Зависимость электропроводности металлов от температуры. Температурная зависимость электропроводности полупроводников

Зонная структура полупроводников такова, что при низких температурах у них разрешенная зона валентных электронов полностью заполнена электронами, а ближайшая свободная зона проводимости отделена от нее запрещенной зоной некоторой величины и пуста. Перевод электрона в зону проводимости может быть осуществлен за счет энергии теплового движения, света или корпускулярного излучения. Если электрон каким-либо способом переведен в зону проводимости, то он может осуществлять перенос заряда. После переброски электронов в валентной зоне остаются пустые места – незаполненные состояния электронов, в результате чего остальные электроны получают возможность перемещаться под действием электрического поля, т.е. также вносят вклад в ток. При описании такого движения электронов удобнее рассматривать движение не самих электронов, а пустых мест, называемых дырками. Дырки ведут себя как положительные носители тока с зарядом +е, равным по абсолютной величине заряду электрона и отличающимся от него знаком. Если дырки образуются за счет переброса электронов из валентной зоны в зону проводимости, то число электронов в полупроводнике равно числу дырок. Такой полупроводник называется собственным (рис. 2.4, а).

Рис. 2.4. Энергетические диаграммы полупроводника:

а) собственный; б) электронный; в) дырочный;

Е С – дно зоны проводимости; E V –потолок запрещенной зоны; Е д – донорный уровень, Е а – акцепторный уровень

Однако в любом кристалле имеются различные дефекты – чужеродные атомы, пустые узлы – вакансии, дислокации и т.п. Локализованный вблизи дефекта электрон имеет энергию, попадающую как раз в запрещенную зону, в результате чего в запрещенной зоне образуется примесный уровень. Если такой уровень лежит недалеко от зоны проводимости, то уже при небольшом повышении температуры электроны будут переходить с уровней в зону, в результате чего они получают возможность двигаться по кристаллу.

Полупроводник, у которого электроны в зоне образуются вследствие их перехода с примесных уровней, называется примесным электронным полупроводником (рис. 2.4, б). В полупроводнике могут быть локальные уровни, которые в нормальном состоянии не заняты электронами. Если такие уровни находятся близко от края валентной зоны, то при повышении температуры электроны валентной зоны могут захватываться ими, вследствие чего в валентной зоне образуются подвижные дырки. Полупроводник с таким типом примесной проводимости – дырочный полупроводник (рис. 2.4, в).

Таким образом, носителями тока в полупроводнике являются электроны в зоне проводимости и дырки в валентной зоне, а электропроводность полупроводника может быть выражена следующим образом:


где , – подвижности носителей заряда;

n , p – концентрации электронов и дырок соответственно;

e – заряд электрона.

Таким образом, для нахождения зависимости электропроводности от температуры необходимо выяснить, как меняются концентрации носителей тока и их подвижность с изменением температуры.

Электроны проводимости в полупроводниках подчиняются функции распределения Ферми-Дирака:

которая выражает вероятность того, что электрон находится в квантовом состоянии с энергией Е при температуре Т . Здесь E F – энергия Ферми, k – постоянная Больцмана.

Электропроводность собственного полупроводника определяется электронами в зоне проводимости. Их концентрация может быть определена числом всех занятых электронами состояний n (E ) в зоне проводимости:

где g (E ) – плотность квантовых состояний;

f (E ) – функция Ферми-Дирака;

E c – уровень энергии, соответствующий дну зоны проводимости.

Окончательное выражение для температурной зависимости концентрации электронов в зоне проводимости собственного полупроводника имеет вид:

где N V , N C – эффективная плотность состояний в валентной зоне, зоне проводимости.

Теперь рассмотрим влияние температуры на подвижность носителей заряда. Известно, что величина подвижности определяется длиной свободного пробега электронов, т.е. процессами рассеяния носителей заряда в полупроводнике:

где – средняя длина свободного пробега электрона;

– средняя скорость теплового движения;

m * – эффективная масса носителя;

В – некоторый коэффициент;

ζ – принимает значения 1/2, 3/2, 5/2 в зависимости от типа кристаллической решетки.

