Загрязнение земной атмосферы: источники, виды, последствия. Оценка степени загрязнения атмосферы и определение мероприятий по ее снижению

Решающее значение для выработки мероприятий по оздоровлению экологической ситуации в городах имеет наличие полной, объективной, конкретной информации по этой проблеме. Такая информация с 1992 г. публикуется в ежегодных Государственных докладах Министерства природных ресурсов Российской Федерации "О состоянии и об охране окружающей природной среды РФ", докладах Департамента природопользования и охраны окружающей среды Правительства Москвы "О состоянии окружающей среды в Москве", других аналогичных документах.

Согласно этим документам "загрязнение окружающей среды остается наиболее острой экологической проблемой, имеющей для Российской Федерации приоритетное социальное и экономическое значение".

Постоянной экологической проблемой городских территорий является загрязнение атмосферного воздуха. Её первостепенное значение определяется тем, что чистота воздуха - фактор, непосредственно влияющий на здоровье населения. Атмосфера оказывает интенсивное воздействие на гидросферу, почвенно-растительный покров, геологическую среду, здания, сооружения и другие техногенные объекты.

Среди антропогенных источников загрязнения приземной атмосферы к наиболее опасным относятся сгорание различных видов топлива, бытовых и промышленных отходов, ядерные реакции при получении атомной энергии, металлургия и горячая металлообработка, различные химические производства, в том числе переработка газа, нефти и угля. Свой вклад в загрязнение атмосферы городов вносят строительные объекты, транспорт и автотранспортные хозяйства.

Так, например, в Москве, по данным на 1997 г., источниками загрязнения атмосферы являлись около 31 тыс. промышленных и строительных объектов (в т. ч.2,7 тыс. автотранспортных хозяйств), 13 тепло - и электростанций и их филиалов, 63 районных и квартальных тепловых станции, более 1 тыс. мелких котельных, а также свыше 3 млн. единиц автотранспорта. В результате в атмосферу ежегодно выбрасывалось около 1 млн тонн загрязняющих веществ. При этом их общее количество с каждым годом возрастало.

Следует учитывать и то, что в крупных городах негативное воздействие общего состояния атмосферы усугубляется тем, что большая часть населения проводит в помещениях до 20-23 часов в сутки, в то время как уровень загрязнения внутри здания превосходит уровень загрязнения наружного воздуха в 1,5-4 раза.

Основными загрязнителями атмосферы являются диоксид азота, оксид углерода, взвешенные вещества, диоксид серы, формальдегид, фенол, сероводород, свинец, хром, никель, 3,4-бензапирен.

По данным Росстата за 2007 г., более 30 тыс. предприятий имеют выбросы загрязняющих веществ с отходящими газами от стационарных источников в атмосферу. Количество отходящих от них загрязняющих веществ - 81,98 млн т; выброшено в атмосферу без очистки - 18,11 млн т. Из выбросов, поступивших на очистные сооружения, уловлено и обезврежено 74,8%.

В городах с высоким уровнем загрязнения атмосферы проживают около 58 млн. человек, в том числе, в Москве и Санкт-Петербурге 100%, а на Камчатке, в Новосибирской, Оренбургской и Омской областях - более 70% населения. В городах, атмосфера которых содержит высокие концентрации диоксида азота проживают 51,5 млн. человек, взвешенных веществ - 23,5, формальдегида и фенола - более 20, бензина и бензола - более 19 млн человек. При этом с конца 90-х гг. число городов с высоким и очень высоким уровнем загрязнения воздушного бассейна возрастает.

До начала 90-х годов основной вклад в загрязнение атмосферного воздуха вносили промышленные предприятия. В этот период в число населенных пунктов с наибольшим уровнем загрязнения атмосферного воздуха входили такие "города-заводы", как Братск, Екатеринбург, Кемерово, Красноярск, Липецк, Магнитогорск, Нижний Тагил, Новокузнецк, Новосибирск, Ростов-на-Дону, Тольятти, Норильск и др. Однако по мере спада, а затем некоторого подъема и перепрофилирования промышленного производства, с одной стороны, и происходящего в русле общемировых тенденций ускоренного роста автомобильного парка, с другой стороны, происходили изменения в списке приоритетных факторов, влияющих на состояние атмосферы населенных пунктов.

