании влажных тел к замороженному скальпелю) - выделение из органа части.

При гипертермии можно некоторое время сохранить функции органов ин виво. Гипотермию с помощью наркоза используют для сохранения функции органов при отсутствии кровоснабжения, поскольку замедляется обмен веществ в тканях. Ткани становятся стойкими к гипоксии. Применяют холодовой наркоз.

Осуществляют действие тепла с помощью ламп накаливания (лампа Минина, солюкс, ванна светотепловая, лампа ИК-лучей) с использованием физических сред, имеющих высокую теплоемкость, плохую теплопроводность и хорошую теплосохранящую способность: грязи, парафин, озокерит, нафталин и т.д.

5. Физические основы термографии.Тепловизоры

Термография, или тепловидение - это метод функциональной диагностики, основанный на регистрации ИК-излучения тела человека.

Существует 2 разновидности термографии:

- контактная холестерическая термография : в методе используются оптические свойства холестерических жидких кристаллов (многокомпонентные смеси сложных эфиров и других производных холестерина). Такие вещества избирательно отражают разные длины волн, что дает возможным получать на пленках этих веществ изображения теплового поля поверхности тела человека. На пленку направляют поток белого света. Разные длины волн по-разному отражаются от пленки в зависимости от температуры поверхности, на которую нанесен холестерик.

Под действием температуры холестерики могут изменять цвет от красного до фиолетового. В результате формируется цветное изображение теплового поля тела человека, которое легко расшифровать, зная зависимость температура-цвет. Существуют холестерики, позволяющие фиксировать разницу температур 0,1 градус. Так, можно определить границы воспалительного процесса, очаги воспалительной инфильтрации на разных стадиях ее развития.

В онкологии термография позволяет выявить метастатические узлы диаметром 1,5-2мм в молочной железе, коже, щитовидной железе; в ортопедии и травматологии оценить кровоснабжение каждого сегмента конечности, например, перед ампутацией, опередить глубину ожога и т.д.; в кардиологии и ангиологии выявить нарушения нормального функционирования ССС, нарушения кровообращения при вибрационной болезни, воспалении и закупорке сосудов; расширение вен и т.д.; в нейрохирургии определить расположение очагов повреждения проводимости нерва, подтвердить место нейропаралича, вызванного апоплексией; в акушерстве и гинекологии определить беременность, локализацию детского места; диагностировать широкий спектр воспалительных процессов.

- Телетермография - базируется на превращение ИК-излучения тела человека в электрические сигналы, которые регистрируются на экране тепловизора или другом записывающем устройстве. Метод бесконтактный.

ИК-излучение воспринимается системой зеркал, после чего ИК-лучи направляются на приемник ИК-волн, основную часть которого составляет детектор (фотосопротивление, металлический или полупроводниковый болометр, термоэлемент, фотохимический индикатор, электронно-оптический преобразователь, пьезоэлектрические детекторы и т.д.).

Электрические сигналы от приемника передаются на усилитель, а потом - на управляющее устройство, которое служит для перемещения зеркал (сканирование объекта), разогревания точечного источника света ТИС (пропорционально тепловому излучению), движения фотопленки. Каждый раз пленка засвечивается ТИС соответственно температуре тела в месте исследования.

После управляющего устройства сигнал может передаваться на компьютерную систему с дисплеем. Это позволяет запоминать термограммы, обрабатывать их с помощью аналитических программ. Дополнительные возможности предоставляет цветные тепловизоры (близкие по температуре цвета обозначить контрастными цветами), провести изотермы.

Многие копании в последнее время признают тот факт, что «достучаться» до потенциального клиента, порой, достаточно сложно, его информационное поле настолько загружено различного рода рекламными сообщениями, что таковые просто перестают восприниматься.
Активные продажи по телефону становятся одним из наиболее эффективных способов увеличения продаж в короткие сроки. Холодные звонки направлены на привлечение клиентов, которые ранее не обращались за товаром или услугой, но по ряду факторов являются потенциальными клиентами. Набрав телефонный номер, менеджер активных продаж должен четко осознавать цель холодного звонка. Ведь телефонные переговоры требуют от sales manager особого мастерства и терпения, а так же знание техники и методики ведения переговоров.

Тепловое излучение - этоэлектромагнитное излучение, испускаемое веществом и возникающее за счёт его внутренней энергии.

Оно обуславливается возбуждением частиц вещества при соударениях в процессе теплового движения колеблющихся ионов.

Интенсивность излучения и его спектральный состав зависят от температуры тела, поэтому тепловое излучение не всегда воспринимается глазом.

Тело. Нагретое до высокой температуры значительную часть энергии испускает в видимом диапазоне, а при комнатной температуры- энергия испускается в инфракрасной части спектра.

По международным стандартам различают 3 области инфракрасного излучения:

1. Инфракрасная область А

λ от 780 до 1400 нм

2. Инфракрасная область В

λ от 1400 до 3000 нм

3. Инфракрасная область С

λ от 3000 до 1000000 нм.

Особенности теплового излучения.

1. Тепловое излучение- это универсальное явление присущее всем телам и происходящее при температуре отличной от абсолютного нуля (- 273 К).

2. Интенсивность теплового излучения и спектральный состав зависят от природы и температуры тел.

3. Тепловое излучение является равновесным, т.е. в изолированной системе при постоянной температуре тела излучают за единицу времени с единицы площади столько энергии, сколько получают извне.

4. Наряду с тепловым излучением все тела обладают способностью поглащать тепловую энергию извне.

2 . Основные характеристики поглощения .