Общий ход изменения проводимости с температурой можно записать в виде:

В этом выражении множитель медленно изменяется с температурой, тогда как экспонента сильно зависит от температуры, E g >>kT . Поэтому для не слишком высоких температур и выражение (2.6) можно заменить более простым

Если уравнение (2.7) построить графически в координатах ln σ от Т -1 .

то ширина запрещенной зоны E g может быть определена из наклона этой линейной зависимости (рис. 2.5, а).

Рис. 2.5. Графики электропроводности полупроводника:

а – собственная электропроводность; б – примесная электропроводность

При наличии в полупроводниках примесей к собственной проводимости добавляется примесная проводимость, и тогда электропроводимость σ можно представить как сумму собственной и примесной проводимостей:

где ΔE – энергия ионизации примеси.

Обычно ширина запрещенной зоны много больше энергии ионизации примеси, т.е. E g >>ΔE . Значит, в области низких температур мало количество электронов, освобождаемых атомами решетки. Поэтому при низких температурах электропроводность примесного полупроводника будет в основном обусловлена электронами примеси. При достаточно высокой температуре практически все атомы будут ионизированы, и действительное возрастание проводимости будет происходить лишь за счет собственных электронов полупроводника. Идеальный график для примесного полупроводника (рис. 2.5, б) изображается ломаной линией, имеющей два прямолинейных участка, отвечающих электропроводности основной решетки и примеси.

Таким образом, по наклону прямых можно определить ширину запрещенной зоны E g и энергию ионизации примесей. Действительно, тангенс угла наклона прямой (рис. 2.5)

Аналогично определяется ΔE .

Реальный график зависимости ln σ =f(T -1) имеет более сложный характер, поэтому угол наклона лучше отсчитывать по касательным, проведенным к графику в область низких и высоких температур.

Поскольку электроны и дырки в полупроводнике представляют собой невырожденную систему, то его проводимость можно рассматривать с классической точки зрения. Выражение для плотности тока в скалярном виде записывается как

где n и p – концентрации электронов и дырок, u n и u p – их дрейфовые скорости. При не слишком высоких значениях напряженности поля эти скорости пропорциональны ее величине.

Здесь b n и b p – подвижности электронов и дырок соответственно.

Для проводимости металлов в классической теории была получена формула , где в знаменателе стоит масса свободного электрона. С другой стороны из (8) и (9) можно получить проводимость в виде . Приравнивая эти выражения для проводимости, получим

, (10)

где время свободного пробега τ выражено через среднюю длину свободного пробега и среднюю квадратическую скорость теплового движения электронов υ. Выражение (10) справедливо для электронов и дырок в полупроводнике, если под массой подразумевать их эффективные массы.

В области высоких температур рассеяние носителей происходит преимущественно на тепловых колебаниях решетки, т.е. фононах. Длина пробега носителей обратно пропорциональна температуре . Кроме того тепловая скорость электронов υ пропорциональна корню из температуры . Тогда подвижность .

При низких температурах рассеяние носителей происходит в основном на ионизированных примесных атомах. Этот процесс похож на рассеяние частиц на ядрах, подробно изученное Э. Резерфордом. Заряженная частица, пролетая мимо ядра, отклоняется от первоначального направления движения так, что траектория имеет вид гиперболы. Длина свободного пробега пропорциональна четвертой степени скорости . Кроме того, длина свободного пробега обратно пропорциональна концентрации примесей N , поскольку чем больше примесных ионов, тем чаще носитель взаимодействует с ними. Тогда подвижность пропорциональна температуре в степени 3/2. .

Как было показано выше. удельная проводимость может быть записана в виде . Зависимость этой величины от температуры обусловлена соответствующими зависимостями концентрации носителей и их подвижностей. Зависимость подвижностей при всех температурах является степенной. В тех температурных интервалах, когда концентрация носителей имеет экспоненциальную зависимость от температуры, именно она определяет результирующую зависимость проводимости от температуры.