В первую очередь это отразилось на экологии крупных городов. Так, в Москве в 1994-1998 гг. основные тенденции изменения состояния окружающей среды характеризовались "…снижением влияния промышленности на состояние всех природных сред. Доля загрязнения воздуха от промышленных объектов снизилась до 2-3% от общего объема выбросов загрязняющих веществ. Доля коммунального хозяйства (энергетика, водоснабжение, мусоросжигание и др.) также резко уменьшилась и составляет около 6-8%. Определяющим фактором состояния воздушного бассейна Москвы в настоящее время и на ближайшие 15-20 лет стал автотранспорт".

Спустя шесть лет, в 2004 г., в Москве поступление загрязняющих веществ от промышленных предприятий возросло до 8%, практически неизменным остался вклад объектов теплоэнергетики - 5% и еще более повысилась доля автомобильного транспорта - 87%. (В этот же период в среднем по России имело место другое соотношение: выбросы от автотранспортных средств составили 43%.) К настоящему времени автомобильный парк столицы составляет свыше 3 млн. единиц. Суммарный выброс загрязняющих веществ в атмосферу города составляет 1830 т/год или 120 кг на одного жителя.

В Санкт-Петербурге вклад автотранспорта в валовой выброс загрязняющих веществ составлял в 2002 г. около 77%. За период 90-х годов парк автомобилей в городе увеличился в 3 раза. В 2001 г. их число составляло 1,4 млн. единиц.

Ускоренный рост автотранспорта оказывает резко негативное влияние на состояние окружающей среды в городах, которое не ограничивается загрязнением воздушного бассейна такими соединениями, как двуокись азота, формальдегид, бензапирен, взвешенные частицы, оксид углерода, фенол, соединения свинца и др. Этот фактор приводит к загрязнению почв, шумовому дискомфорту, угнетению растительности вблизи автомагистралей и т.д.

В России неконтролируемый рост автотранспортного парка сопровождается снижением числа единиц экологически чистого общественного транспорта - троллейбусов и трамваев. К тому же автомобилизация населения влияет на состояние окружающей среды сильнее, чем в других индустриальных странах, поскольку происходит в условиях отставания экологических показателей отечественных автотранспортных средств и используемых моторных топлив от мирового уровня, а также отставания в развитии и техническом состоянии улично-дорожной сети. В связи с этим основным вопросом экологической политики в крупных городах России становится "экологизация" автотранспортного комплекса, под которой подразумеваются не только сами автомобили, но и стратегия развития общественного транспорта, градостроительная политика, стратегия сохранения природного комплекса, система нормативно-правовых актов, экономические механизмы "вытеснения" углеводородного топлива (за исключением природного газа) и др.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Загрязнение атмосферного воздуха естественными и антропогенными выбросами в сельскохозяйственных и промышленно-развитых районах и особенно в крупных городах, стало важной проблемой, острота которой из года в год постоянно усиливается. Выбросы от разрастающегося парка автотранспорта, тепловых станций, строительной и горнодобывающей промышленности, бытового сектора, использования удобрений в сельском хозяйстве и других источников приводит к тому, что приземные слои атмосферы на больших территориях являются сильно загрязненными различными ингредиентами. Все это ухудшает экологические условия проживания населения, негативно влияет на состояние здоровья и продолжительность жизни людей. Так, затишья и слабые ветры, инверсионные слои в атмосфере, туманы способствуют увеличению концентраций примесей, создавая над отдельными регионами значительное загрязнение атмосферы. Умеренные и сильные ветры приводят к рассеиванию примесей и их переносу на большие расстояния. Длительные обложные дожди хорошо очищают атмосферу, тогда как ливневые дожди имеют более слабое вымывающее действие за счет своей кратковременности. Синоптические ситуации, являясь комплексом различных погодных и метеорологических условий, интегрально определяют режим загрязнения над конкретной территорией. В связи с этим решение задачи сохранения чистоты атмосферного воздуха городов в значительной степени зависит от понимания роли метеорологических условий и правильного учета способности атмосферы к самоочищению.