1. Лучистая энергия W (Дж)

2. Лучистый поток Р = W/t (Вт)

(Поток излучения)

3. Излучательная способность (энергитическая светимость)- это энергия электромагнитного излучения, излучаемая по всем возможным направлениям за единицу времени с единицы площади при данной температуре

RT= W/St (Вт/м2)

4. Поглощательная способность (коэффициент поглощения) равен отношению лучистого потока, поглощенного данного тела к лучистому потоку, упавшему на тело при данной температуре.

αт = Рпогл / Рпад.

3. Тепловые излучатели и их характеристика.

Понятие абсолютно чёрного тела.

Тепловые излучатели- это технические устройства для получения теплового лучистого потока. Каждый тепловой источник характеризуется излучательной способностью, поглащательной способностью, температурой излучательного тела, спектральным составом излучения.

В качестве стандарта введено понятие абсолютно чёрного тела (а.ч.т.)

При прохождении света через вещество, лучистый поток частично отражается, частично поглащается, рассеивается и частично проходит через вещество.

Если тело полностью поглощает падающий на него световой поток, то его называют абсолютно чёрное тело.

Для всех длин волн и при любых температурах коэффициент поглощения α=1. Абсолютно чёрного тела в природе нет, но можно указывать на тело близкое к нему по своим свойствам.

Модельно а.ч.т. является полость с очень малым отверстием стенки которого зачернены. Луч, попавший в отверстие после многократных отражений от стенок, будет поглощён практически полностью.

Если нагреть такую модель до высокой температуры, то отверстие будет светиться, такое излучение называется чёрным излучением. К а.ч.т. близки поглощательные свойства чёрного бархата.

α для сажи = 0,952

α для чёрного бархата = 0,96

Примером служит зрачок глаза, глубокий колодец и т.д.

Если α=0, то это обсолютно зеркальная поверхность. Чаще α находится в пределах от 0 до 1, такие тела называются серыми.

У серых тел коэффициент поглощения зависит от длины волны, падающего излучения и в значительной степени от температуры.

4. Законы теплового излучения и их характеристика

1. Закон Киркгофа :

отношение излучательной способности тела к поглощательной способности тела при одинаковой температуре и при одинаковой длине волны есть величина постоянная.

2. Закон Стефана-Больцмана :

излучательная способность а.ч.т. пропорциональначетвёртой степени его абсолютной температуры.

δ- постоянная Стефана-Больцмана.

δ=5,669*10-8 (Вт/ м2*К4)

W=Pt=RTSt= δStT4

Т-температура

При увеличении температуры (Т) мощность излучения растёт очень быстро.

При увеличении времени (t) до 800 мощность излучения увеличится в 81 раз.

Излучение электромагнитных волн веществом происходит благодаря внутриатомным и внутримолекулярным процессам. Источники энергии и, следовательно, вид свечения могут быть разными: экран телевизора, лампа дневного света, лампа накаливания, гниющее дерево, светлячок и т.д. Из всего многообразия электромагнитных излучений, видимых или не видимых человеческим глазом, можно выделить одно, которое присуще всем телам. Это излучение нагретых тел, или тепловое излучение. Оно возникает при любых температурах выше 0 К, поэтому испускается всеми телами. В зависимости от температуры тела изменяются интенсивность излучения и спектральный состав, поэтому далеко не всегда тепловое излучение воспринимается глазом как свечение.

27.1. ХАРАКТЕРИСТИКИ ТЕПЛОВОГО ИЗЛУЧЕНИЯ.

ЧЕРНОЕ ТЕЛО

Среднюю мощность излучения за время, значительно большее периода световых колебаний, принимают за поток излучения Ф. В СИ он выражается в ваттах (Вт).Поток излучения, испускаемый 1 м 2 поверхности, называют энергетической светимостью R e . Она выражается в ваттах на квадратный метр (Вт/м 2).

Нагретое тело излучает электромагнитные волны различной длины волны. Выделим небольшой интервал длин волн от λ до λ + άλ. Энергетическая светимость, соответствующая этому интервалу, пропорциональна ширине интервала:

Серых тел в природе нет, однако некоторые тела в определенном интервале длин волн излучают и поглощают как серые. Так, например, тело человека иногда считают серым, имеющим коэффициент поглощения приблизительно 0,9 для инфракрасной области спектра.

27.2. ЗАКОН КИРХГОФА

Между спектральной плотностью энергетической светимости и монохроматическим коэффициентом поглощения тел существует определенная связь, которую можно пояснить на следующем примере.

В замкнутой адиабатной оболочке находятся два разных тела в условиях термодинамического равновесия, при этом их температуры одинаковы. Так как состояние тел не изменяется, то каждое из них излучает и поглощает одинаковую энергию. Спектр излучения каждого тела должен совпадать со спектром электромагнитных волн, поглощаемых им, иначе нарушилось бы термодинамическое равновесие. Это означает, что если одно из тел излучает какие-либо волны, например красные, больше, чем другое, то оно должно больше их и поглощать.

27.3. ЗАКОНЫ ИЗЛУЧЕНИЯ ЧЕРНОГО ТЕЛА

Излучение черного тела имеет сплошной спектр. Графики спектров излучения для разных температур приведены на рис. 27.2. Из этих экспериментальных кривых можно сделать ряд выводов.

Существует максимум спектральной плотности энергетической светимости, который с повышением температуры смещается в сторону коротких волн.

На основании (27.2) энергетическую светимость черного тела R е можно найти как площадь, ограниченную кривой и осью асбцисс, или

Из рис. 27.2 видно, что энергетическая светимость увеличивается по мере нагревания черного тела.

Долгое время не могли получить теоретически зависимость спектральной плотности энергетической светимости черного тела от длины волны и температуры, которая отвечала бы эксперименту. В 1900 г. это было сделано М. Планком.