Концентрации электронов и дырок в собственном полупроводнике имеют выражение:

, (11)

Если полупроводник легирован примесями иной валентности, то концентрации электронов и дырок в электронном и дырочном полупроводниках даются выражениями:

, (12)

. (13)

Здесь E d и N d – энергия активации примеси (разность энергии дна зоны проводимости и донорного уровня) и концентрация донорных примесных атомов соответственно, E g – ширина запрещенной зоны. Эффективные массы электронов и дырок обозначаются как m n и m p .

Из всего сказанного можно сделать вывод, что зависимость удельной проводимости от температуры имеет характер

(14)

при низких температурах, когда осуществляется ионизация примесей, либо

(15)

при высоких температурах, когда интенсивно генерируются собственные носители.

Энергии активации определяются по наклону прямолинейного участка графика зависимости от обратной температуры T –1 . Это либо расстояние от примесного уровня до границы зоны, либо ширина запрещенной зоны.

Собственная проводимость имеет место в хорошо очищенных полупроводниках, когда примеси не оказывает влияния на электрические свойства. При абсолютном нуле температуры валентная зона полностью заполнена электронами, в зоне проводимости все уровни свободны и электропроводность отсутствует. При повышении температуры начинается тепловая генерация свободных носителей заряда. Электроны, получая от тепловых колебаний решетки энергию достаточную для преодоления запрещенной зоны шириной , перебрасываются из валентной зоны проводимости (рисунок 72.2), образуя в валентной зоне равное количество дырок. Переходы происходят при любой температуре .

Тепловая генерация носителей заряда в собственном полупроводнике.

W C

W c – дно зоны проводимости; W V – потолок валентной зоны; ∆W – ширина запрещенной зоны; , ○ – электрон и дырка

Рисунок 72.2

Объяснение переходов при связано со статическим распределением энергии между атомами тела (энергия тепловых колебаний отдельных атомов в течение некоторых промежутков времени может быть и больше ее среднего значения). Наряду с возбуждением носителей происходят и обратные процессы их рекомбинации, заключающиеся в возвращении электронов из зоны проводимости в валентную зону. При этом исчезают пары «электрон-дырка». Процесс генерации свободных носителей зарядов уравновешиваются процессом рекомбинации, и при каждой установившейся температуре кристалл находится в состоянии термодинамического равновесия, имея концентрацию носителей заряда, соответствующей данной температуре. Статистический расчет показывает, что концентрация электронов n, а, следовательно, и концентрация дырок p, быстро растут с повышением температуры по экспоненциальному закону

где А – постоянная, характерная для данного полупроводника, в первом приближении не зависящая от температуры; е – основание натурального логарифма; k – постоянная Больцмана; Т – абсолютная температура.

Например, в чистом кремнии, такая зависимость обеспечивает рост концентрации электронов от при нагреве от комнатной температуры до температуры электронов .

В собственном полупроводнике удельная электропроводность:

где е – заряд электрона; – подвижность электронов; – подвижность электронов.

Подвижность носителей заряда, представляющая собой скорость дрейфа их в электрическом поле единичной напряженности, в полупроводниках также зависит от температуры. Наиболее часто в области низких температур подвижность растет вследствие рассеяния на примесях, в области высоких температур, где преобладает рассеяние на тепловых колебаниях решетки – убывает с ростом Т. Типичный график зависимости приведен на рисунке 72.3. Однако температурная зависимость концентрации носителей заряда в полупроводниках обычно намного более сильная, чем зависимость подвижности от температуры. Поэтому температурной зависимостью подвижности можно пренебречь и считать, что изменение электропроводимости с температурной определяются только изменением концентрации носителей заряда. Из формул (1) и (2) для зависимости удельной электропроводности от температуры следует выражение

где – коэффициент, характерный для данного полупроводникового материала и представляющего собой при .

Рисунок 72.3

Зависимость удобно изображать в полулогарифмическом масштабе. Действительно

это выражение в координатах и дает прямую, наклон которой определяется величиной W. Графики и для собственного полупроводника даны на рисунок 72.4.