Целью настоящей курсовой работы является изучение по литературным источникам вопроса загрязнения атмосферного воздуха, а также исследование загрязнения воздуха в г. Балаково в осенние сезоны 2006-2007 гг.

1 . Метеорологические условия формирования уровня загрязнения атмосферы

Как известно, к резкому возрастанию концентраций вредных веществ в приземном слое атмосферы приводят неблагоприятные метеорологические условия. В настоящее время установлено, что между уровнями загрязнения атмосферного воздуха и климатическими факторами существует определенная связь. На степень и интенсивность загрязнения воздушного бассейна влияют рельеф местности, направление и скорость ветра, влажность, количество, интенсивность и продолжительность осадков, циркуляция воздушных потоков, инверсии и т.п.

В отдельные периоды, неблагоприятные для рассеяния выбросов, концентрации вредных веществ могут резко возрасти относительно среднего или фонового городского загрязнения. Частота и продолжительность периодов высокого загрязнения атмосферного воздуха будут зависеть от режима выбросов вредных веществ (разовых, аварийных и др.), а также от характера и продолжительности метеоусловий, способствующих повышению концентрации примесей в приземном слое воздуха.

Во избежание повышения уровней загрязнения атмосферного воздуха при неблагоприятных для рассеяния вредных веществ метеорологических условиях необходимо прогнозировать и учитывать эти условия. В настоящее время установлены факторы, определяющие изменение концентраций вредных веществ в атмосферном воздухе при изменении метеорологических условий.

Прогнозы неблагоприятных метеорологических условий могут составляться как для города в целом, так и для групп источников или для отдельных источников. Обычно выделяются три основных типа источников: высокие с горячими (теплыми) выбросами, высокие с холодными выбросами, низкие.

Обычно выделяются три основных типа источников: высокие с горячими (теплыми) выбросами, высокие с холодными выбросами, низкие. Для указанных типов источников выбросов аномально неблагоприятные условия рассеяния примесей приведены в табл.1.

Таблица 1 Комплексы неблагоприятных метеорологических условий для источников разных типов

Источники

Термическая стратификация нижнего слоя атмосферы

Скорость ветра (м/с) на уровне

Вид инверсии, высота над источником выброса, м

Высокие с горячими выбросами

неустойчивая

Приподнятая, 100-200

Высокие с холодными выбросами

неустойчивая

Приподнятая, 10-200

устойчивая

Приземная, 2-50

В дополнение к комплексам неблагоприятных метеоусловий, приведенным в табл. 1 можно добавить следующие:

Для высоких источников с горячими (теплыми) выбросами:

а) высота слоя перемешивания меньше 500 м, но больше эффективной высоты источника; скорость ветра на высоте источника близка к опасной скорости ветра;

б) наличие тумана и скорость ветра больше 2 м/с.

Для высоких источников с холодными выбросами: наличие тумана и штиль.

Для низких источников выбросов: сочетание штиля и приземной инверсии. Следует также иметь в виду, что при переносе примесей в районы плотной застройки или в условиях сложного рельефа концентрации могут повышаться в несколько раз.

1.1 Влияние ветрового режима на уровень загрязнения атмосферы. Направл ение и скорость ветра

В последнее время большое значение приобретают исследования закономерностей распространения атмосферных примесей и особенностей их пространственно-временного распределения в зависимости от ветрового режима территории. Они являются основой для объективной опенки состояния и тенденции изменений загрязнения воздушной среды, а также разработки возможных мероприятий по обеспечению чистоты атмосферы .

Характер переноса и рассеивания примесей в основном зависит от режима ветра, а также от источника выброса.

Для низких и неорганизованных источников выбросов формирование повышенного уровня загрязнения воздуха происходит при слабых ветрах за счет скопления примесей в приземном слое атмосферы, а при очень сильных ветрах происходит убывание концентраций за счет быстрого переноса.

В городах с большим количеством низких источников рост уровня загрязнения происходит при снижении скорости ветра до 1-2 м/с. Так, установлено, что концентрации пыли. S02, СО и NO2 повышаются на 30-40% по сравнению с уровнем при других скоростях ветра. Особенно неблагоприятные условия создаются, когда слабые ветры сохраняются длительное время и наблюдаются над значительной территорией .