В классической физике испускание и поглощение излучения телом рассматривались как непрерывный процесс.

Планк пришел к выводу, что именно эти основные положения не позволяют получить правильную зависимость. Он высказал гипотезу, из которой следовало, что черное тело излучает и поглощает энергию не непрерывно, а определенными дискретными порциями - квантами. Представляя излучающее тело как совокупность осцилляторов, энергия которых может изменяться лишь на величину, краткую hv, Планк получил формулу:

(h - постоянная Планка; с - скорость света в вакууме; k - постоянная Больцмана), которая прекрасно описывает экспериментальные кривые, изображенные на рис. 27.2.

На основании (27.6) и (27.8) спектр излучения серого тела может быть выражен зависимостью:


Проявление закона Вина известно из обыденных наблюдений. При комнатной температуре тепловое излучение тел в основном приходится на инфракрасную область и человеческим глазом не воспринимается. Если температура повышается, то тела начинают светиться темно-красным светом, а при очень высокой температуре - белым с голубоватым оттенком, возрастает ощущение нагретости тела.

Законы Стефана-Больцмана и Вина позволяют, измеряя излучение тел, определять их температуры (оптическая пирометрия).

27.4. ИЗЛУЧЕНИЕ СОЛНЦА. ИСТОЧНИКИ ТЕПЛОВОГО ИЗЛУЧЕНИЯ, ПРИМЕНЯЕМЫЕ ДЛЯ ЛЕЧЕБНЫХ ЦЕЛЕЙ

Наиболее мощным источником теплового излучения, обусловливающим жизнь на Земле, является Солнце.

Поток солнечной радиации, приходящийся на 1 м 2 площади границы земной атмосферы, составляет 1350 Вт. Эту величину называют солнечной постоянной.

В зависимости от высоты Солнца над горизонтом путь, проходимый солнечными лучами в атмосфере, изменяется в довольно больших пределах (рис. 27.3; граница атмосферы изображена условно) с максимальным различием в 30 раз. Даже при самых благоприятных условиях на 1 м 2 поверхности Земли падает поток солнечной радиации 1120 Вт. В июле в Москве при наивысшем стоянии Солнца это значение достигает только 930 Вт/м 2 . В остальное время дня потери в атмосфере еще больше.

Ослабление радиации атмосферой сопровождается изменением ее спектрального состава. На рис. 27.4 показан спектр солнечного излучения на границе земной атмосферы (кривая 1) и на поверхности Земли (кривая 2) при наивысшем стоянии Солнца. Кривая 1 близка к спектру черного тела, ее максимум соответствует длине волны 470 нм, что, по закону Вина, позволяет определить температуру поверхности Солнца - около 6100 К. Кривая 2 имеет несколько линий поглощения, ее максимум расположен около 555 нм. Интенсивность прямой солнечной радиации измеряют актинометром.

Принцип действия его основан на использовании нагревания зачерненных поверхностей тел, происходящего от солнечной радиации.

В термоэлектрическом актинометре Савинова- Янишевскою (рис. 27.5) приемной частью радиации является тонкий, зачерненный с наружной стороны серебряный диск 1. К диску с электрической изоляцией припаяны спаи термоэлементов 2, другие спаи 3 прикреплены к медному кольцу (на рисунке не показано) внутри корпуса актинометра и затенены. Под действием солнечной радиации возникает электрический ток в термобатарее (см. 15.6), сила которого пропорциональна потоку радиации.

Дозированную солнечную радиацию применяют как солнцелечение (гелиотерапия), а также как средство закаливания организма.

Для лечебных целей используют искусственные источники теплового излучения: лампы накаливания (соллюкс) и инфракрасные излучатели (инфраруж), укрепленные в специальном рефлекторе на штативе. Инфракрасные излучатели устроены подобно бытовым электрическим нагревателям с круглым рефлектором. Спираль нагревательного элемента накаливается током до температуры порядка 400-500 °С.

27.5. ТЕПЛООТДАЧА ОРГАНИЗМА. ПОНЯТИЕ О ТЕРМОГРАФИИ

Тело человека имеет определенную температуру благодаря терморегуляции, существенной частью которой является теплообмен организма с окружающей средой. Рассмотрим некоторые особенности такого теплообмена, предполагая, что температура окружающей среды ниже температуры тела человека.

Теплообмен происходит посредством теплопроводности, конвекции, испарения и излучения (поглощения).

Трудно или даже невозможно точно указать распределение отдаваемого количества теплоты между перечисленными процессами, так как оно зависит от многих факторов: состояния организма (температура, эмоциональное состояние, подвижность и т.д.), состояния окружающей среды (температура, влажность, движение воздуха и т.п.), одежды (материал, форма, цвет, толщина).

Однако можно сделать приближенную и усредненную оценки для лиц, не имеющих особой физической нагрузки и проживающих в условиях умеренного климата.

Так как теплопроводность воздуха мала, то этот вид теплоотдачи очень незначителен.

Более существенна конвекция, она может быть не только обычной, естественной, но и вынужденной, при которой воздух обдувает нагретое тело. Большую роль для уменьшения конвекции играет одежда. В условиях умеренного климата 15-20% теплоотдачи человека осуществляется конвекцией.

Испарение происходит с поверхности кожи и легких, при этом имеет место около 30% теплопотерь.

Наибольшая доля теплопотерь (около 50%) приходится на излучение во внешнюю среду открытых частей тела и одежды. Основная часть это-

го излучения относится к инфракрасному диапазону с длиной волны от 4 до 50 мкм.

Для вычисления этих потерь сделаем два основных допущения.

1. Излучаемые тела (кожа человека, ткань одежды) примем за серые. Это позволит использовать формулу (27.12).