Рисунок 72.4

Сопротивление R образца длиной и площадью поперечного сечения S выражается через удельное сопротивление :

Тогда, согласно (72.3),

График для собственного полупроводника представляет собой прямую линию, наклон которой тем больше, чем шире запрещенная зона полупроводника. На рисунок 72.5 прямым 1,2,3 соответствуют полупроводники, для которых .


Рисунок 72.5

Примеси и дефекты решетки существенным образом влияют на электрические свойства полупроводников. Например, добавление в кремний бора в количестве одного атома на атомов кремния увеличивает проводимость при комнатной температуре в тысячу раз по сравнению с чистым кремнием.

Статистические расчеты показали, что концентрация основных носителей заряда (электронов в полупроводниках n-типа и дырок в полупроводниках p-типа) в области примесной проводимости также растет по экспоненциальному закону.

где – энергия ионизации примеси; и – коэффициенты, определяемые соответственно концентрациями атомов доноров и акцепторов.

Концентрации неосновных носителей заряда намного ниже, причем при любой температуре.

где – собственная концентрация носителей заряда при этой температуре в данном полупроводнике. Таким образом, чем больше n, тем меньше p и наоборот.

Ввиду более слабой зависимости подвижности от температуры, чем концентрации от температуры, и в области примесной проводимости зависимость также определяется температурным ходом концентрации

где – постоянная, определяемая полупроводниковым материалом и концентрацией примеси в нем.

Логарифмируя (72.9), получим

На рисунке 72.6 приведен график зависимости удельной электропроводности примесного полупроводника в широком диапазоне температур полулогарифмических координатах.

Температурная зависимость электропроводимости примесного полупроводника.



Рисунок 72.6

На этом графике можно выделить три участка. 1 - участок примесной проводимости, при которой концентрация основных носителей заряда растет за счет ионизации примесных уровней. Наклон прямой определяется энергией ионизации примеси. При температуре Т s все примеси оказываются ионизированными и далее до Т i концентрация основных носителей заряда сохраняются приблизительно постоянной и равной концентрации примесных атомов – участок 2. Температурная зависимость в этой области, когда , определяется температурной зависимостью подвижности. При температурах (3 участок) генерируется пары «электрон-дырка» и наклон прямой определяется шириной запрещенной зоны .

Если образцы одного и того же полупроводникового материала легированы различным количеством одинаковой примеси, то при увеличении концентрации примеси (концентрация растет с увеличением порядкового номера кривой на рисунок 72.7) значения в области примесной проводимости возрастают, истощение примеси и перехода от примесной к собственной проводимости смещаются в сторону более высоких температур. При больших концентрациях примесных атомов они остаются не полностью ионизированы вплоть до температуры, при которой начинает преобладать собственная проводимость (кривая 4).


Зависимость электропроводности полупроводников от температуры при различных содержаниях примеси.


Как мы уже видели, удельная проводимость выражается формулой

где n - концентрация носителей заряда, определяющих проводящие свойства данного тела, а u - подвижность этих носителей. Носителями заряда могут быть как электроны, так и дырки. Интересно отметить, что, хотя, как известно, у большинства металлов свободными носителями заряда являются электроны, у некоторых металлов роль свободных носителей заряда выполняют дырки. Типичными представителями металлов с дырочной проводимостью являются цинк, бериллий и некоторые другие.

Для выяснения зависимости проводимости от температуры необходимо знать температурную зависимость концентрации свободных носителей и их подвижности. В металлах концентрация свободных носителей заряда не зависит от температуры. Поэтому изменение проводимости металлов в зависимости от температуры полностью определяется температурной зависимостью подвижности носителей. В полупроводниках, напротив, концентрация носителей резко зависит от температуры, а температурные изменения подвижности практически оказываются незаметными. Однако в тех областях температур, где концентрация носителей оказывается постоянной (область истощения и область насыщения примесей), ход температурной зависимости проводимости полностью определяется температурным изменением подвижности носителей.