При выбросах от промышленных предприятий с высокими трубами значительные концентрации примесей у земли наблюдаются при так называемой «опасной» скорости ветра. Для труб крупных электростанций эта скорость равна 4--6 м/с (в зависимости от параметров выбросов), а для сравнительно холодных выбросов от вентиляционных устройств на химических и других предприятиях опасная скорость ветра равна 1-2 м/с.

Большое влияние на формирование уровня загрязнения воздуха оказывает направление ветра. В городах, где источники выбросов расположены в одном районе, наибольшая фоновая концентрация примеси будет наблюдаться при ветрах со стороны этих источников. В случае рассредоточенных источников выбросов концентрации примесей мало или совсем не зависят от направления ветра. Часто область наибольшего загрязнения воздуха создается в центре города . Однако из-за своеобразия рельефа каждый город реагирует на ветровые условия по-своему, особенно когда рельеф местности сложный.

Зависимость уровня загрязнения воздуха в городе от направления ветра является достаточно простой. Если предприятия располагаются на окраине или за пределами города, то концентрации в городских кварталах растут при переносе выбрасываемых примесей со стороны источников выбросов. Однако и в таких простых случаях влияние направления ветра на уровень загрязнения воздуха в городе следует специально изучать, поскольку нужно учитывать, что поток воздуха может быть искажен под влиянием сложного рельефа, водоемов, а также непосредственным тепловым воздействием крупных промышленных комплексов. Неблагоприятные направления ветра могут выявляться и при равномерном расположении источников на территории города за счет различных эффектов наложения выбросов.

В отдельных городах, имеющих форму, близкую к прямоугольнику или эллипсу, загрязнение воздуха повышено, когда ветер направлен вдоль этого прямоугольника или большой оси эллипса. В зависимости от скорости ветра на уровне флюгера выявляется наличие двух максимумов загрязнения воздуха: при штиле и при скорости ветра около 4 - 6 м/с, что связано с действием двух классов источников высоких и низких. Максимум при штиле более четко проявляется при наличии приземной инверсии, максимум при умеренном ветре - при ее отсутствии.

С ситуацией, когда при штиле отсутствует приземная инверсия, связано относительно пониженное загрязнение воздуха по городу в целом.

Для различных городов и сезонов характерными являются следующие закономерности:

· при устойчивой стратификации загрязнение воздуха уменьшается с усилением скорости ветра;

· при неустойчивой стратификации максимум загрязнения воздуха отмечается при скоростях ветра, близких к опасным, для основных источников выбросов, расположенных в городе.

Скорость ветра на уровне примерно 500 - 1000 м может характеризовать интенсивность выноса за пределы города верхней части городской «шапки дыма». Обнаруживается, что с усилением ветра на этих высотах загрязнение воздуха в среднем несколько снижается. В то же время выявляется эффект снижения концентраций при установлении очень слабого ветра (1 - 2 м/с) на указанных уровнях. Это может быть связано с увеличением подъёма перегретого над городом воздуха.

1.2 Устойчивость атмосферы

Имеются многочисленные указания на формирование повышенного уровня загрязнения воздуха при устойчивой стратификации нижнего слоя атмосферы, в первую очередь, при наличии приземных и низко расположенных приподнятых инверсий. В условиях приподнятых инверсий ограничивается распространение примесей в вертикальном направлении. Концентрации примесей в воздухе растут, если приподнятая инверсия сопровождается неустойчивой стратификацией. Зависимость загрязнения воздуха от атмосферной устойчивости в значительной степени определяется скоростью ветра.

Загрязнение воздуха в наибольшей степени зависит от термической стратификации при очень слабых ветрах в приземном слое. При этом с усилением устойчивости концентрация примесей увеличивается. При умеренных ветрах, 3-7 м/с, с усилением устойчивости, загрязнение воздуха снижается. При сильных ветрах и атмосферной устойчивости связь между ними практически отсутствует. Характер совместного влияния термической стратификации и скорости ветра для различных городов и всех сезонов года примерно одинаков.

1.3 Термическая устойчивость атмосферы. Температура воздуха

Термическая устойчивость характеризуется вертикальной разностью температуры воздуха?Т. Обнаруживается зависимость параметра Р от?Т в слое от земли до уровня АТ925гПа или АТ500гПа. Связь между Р и?Т наиболее значительна при инверсионных условиях, при этом имеет место обратная линейная корреляция.