Назовем произведение коэффициента поглощения на постоянную Стефана-Больцмана приведенным коэффициентом излучения: δ = ασ. Тогда (27.12) перепишется так:

Ниже даны коэффициент поглощения и приведенный коэффициент излучения для некоторых тел (табл. 27.1).

Таблица 27.1

2. Применим закон Стефана-Больцмана к неравновесному излучению, к которому, в частности, относится излучение тела человека.

Если раздетый человек, поверхность тела которого имеет температуру т 1 , находится в комнате с температурой т 0 , то его потери излучением могут быть вычислены следующим образом. В соответствии с формулой (27.15) человек излучает со всей открытой поверхности тела площади s мощность p 1 = Sδ t] 4 . Одновременно человек поглощает часть излучения, попадающего от предметов комнаты, стен, потолка и т.п. Если бы поверхность тела человека имела температуру, равную температуре воздуха в комнате, то излучаемая и поглощаемая мощности были бы одинаковы и равны р 0 = Sδ t 0 4 .

Такая же мощность будет поглощаться телом человека и при других температурах поверхности тела.

На основании двух последних равенств получаем мощность, теряемую человеком при взаимодействии с окружающей средой посредством излучения:

Для одетого человека под Т 1 следует понимать температуру поверхности одежды. Приведем количественный пример, поясняющий роль одежды.

При температуре окружающей среды 18° С (291 К) раздетый человек, температура поверхности кожи которого 33°С (306 К), теряет ежесекундно посредством излучения с площади 1,5 м 2 энергию:

Р = 1,5 ? 5,1 ? 10-8 (3064 - 2914) Дж/с и 122 Дж/с.

При той же температуре окружающей среды в хлопчатобумажной одежде, температура поверхности которой 24 °С (297 К), ежесекундно теряется посредством излучения энергия:

Р од = 1,5 ? 4,2 ? 10-8 (2974 - 2914) Дж/с и 37 Дж/с.

Максимум спектральной плотности энергетической светимости тела человека в соответствии с законом Вина попадает на длину волны приблизительно 9,5 мкм при температуре поверхности кожи 32°С.

Вследствие сильной температурной зависимости энергетической светимости (четвертая степень термодинамической температуры) даже небольшое повышение температуры поверхности может вызвать такое изменение излучаемой мощности, которое надежно зафиксируется приборами. Поясним это количественно.

Продифференцируем уравнение (27.15): dR e = 4σ 7 3 ? dΤ. Разделив это выражение на (27.15), получим dR e /R e = 4dT/T. Это означает, что относительное изменение энергетической светимости больше относительного изменения температуры излучающей поверхности в четыре раза. Так, если температура поверхности тела человека изменится на 3 °С, т.е. приблизительно на 1%, то энергетическая светимость изменится на 4%.

У здоровых людей распределение температуры по различным точкам поверхности тела достаточно характерно. Однако воспалительные процессы, опухоли могут изменить местную температуру.

Температура вен зависит от состояния кровообращения, а также от охлаждения или нагревания конечностей. Таким образом, регистрация излучения разных участков поверхности тела человека и определение их температуры являются диагностическим методом.

Такой метод, называемый термографией, находит все более широкое применение в клинической практике.

Термография абсолютно безвредна и в перспективе может стать методом массового профилактического обследования населения.

Определение различия температуры поверхности тела при термографии в основном осуществляется двумя методами. В одном случае используются жидкокристаллические индикаторы, оптические свойства которых очень чувствительны к небольшим изменениям температуры. Помещая эти индикаторы на тело больного, можно визуально по изменению их цвета определить местное различие температуры.

Другой метод - технический, он основан на использовании тепловизоров (см. 27.8).

27.6. ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ И ЕГО ПРИМЕНЕНИЕ В МЕДИЦИНЕ

Электромагнитное излучение, занимающее спектральную область между красной границей видимого света = 0,76 мкм) и коротковолновым радиоизлучением = (1-2) мм], называют инфракрасным (ИК).

Инфракрасную область спектра условно разделяют на близкую (0,76-2,5 мкм), среднюю (2,5-50 мкм) и далекую (50-2000 мкм).

Нагретые твердые и жидкие тела испускают непрерывный инфракрасный спектр. Если в законе Вина вместо λ Μαχ подставить пределы ИК-излучения, то получим соответственно температуры 3800-1,5 К. Это означает, что все жидкие и твердые тела в обычных условиях практически не только являются источниками ИК-излучения, но и имеют максимальное излучение в ИК-области спектра. Отклонение реальных тел от серых не изменяет существа вывода.

При невысокой температуре энергетическая светимость тел мала. Поэтому далеко не все тела могут быть использованы в качестве источников ИК-излучения. В связи с этим наряду с тепловыми источниками ИК-излучения используют еще ртутные лампы высокого давления и лазеры, которые уже не дают сплошного спектра. Мощным источником ИК-излучения является Солнце, около 50% его излучения лежит в ИК-об-ласти спектра.

Методы обнаружения и измерения ИК-излучения делят в основном на две группы: тепловые и фотоэлектрические. Примером теплового приемника служит термоэлемент, нагревание которого вызывает электрический ток (см. 15.6). К фотоэлектрическим приемникам относят фотоэлементы, электронно-оптические преобразователи, фотосопротивления (см. 27.8).

Обнаружить и зарегистрировать инфракрасное излучение можно также фотопластинками и фотопленками со специальным покрытием.

Лечебное применение инфракрасного излучения основано на его тепловом действии. Наибольший эффект достигается коротковолновым ИК-излучением, близким к видимому свету. Для лечения используют специальные лампы (см. 27.4).