Значение же самой подвижности определяется процессами рассеяния носителей на различных дефектах кристаллической решетки, то есть изменением скорости направленного движения носителей при их взаимодействии с различными дефектами. Наиболее существенным является взаимодействие носителей с ионизированными атомами различных примесей и с тепловыми колебаниями решетки кристалла. В различных областях температуры процессы рассеяния, обусловленные этими взаимодействиями, сказываются по-разному.

В области низких температур, когда тепловые колебания атомов столь малы, что ими можно пренебречь, основное значение имеет рассеяние на ионизированных атомах примеси. В области же высоких температур, когда в процессе тепловых колебаний атомы решетки значительно смещаются от положения устойчивого равновесия в кристалле, на первый план выступает тепловое рассеяние.

Рассеяние на ионизированных атомах примеси . В примесных полупроводниках концентрация примесных атомов во много раз превосходит концентрацию примесей в металлах. Даже при достаточно низкой температуре большая часть примесных атомов находится в ионизированном состоянии, что представляется вполне естественным, поскольку само происхождение проводимости полупроводников связано в первую очередь с ионизацией примесей. Рассеяние носителей на ионах примеси оказывается гораздо более сильным, чем рассеяние на нейтральных атомах. Объясняется это тем, что если рассеяние носителя на нейтральном атоме происходит при непосредственном столкновении, то для рассеяния на ионизированном атоме достаточно носителю попасть в область электрического поля, создаваемого ионом (рис. 28). Когда электрон пролетает сквозь область электрического поля, создаваемого положительным ионом, траектория его полета претерпевает изменение, как показано на рисунке; при этом скорость его направленного движения υ Е, приобретенная благодаря воздействию внешнего поля, уменьшится до Если электрон проходит достаточно близко около иона, то после рассеяния направление движения электрона может оказаться вообще противоположным направлению действия внешнего электрического поля.

Рассматривая задачу о рассеянии заряженных частиц на заряженных центрах, выдающийся английский физик Э. Резерфорд пришел к выводу, что длина свободного пробега частиц пропорциональна четвертой степени их скорости:

Применение этой зависимости к рассеянию носителей в полупроводниках привело к очень интересному и, на первый взгляд, неожиданному результату: подвижность носителей в области низких температур должна с повышением температуры расти. В самом деле, подвижность носителей оказывается пропорциональной кубу скорости их движения:


В то же время средняя кинетическая энергия носителей заряда в полупроводниках пропорциональна температуре а, значит, средняя тепловая скорость пропорциональна корню квадратному из Следовательно, подвижность носителей находится в следующей зависимости от температуры:

В области низких температур, когда рассеяние на ионизированных примесях играет основную роль и когда тепловыми колебаниями атомов решетки можно пренебречь, подвижность носителей растет по мере повышения температуры пропорционально (левая ветвь кривой u(Т) на рисунке 29). Качественно такая зависимость вполне объяснима: чем больше тепловая скорость носителей, тем меньше времени находятся они в поле ионизированного атома и тем меньше искажение их траектории. Благодаря этому возрастает длина свободного пробега носителей и увеличивается их подвижность.

Рассеяние на тепловых колебаниях . С повышением температуры средняя скорость теплового движения носителей возрастает настолько, что вероятность их рассеяния на ионизированных примесях становится очень малой. Вместе с этим амплитуда тепловых колебаний атомов решетки при этом возрастает, так что на первый план выступает рассеяние носителей на тепловых колебаниях. Благодаря росту рассеяния на тепловых колебаниях уменьшается по мере нагрева полупроводника длина свободного пробега носителей и, следовательно, их подвижность.

Конкретный ход зависимости в области высоких температур для различных полупроводников неодинаков. Он определяется природой полупроводника, шириной запрещенной зоны, концентрацией примеси и некоторыми другими факторами. Однако для типичных ковалентных полупроводников, в частности для германия и кремния, при не слишком больших концентрациях примеси зависимость u(T) имеет вид:


(см. правую ветвь кривой на рисунке 29).

Итак, подвижность носителей в полупроводниках в области низких температур растет прямо пропорционально а в области высоких температур падает обратно пропорционально

Зависимость проводимости полупроводника от температуры . Зная ход температурной зависимости подвижности и концентрации носителей в полупроводниках, можно установить характер температурной зависимости проводимости полупроводников. Схематически зависимость показана на рисунке 30. Ход этой кривой очень близок к ходу кривой зависимости приведенной на рисунке 25. Поскольку зависимость концентрации носителей от температуры гораздо сильнее температурной зависимости их подвижности, то в областях примесной проводимости (участок ab) и собственной проводимости (участок cd) зависимость удельной проводимости σ(T) практически полностью определяется ходом зависимости концентрации носителей от температуры. Углы наклона этих участков графика зависят соответственно от энергии ионизации атомов донорной примеси и от ширины запрещенной зоны полупроводника. Тангенс угла наклона γ n пропорционален энергии отрыва пятого валентного электрона атома донорной примеси. Поэтому, получив экспериментально график изменения проводимости полупроводника при нагреве на примесном участке ab, можно определить значение энергии активации донорного уровня, то есть энергетическое расстояние донорного уровня W d от дна зоны проводимости (см. рис. 20). Тангенс угла наклона γ i пропорционален энергии перехода электрона из валентной зоны в зону проводимости, то есть энергии создания собственных носителей в полупроводнике. Таким образом, получив экспериментально ход зависимости проводимости от температуры на собственном участке cd, можно определить ширину запрещенной зоны W g (см. рис. 17). Величины W d и W g являются важнейшими характеристиками полупроводника.

Основное различие между зависимостями σ(T) и n(T) наблюдается на участке bc, расположенном между температурой истощения примесей T s и температурой перехода к собственной проводимости T i . Этот участок соответствует ионизированному состоянию всех примесных атомов, а для создания собственной проводимости энергия тепловых колебаний оказывается еще недостаточной. Поэтому концентрация носителей, будучи практически равной концентрации примесных атомов, не изменяется при увеличении температуры. Ход температурной зависимости проводимости на этом участке определяется ходом зависимости от температуры подвижности носителей. В большинстве случаев при умеренной концентрации примеси основным механизмом рассеяния носителей в этой области температур является рассеяние на тепловых колебаниях решетки. Этот механизм обусловливает уменьшение подвижности носителей и, следовательно, проводимости полупроводников с ростом температуры на участке bc.

В вырожденных полупроводниках благодаря большой концентрации примесей, обусловливающей перекрытие электрических полей ионов, рассеяние носителей на ионизированных атомах примеси сохраняет основное значение вплоть до высоких температур. А для этого механизма рассеяния как раз и характерно увеличение подвижности носителей с ростом температуры.

Удельная электрическая проводимость любого материала определяется концентрацией и подвижностью свободных носителей заряда, значения которых зависят от температуры.

Подвижность m свободных носителей заряда характеризует их рассеяние и определяется как коэффициент пропорциональности между дрейфовой скоростью v др и напряженностью электрического поля e: v др =m e.

Рассеяние свободных носителей заряда, т.е. изменение их скорости или направления движения, может происходить из-за наличия в реальных кристаллах полупроводников дефектов структуры (к ним относятся, например, атомы и ионы примеси), тепловых колебаний кристаллической решетки.

Установлено, что при рассеянии носителей заряда только на ионах примеси подвижность

Увеличение подвижности свободных носителей заряда с повышением температуры объясняется тем, что чем выше температура, тем больше тепловая скорость движения свободного носителя и тем меньше времени он будет находиться в кулоновском поле иона, изменяющего траекторию его движения, а значит, он будет иметь меньшее рассеяние и более высокую подвижность. По мере повышения температуры все более существенное значение приобретает рассеяние на тепловых колебаниях кристаллической решетки, которое при определенной температуре становится преобладающим.