Инфракрасное излучение проникает в тело на глубину около 20 мм, поэтому в большей степени прогреваются поверхностные слои. Терапевтический эффект как раз и обусловлен возникающим температурным градиентом, что активизирует деятельность терморегулирующей системы. Усиление кровоснабжения облученного места приводит к благоприятным лечебным последствиям.

27.7. УЛЬТРАФИОЛЕТОВОЕ ИЗЛУЧЕНИЕ И ЕГО ПРИМЕНЕНИЕ В МЕДИЦИНЕ

Электромагнитное излучение, занимающее спектральную область между фиолетовой границей видимого света (λ = 400 нм) и длинноволновой частью рентгеновского излучения (λ = 10 нм), называют ультрафиолетовым (УФ).

В области ниже 200 нм УФ-излучение сильно поглощается всеми телами, в том числе и тонкими слоями воздуха, поэтому особого интереса для медицины не представляет.

Остальную часть УФ-спектра условно делят на три области: А (400315 нм), В (315-280 нм) и С (280-200 нм).

Накаленные твердые тела при высокой температуре излучают заметную долю УФ-излучения. Однако максимум спектральной плотности энергетической светимости в соответствии с законом Вина даже для наиболее длинной волны (0,4 мкм) приходится на 7000 К. Практически это означает, что в обычных условиях тепловое излучение серых тел не может служить эффективным источником мощного УФ-излучения. Наиболее мощным источником теплового УФ-излучения является Солнце, 9% излучения которого на границе земной атмосферы составляет ультрафиолетовое.

В лабораторных условиях в качестве источников УФ-излучения используют электрический разряд в газах и парах металлов. Такое излучение уже не является тепловым и имеет линейчатый спектр.

Измерение УФ-излучения в основном осуществляется фотоэлектрическими приемниками: фотоэлементами, фотоумножителями (см. 27.8). Индикаторами УФ-света являются люминесцирующие вещества и фотопластинки.

УФ-излучение необходимо для работы ультрафиолетовых микроскопов (см. 26.8), люминесцентных микроскопов, для люминесцентного анализа (см. 29.7).

Главное применение УФ-излучения в медицине связано с его специфическим биологическим воздействием, которое обусловлено фотохимическими процессами (см. 29.9).

27.8. ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ И ЕГО НЕКОТОРЫЕ ПРИМЕНЕНИЯ

Фотоэлектрическим эффектом (фотоэффектом) называют группу явлений, возникающих при взаимодействии света с веществом и заключающихся либо в эмиссии электронов (внешний фотоэффект), либо в изменении электропроводимости вещества или возникновении электродвижущей силы (внутренний фотоэффект).

В фотоэффекте проявляются корпускулярные свойства света. Данный вопрос излагается в настоящей главе, так как ряд методов индикации теплового излучения основан на этом явлении.

Внешний фотоэффект наблюдается в газах на отдельных атомах и молекулах (фотоионизация) и в конденсированных средах.

Внешний фотоэффект в металле можно представить состоящим из трех процессов: поглощение фотона электроном проводимости, в результате чего увеличивается кинетическая энергия электрона; движение электрона к поверхности тела; выход электрона из металла. Этот процесс энергетически описывают уравнением Эйнштейна:

hv = А + m υ2 /2, (27.16)

где hv = ε - энергия фотона; m υ 2 /2 - кинетическая энергия электрона, вылетевшего из металла; А - работа выхода электрона.

Если, освещая металл монохроматическим светом, уменьшать частоту излучения (увеличивать длину волны), то, начиная с некоторого ее значения, называемого красной границей, фотоэффект прекратится. Согласно (27.16), предельному случаю соответствует нулевая кинетическая энергия электрона, что приводит к соотношению:

hv rp = А, или λ гр = hc/А. (27.17)

С помощью этих выражений определяют работу выхода А.

Приведем значения красной границы фотоэффекта и работы выхода для некоторых металлов (табл. 27.2).

Таблица 27.2

Как видно, термин «красная граница» не означает, что граница фотоэффекта обязательно попадает в область красного цвета.

Внутренний фотоэффект наблюдается при освещении полупроводников и диэлектриков, если энергия фотона достаточна для переброса электрона из валентной зоны в зону проводимости. В примесных полупроводниках фотоэффект обнаруживается также в том случае, если энергия электрона достаточна для переброса электронов в зону проводимости с донорных примесных уровней или из валентной зоны на акцепторные примесные уровни. Так в полупроводниках и диэлектриках возникает фотоэлектропроводимость.

Интересная разновидность внутреннего фотоэффекта наблюдается в контакте электронного и дырочного полупроводников. В этом случае под действием света возникают электроны и дырки, которые разделяются электрическим полем p- и-перехода: электроны перемещаются в полупроводник типа и, а дырки - в полупроводник типа р. При этом между дырочным и электронным полупроводниками изменяется контактная разность потенциалов по сравнению с равновесной, т.е. возникает фотоэлектродвижущая сила. Такую форму внутреннего фотоэффекта называют вентильным фотоэффектом.

Он может быть использован для непосредственного преобразования энергии электромагнитного излучения в энергию электрического тока.

Электровакуумные или полупроводниковые приборы, принцип работы которых основан на фотоэффекте, называют фотоэлектронными. Рассмотрим устройство некоторых из них.

Наиболее распространенным фотоэлектронным прибором является фотоэлемент. Фотоэлемент, основанный на внешнем фотоэффекте (рис. 27.6, а), состоит из источника электронов - фотокатода К, на который попадает свет, и анода А. Вся система заключена в стеклянный баллон, из которого откачан воздух. Фотокатод, представляющий фоточувствительный слой, может быть непосредственно нанесен на часть внут-

ренней поверхности баллона (рис, 27.6, б). На рис. 27.6, в дана схема включения фотокатода в цепь.

Для вакуумных фотоэлементов рабочим режимом является режим насыщения, которому соответствуют горизонтальные участки вольт-амперных характеристик, полученных при разных значениях светового потока (рис. 27.7; Ф 2 > Ф 1).

Основной параметр фотоэлемента - его чувствительность, выражаемая отношением силы фототока к соответствующему световому потоку. Эта величина в вакуумных фотоэлементах достигает значения порядка 100 мкА/лм.

Для увеличения силы фототока применяют также газонаполненные фотоэлементы, в которых возникает несамостоятельный темный разряд в инертном газе, и вторичную электронную эмиссию - испускание электронов, происходящее в результате бомбардировки поверхности металла пучком первичных электронов. Последнее находит применение в фотоэлектронных умножителях (ФЭУ).

Схема ФЭУ приведена на рис. 27.8. Падающие на фотокатод К фотоны эмиттируют электроны, которые фокусируются на первом электроде (диноде) Э 1 . В результате вторичной электронной эмиссии с этого дино-да вылетает больше электронов, чем падает на него, т.е. происходит как бы умножение электронов. Умножаясь на следующих динодах, электроны в итоге образуют усиленный в сотни тысяч раз ток по сравнению с первичным фототоком.


ФЭУ применяют главным образом для измерения малых лучистых потоков, в частности ими регистрируют сверхслабую биолюминесценцию, что важно при некоторых биофизических исследованиях.

На внешнем фотоэффекте осно-ванаработа электронно-оптического

преобразователя (ЭОП), предназначенного для преобразования изображения из одной области спектра в другую, а также для усиления яркости изображений.

Схема простейшего ЭОП приведена на рис. 27.9. Световое изображение объекта 1, спроецированное на полупрозрачный фотокатод К, преобразуется в электронное изображение 2. Ускоренные и сфокусированные электрическим полем электродов Э электроны попадают на люминесцентный экран L. Здесь электронное изображение благодаря катодолюминесценции вновь преобразуется в световое 3.

В медицине ЭОП применяют для усиления яркости рентгеновского изображения (см. 31.4), это позволяет значительно уменьшить дозу облучения человека. Если сигнал с ЭОП подать в виде развертки на телевизионную систему, то на экране телевизора можно получить «тепловое» изображение предметов. Части тела, имеющие разные температуры, различаются на экране либо цветом при цветном изображении, либо яркостью, если изображение черно-белое. Такая техническая система,



называемая тепловизором, она используется в термографии (см. 27.5). На рис. 27.10 дан внешний вид тепловизора ТВ-03.

Вентильные фотоэлементы имеют преимущество перед вакуумными, так как работают без источника тока.

Один из таких фотоэлементов - медно-закисный - представлен на схеме рис. 27.11. Медная пластинка, служащая одним из электродов, покрывается тонким слоем закиси меди Си 2 О (полупроводник). На закись меди наносится прозрачный слой металла (например, золото Аи), который служит вторым электродом. Если фотоэлемент осветить через второй электрод, то между электродами возникнет фото-э.д.с., а при замыкании электродов в электрической цепи пойдет ток, зависящий от светового потока. Чувствительность вентильных фотоэлементов достигает нескольких тысяч микроампер на люмен.

На основе высокоэффективных вентильных фотоэлементов с к.п.д., равным 15% для солнечного излучения, создают специальные солнечные батареи для питания бортовой аппаратуры спутников и космических кораблей.

Зависимость силы фототока от освещенности (светового потока) позволяет использовать фотоэлементы как люксметры, что находит применение в санитарно-гигиенической практике и при фотографировании для определения экспозиции (в экспонометрах).

Некоторые вентильные фотоэлементы (сернисто-таллиевый, германиевый и др.) чувствительны к инфракрасному излучению, их применяют для обнаружения нагретых невидимых тел, т.е. как бы расширяют возможности зрения. Другие фотоэлементы (селеновые) имеют спектральную чувствительность, близкую к человеческому глазу, это открывает возможности использования их в автоматических системах и приборах вместо глаза как объективных приемников видимого диапазона света.

На явлении фотопроводимости основаны приборы, называемые фото-сопротивлениями. Простейшее фотосопротивление (рис. 27.12)

представляет собой тонкий слой полупроводника 1 с металлическими электродами 2; 3 - изолятор.

Фотосопротивления, как и фотоэлементы, позволяют определять некоторые световые характеристики и используются в автоматических системах и измерительной аппаратуре.

27.9. СВЕТОВОЙ ЭТАЛОН. НЕКОТОРЫЕ СВЕТОВЫЕ ВЕЛИЧИНЫ

Тепловое излучение тел широко используют как источник видимого света, поэтому остановимся еще на некоторых величинах, характеризующих его.

Для воспроизведения с наивысшей достижимой точностью единиц световых величин применяют световой эталон со строго заданными геометрическими размерами.

Устройство его схематически показано на рис. 27.13: 1 - трубка из плавленного оксида тория вставлена в тигель 2, состоящий из плавленного оксида тория и заполненный химически чистой платиной 3; 4 - кварцевый сосуд с порошком оксида тория 5; 6 - смотровое окно; 7 - фотометрическая установка, позволяющая уравнивать освещенности, создаваемые на пластине 9, эталонным излучателем и эталоном-копией; 8 - специальная электрическая лампа накаливания (эталон-копия).

Сила света i - характеристика источника света - выражается в кан-делах (кд). Кандела - сила света, испускаемого с поверхности площадью 1/600 000 м 2 полного излучателя в перпендикулярном направлении при температуре излучателя, равной температуре затвердевания платины при давлении 101 325 Па.