Тепловые колебания кристаллической решетки увеличиваются с ростом температуры, растет и рассеяние носителей, а их подвижность уменьшается. Установлено, что в атомных полупроводниках при рассеянии свободных носителей заряда преимущественно на тепловых колебаниях решетки

На рис. 4.10 приведены зависимости подвижности свободных носителей заряда в полупроводнике n-типа с разной концентрацией донорной примеси. С повышением температуры при рассеянии на ионах примеси подвижность увеличивается, а затем вследствие все возрастающих колебаний кристаллической решетки и обусловленного ими рассеяния – уменьшается. Величина и положение максимума кривой m(Т -1) зависят от концентрации примеси. С ее увеличением максимум смещается в область более высоких температур, а вся кривая – вниз по оси ординат. При концентрации примеси, равной N Д3 , соответствующей вырожденному полупроводнику, подвижность уменьшается с ростом температуры аналогично тому, как это происходит в проводниковых материалах (раздел 3.8).



Рис. 4.10. Зависимости подвижности свободных электронов от температуры в полупроводнике n-типа: N Д1

При очень низких температурах, когда тепловые колебания кристаллической решетки малы, а примесные атомы слабо ионизированы, рассеяние свободных носителей в основном происходит на нейтральных атомах примеси. При таком механизме рассеяния подвижность не зависит от температуры, а определяется концентрацией примеси.

Итак, концентрация свободных носителей заряда в полупроводниках увеличивается с ростом температуры по экспоненциальному закону, а температурная зависимость подвижности имеет в общем виде характер кривой с максимумом и степенной закон изменения.

В общем случае удельная электрическая проводимость s полупроводника, в котором носителями заряда являются свободные электроны с подвижностью m n и свободные дырки с подвижностью m р, равна:

, (4.11)

где e – элементарный заряд.

Для собственного полупроводника

Учитывая, что степенная зависимость слабее экспоненциальной, можно записать:

. (4.13)

Аналогично для примесного полупроводника n-типа в области примесной проводимости:

. (4.15)

Соотношения (4.14) и (4.15) справедливы лишь до тех пор, пока не наступит полная ионизация примеси. Получив экспериментальную зависимость удельной проводимости от температуры в виде lns(T -1), можно определить ширину запрещенной зоны полупроводника и энергию ионизации примеси по соотношениям (4.13) – (4.15).

Рассмотрим экспериментальные кривые температурной зависимости удельной электрической проводимости кремния, содержащего различное количество донорной примеси (рис. 4.11).

Повышение удельной проводимости кремния с увеличением температуры в области низких температур обусловлено увеличением концентрации свободных носителей заряда – электронов за счет ионизации донорной примеси. При дальнейшем повышении температуры наступает область истощения примеси – полная ее ионизация. Собственная же электропроводность кремния заметно еще не проявляется.

В условиях истощения примеси концентрация свободных носителей заряда практически от температуры не зависит и температурная зависимость удельной проводимости полупроводника определяется зависимостью подвижности носителей от температуры. Наблюдаемое в этой области уменьшение удельной проводимости кремния с ростом температуры происходит за счет снижения подвижности при рассеянии свободных носителей заряда на тепловых колебаниях кристаллической решетки.

Рис. 4.11. Температурная зависимость удельной электрической проводимости кремния, содержащего различное количество донорной примеси N Д: 1 – 4,8×10 23 ; 2 – 2,7×10 24 ; 3 – 4,7×10 25 м -3

Однако возможен и такой случай, когда область истощения примеси оказывается в интервале температур, где основным механизмом рассеяния является рассеяние на ионах примеси. Тогда удельная проводимость полупроводника с повышением температуры будет увеличиваться: s~T 3/2 .

Резкое увеличение удельной проводимости при дальнейшем росте температуры (рис. 4.11) соответствует области собственной электропроводности, в которой концентрация увеличивается экспоненциально [соотношение (4.4)], а подвижность снижается по степенному закону (4.10).

У вырожденного полупроводника (кривая 3 на рис. 4.11) концентрация свободных носителей заряда не зависит от температуры и температурная зависимость проводимости определяется зависимостью их подвижности от температуры (рис. 4.10).