Световым потоком Ф называют среднюю мощность энергии излучения, оцениваемую по световому ощущению, которое она производит.

Единицей светового потока является люмен (лм). Люмен - световой поток, излучаемый точечным источником в телесном угле 1 ср при силе света 1 кд.

Светимостью называют величину, равную отношению светового потока, испускаемого светящейся поверхностью, к площади этой поверхности:

Единицей светимости является люкс (лк) - освещенность поверхности площадью 1 м 2 при световом потоке падающего на нее излучения, равном 1 лм.

Для оценки излучения или отражения света в заданном направлении вводят световую величину, называемую яркостью. Яркость определяют как отношение силы света dI элементарной поверхности dS в заданном направлении к проекции светящейся поверхности на плоскость, перпендикулярную этому направлению:

где α - угол между перпендикуляром к светящейся поверхности и заданным направлением (рис. 27.14).

Единица яркости - кандела на квадратный метр (кд/м 2). Световой эталон при сформулированных выше условиях соответствует яркости 6 ? 10 5 кд/м 2 .

Источники, яркость которых одинакова по всем направлениям, называют ламбертовскими; строго говоря, таким источником является только черное тело.

Освещенностью называют величину,равную отношению потока, падающего на данную поверхность, к площади этой поверхности:

В гигиене освещенность используется для оценки освещения. Измеряется освещенность люксметрами, принцип действия которых основан на фотоэффекте (см. 27.8).

Оценку и нормирование естественного освещения производят не в абсолютных единицах, а в относительных показателях коэффициента естественной освещенности - отношение естественной освещенности в рассматриваемой точке внутри помещения к одновременному значению наружной освещенности на горизонтальной поверхности под открытым небом без прямого солнечного света.

Оценка искусственного освещения производится путем измерения освещенности и яркости, а нормирование уровней искусственного освещения - с учетом характера зрительной работы. Пределы допускаемой освещенности для разных работ колеблются от сотни до нескольких тысяч люкс.

Спектральный состав излучения отдельных возбужденных атомов представляет собой набор сравнительно узких линий. Это значит, что излучаемый разреженными газами или парами свет концентрируется в узких спектральных интервалах вблизи определенных частот, характерных для атомов каждого сорта.

Тепловое излучение. Совсем иной вид имеет спектр излучения твердых и жидких тел, нагретых до высокой температуры. В этом излучении, называемом тепловым, присутствуют электромагнитные волны всех частот из очень широкого диапазона, т. е. его спектр является сплошным.

Чтобы получить представление о характере теплового излучения, рассмотрим несколько тел, нагретых до различной температуры и помещенных в замкнутую полость, внутренние стенки которой полностью отражают падающее на них излучение. Опыт показывает, что такая система, в соответствии с положениями термодинамики, рано или поздно приходит в состояние теплового равновесия, при котором все тела приобретают одинаковую температуру. Так происходит и в том случае, если внутри полости будет абсолютный вакуум и тела могут обмениваться энергией только путем

излучения и поглощения электромагнитных волн. Это позволяет применить при изучении такой системы законы термодинамики.

В равновесии все тела в единицу времени поглощают столько же энергии электромагнитных волн, сколько излучают, а плотность энергии излучения, заполняющего полость, достигает некоторой определенной величины, соответствующей установившейся температуре. Такое излучение, находящееся в термодинамическом равновесии с телами, имеющими определенную температуру, называется равновесным или черным излучением. Не только плотность энергии, т. е. полная энергия единицы объема, но и спектральный состав равновесного излучения, заполняющего полость, зависит только от температуры и совершенно не зависит от свойств тел, находящихся в полости.

Спектральный состав теплового излучения. Универсальный характер спектрального состава равновесного излучения, как впервые показал Кирхгоф еще в 1860 г., непосредственно следует из второго закона термодинамики. В самом деле, предположим противное, т. е. что спектральный состав зависит от природы тела, с которым излучение находится в равновесии. Возьмем две полости, в которых излучение находится в равновесии с разными телами, имеющими, однако, одинаковую температуру. Соединим полости небольшим отверстием так, чтобы они могли обмениваться излучением. Если плотности энергии излучения в них различны, то возникает направленный перенос лучистой энергии, который приведет к самопроизвольному нарушению теплового равновесия между телами, т. е. к возникновению некоторой разности температур. Это противоречит второму закону термодинамики.

Для экспериментального изучения спектрального состава равновесного излучения можно проделать небольшое отверстие в окружающей полость оболочке. Излучение, выходящее наружу через отверстие, хотя и не является равновесным, обладает тем не менее в точности таким же спектральным составом, что и заполняющее полость равновесное излучение. Выходящее из отверстия излучение отличается от равновесного только тем, что оно не является изотропным, так как распространяется в определенном направлении.

Если увеличить температуру в полости, то будет возрастать уносимая выходящим из отверстия излучением энергия. Это означает, что объемная плотность энергии равновесного излучения растет с температурой. Этот рост происходит очень быстро, как мы увидим ниже, пропорционально четвертой степени термодинамической температуры. С увеличением температуры изменяется и спектральный состав излучения, причем таким образом, что максимум смещается в область более коротких волн: выходящий из отверстия в горячей печи свет имеет красноватый оттенок при сравнительно невысокой температуре и становится желтым и даже белым по мере ее роста.

Что можно увидеть, заглянув через отверстие внутрь полости, в которой излучение находится в равновесии с телами? Так как

свойства выходящего из отверстия излучения при тепловом равновесии не зависят от природы находящихся внутри полости тел, то излучение не может нести никакой информации об этих телах, кроме их температуры. И действительно, заглянув внутрь печи, мы не увидим ни предметов на фоне стенок полости, ни самих стенок, хотя в глаз будет попадать много света. Контуры предметов внутри полости не будут видны, все будет представляться одинаково светлым.

Возможность различать предметы появляется только при использовании неравновесного излучения. Если даже это излучение исходит от раскаленных тел и его спектральный состав близок к равновесному, температура излучающей поверхности должна быть выше температуры освещаемых предметов.

Все наблюдаемые на опыте закономерности черного излучения описываются формулой Планка, полученной на основе отказа о непрерывном характере процесса излучения.

Рис. 96. Распределение энергии по частотам в спектре равновесного излучения (а) и спектральная плотность равновесного излучения при разных температурах (б)

Даваемое формулой Планка распределение энергии по частотам в спектре равновесного излучения

показано на рис. 96а. На рис. 96б показана спектральная плотность равновесного излучения как функция длины волны при нескольких температурах.

Излучение как газ фотонов. Равновесное тепловое излучение можно рассматривать как газ, состоящий из фотонов. Фотонный газ является идеальным, так как разные электромагнитные волны в вакууме не взаимодействуют друг с другом. Поэтому установление теплового равновесия в фотонном газе возможно только при его взаимодействии с веществом.

Механизм установления теплового равновесия заключается в поглощении одних и испускании других фотонов веществом.

Возможность поглощения и испускания фотонов приводит к характерной особенности фотонного газа: число частиц в нем не является постоянным, а само определяется из условия термодинамического равновесия.

Представление о фотонном газе позволяет очень просто найти зависимость плотности энергии равновесного излучения от термодинамической температуры Т. Это можно сделать, воспользовавшись соображениями размерности. Энергию единицы объема излучения можно представить в виде произведения среднего числа фотонов в единице объема равномерно заполняющих полость, на среднюю энергию одного фотона

Величины, от которых может зависеть средняя энергия фотона и число фотонов в единице объема равновесного излучения, - это термодинамическая температура Т, постоянная Больцмана к, скорость света с и постоянная Планка Поскольку равновесное излучение в полости не зависит ни от размеров и формы полости, ни от природы тел, находящихся в полости, ни от вещества ее стенок, то такие параметры, как размеры тел и полости, и такие константы, как заряды и массы электронов и ядер, не могут фигурировать в выражениях для

Зависимость плотности энергии от температуры. Средняя энергия фотона теплового излучения по порядку величины равна Размерность числа фотонов в единице объема есть Из величин можно составить единственную комбинацию, имеющую размерность длины: это Поэтому концентрация фотонов пропорциональна величине Подставляя это выражение в (1), можем написать

где - некоторый безразмерный множитель.

Формула (2) показывает, что объемная плотность энергии равновесного излучения пропорциональна четвертой степени температуры в полости. Такой быстрый рост плотности энергии с температурой обусловлен не столько ростом средней энергии фотонов (которая пропорциональна Т), сколько увеличением числа фотонов в полости, которое пропорционально кубу температуры.

Если в стенке полости имеется небольшое отверстие, то поток энергии излучения у через единицу площади отверстия пропорционален произведению плотности энергии в полости на скорость света с:

где а - носит название постоянной Стефана-Больцмана. Точный расчет, основанный на применении статистической механики к фотонному газу, дает для нее значение, равное

Таким образом, полная интенсивность излучения из отверстия пропорциональна четвертой степени термодинамической температуры в полости.

Излучение с поверхности нагретых тел отличается от излучения из отверстия в стенке полости. Интенсивность и спектральный состав этого излучения зависят не только от температуры, но и от свойств излучающего тела. Но во многих случаях при оценках можно считать, что эти отличия невелики.

Температура поверхности Земли. В качестве примера применения закона теплового излучения (3) рассмотрим вопрос о средней температуре земной поверхности. Будем считать, что тепловой баланс Земли определяется главным образом поглощением энергии солнечного излучения и излучением энергии в пространство, а роль процессов, идущих внутри Земли, невелика. Полный поток энергии, излучаемой Солнцем, в соответствии с (3) равен - температура поверхности Солнца, - его радиус. Будем считать, что вся энергия солнечного излучения, падающая на Землю, поглощается. С помощью рис. 97 легко понять, что количество поглощаемой Землей в единицу времени энергии равно

В заключение отметим, что спектр излучения нагретых тел является настолько широким, что коэффициент полезного действия ламп накаливания и других осветительных приборов, основанных на излучении раскаленных тел, совершенно ничтожен. Область видимого света соответствует лишь узкой полосе в спектре теплового излучения.

Почему плотность энергии и спектральный состав равновесного излучения, заполняющего полость, зависят только от температуры? Почему эти величины не могут зависеть от свойств тел, находящихся в полости, и от материала ее стенок?

Почему выходящее наружу из отверстия в полости излучение, не являясь равновесным, имеет тем не менее тот же спектральный состав, что и равновесное излучение внутри полости? Ведь молекулы газа, вылетающие наружу через отверстие в стенке сосуда, в среднем имеют большую энергию, чем молекулы в сосуде.

Почему, заглянув через отверстие внутрь раскаленной печи, мы не увидим четких контуров находящихся там предметов?

Почему излучение в полости, т. е. совокупность находящихся там фотонов, можно рассматривать как идеальный газ?

Почему для установления термодинамического равновесия в газе фотонов необходимо взаимодействие фотонов с веществом?

Как концентрация фотонов в равновесном излучении зависит от температуры?

Как с помощью соображений размерности показать, что испускаемая телом энергия теплового излучения пропорциональна четвертой степени термодинамической температуры тела?

Если вся приходящая на Землю от Солнца энергия в конечном счете излучается в пространство, то какой смысл имеет утверждение, что Солнце дарует жизнь всему сущему на Земле?