4.6. Оптические и фотоэлектрические явления
в полупроводниках

Поглощение света . Вследствие отражения и поглощения света полупроводником интенсивность падающего на него монохроматического излучения интенсивностью I 0 уменьшается до некоторой величины I. В соответствии с законом Ламберта – Бугера :

где R – коэффициент отражения, x – расстояние от поверхности полупроводника вдоль направления луча (в объеме) до данной точки; a – коэффициент поглощения.

Величина a -1 равна толщине слоя вещества, при прохождении через который интенсивность света уменьшается в e раз (е – основание натурального логарифма).

Поглощение полупроводником энергии электромагнитного излучения может быть связано с различными физическими процессами: нарушением ковалентных связей между атомами материала с переходом электронов из валентной зоны в зону проводимости; ионизацией примесных атомов и возникновением дополнительных свободных электронов или дырок; изменением колебательной энергии атомов решетки; образованием экситонов и др.

Если поглощение света полупроводником обусловлено переходами электронов из валентной зоны в зону проводимости за счет энергии квантов излучения, то поглощение называют собственным ; если возникновением свободных носителей за счет ионизации примесных атомов (доноров или акцепторов) – примесным .

У ряда полупроводников за счет поглощения кванта света возможно такое возбуждение электрона валентной зоны, которое не сопровождается его переходом в зону проводимости, а образуется связанная система электрон–дырка, перемещающаяся в пределах кристалла как единое целое. Эту систему называют экситоном . Оптическое поглощение полупроводника, обусловленное взаимодействием излучения с колебательным движением кристаллической решетки, называют решеточным . Независимо от механизма поглощения квантов излучения процесс подчиняется закону сохранения энергии.

Фотопроводимость полупроводников – явление, всегда сопровождающее процесс поглощения энергии электромагнитного излучения. При освещении полупроводника концентрация свободных носителей заряда в нем может возрасти за счет носителей, возбужденных поглощенными квантами света. Такими носителями могут быть как собственные электроны и дырки, так и носители, перешедшие в свободное состояние вследствие ионизации примесных атомов.

Освещение полупроводника светом в течение достаточно длительного времени не приводит к бесконечному росту концентрации избыточных (по сравнению с равновесными) носителей заряда, так как по мере роста концентрации свободных носителей растет вероятность их рекомбинации. Наступает момент, когда рекомбинация уравновешивает процесс генерации свободных носителей и устанавливается равновесное состояние полупроводника с более высокой проводимостью s равн, чем без освещения (s 0).


Рис. 4.13. Спектр поглощения полупроводника и спектральное распределение фоточувствительности: 1 – собственное поглощение; 2 – примесное поглощение; 3,4 – фототок

При более длинноволновом излучении, когда энергия квантов света Е Ф невелика (Е ф =hn, где h – постоянная Планка, n – частота), при l пр наступает примесное поглощение и возникает фотопроводимость (фототок) за счет ионизации примесей (кривые 2, 4, рис. 4.13). При меньшей длине волны l i , т.е. большей энергии квантов света, соизмеримой с шириной запрещенной зоны, полупроводника DЕ 0 , возникают собственное (фундаментальное) поглощение и фотопроводимость (фототок) (кривые 1,3, рис. 4.13). Такая длина волны l i называется краем собственного (фундаментального) поглощения полупроводника. Коротковолновый спад фотопроводимости (кривая 3, рис. 4.13) объясняется высоким коэффициентом поглощения (кривая 1, рис. 4.13), т.е. практически весь свет поглощается в очень тонком поверхностном слое материала.

Как указано выше, фотопроводимость, вызванная генерацией свободных носителей, всегда сопровождается поглощением энергии электромагнитного излучения. В процессе рекомбинации, напротив, энергия выделяется. Выделяющаяся энергия может поглощаться кристаллической решеткой (безызлучательная рекомбинация ) либо излучаться в виде кванта света (излучательная рекомбинация ). Последнее явление нашло применение в светодиодах, используемых в приборостроении в качестве световых индикаторов.