В среднем загрязнение воздуха повышено, когда штиль сопровождается приземной инверсией, т. е. в ситуации застоя воздуха. При застое практически отсутствует перенос воздуха и резко ослаблено его вертикальное перемешивание.

Вместе с тем в условиях застоя не всегда отмечается высокий уровень загрязнения воздуха.. В таких условиях периоды с Р>0,2 наблюдаются только в 60 - 70 % случаев. Это означает, что наряду с процессом переноса и рассеивания примесей существуют другие факторы, определяющие уровень концентраций примесей в городе.

Одним из таких факторов является термическое состояние воздушной массы, характеризующееся температурой воздуха. В зимнее время чаще всего обнаруживается повышение уровня загрязнения при понижении температуры. Это в первую очередь характерно для антициклонической погоды, когда при низких температурах воздуха устанавливается устойчивая термическая стратификация. Кроме того, при понижении температуры увеличивается количество сжигаемого топлива и, следовательно, количество выбросов вредных веществ в атмосферу. Таким образом, рост загрязнения воздуха при понижении температуры связан не только с термическим состоянием воздушной массы, а и с сопутствующими факторами.

При слабых ветрах загрязнение атмосферы в городе в ряде случаев повышается с увеличением температуры воздуха. Наиболее четко это обнаруживается зимой в условиях застоя воздуха, сохраняющегося в течение всего дня. Таким образом, ситуация застоя воздуха в сочетании с относительно высокими температурами является неблагоприятной. Значительное загрязнение воздуха зимой обнаруживается также, когда сравнительно высокие температуры сопровождаются скоростью ветра не более 4-5 м/с. Такие условия отмечаются обычно в теплых секторах циклонов.

К числу неблагоприятных погодных условий относятся также и инверсии температуры, характеризующие особенности стратификации нижнего слоя тропосферы. Инверсии, образующиеся на некоторой высоте от поверхности земли (приподнятые инверсии), создают преграду (потолок) для вертикального воздухообмена. Увеличение наземной концентрации примеси от выбросов высоких источников в этом случае существенно зависит от высоты расположения нижней границы инверсии над источником и от высоты самого источника. Если инверсионный слой располагается непосредственно над трубой, то создаются аномальные весьма опасные условия загрязнения из-за ограничения подъема выбросов и препятствия для проникновения их в верхние слои атмосферы. Увеличение максимальной концентрации примеси у земли в этих условиях составляет примерно 50-70%. Если слой ослабленной турбулентности расположен на достаточно большой высоте от источника (200 м и более), возрастание концентрации примеси будет невелико. С ростом расстояния от источника влияние задерживающего слоя возрастает. В то же время слой инверсии температуры, расположенный ниже уровня выбросов будет препятствовать переносу примеси к земле.

Для городских условий при наличии большого числа низких источников выбросов опасные условия накопления примесей создаются при приземных и приподнятых инверсиях, поскольку и те и другие приводят к ослаблению вертикального рассеивания и переноса примесей.

1.4 Осадки. Туманы

Основным механизмом удаления примесей из атмосферы является вымывание их осадками. Эффективность очищения воздуха таким способом связана главным образом с их количеством и продолжительностью. Это относится к общегородскому загрязнению воздуха, к концентрациям, формирующимся вне прямого воздействия источников выбросов. При переносе примесей со стороны объектов эффект вымывания примесей из воздуха проявляется в меньшей степени .

Осадки вымывают примеси из атмосферы. Восстановление исходного уровня загрязнения воздуха в городе происходит постепенно, примерно в течение 12 ч.

Воздух наиболее чист сразу после выпадения осадков. В первые 12 ч после их выпадения повторяемость высоких концентраций ниже, чем в последующие часы. Степень очищения воздуха зависит от количества осадков - чем больше их выпадает, тем чище воздух.

Указанные зависимости относятся к общегородскому загрязнению воздуха, к концентрациям, формирующимся вне прямого воздействия источников. При непосредственном переносе выбросов со стороны источников эффект вымывания примесей из воздуха проявляется в меньшей степени.

Влияние тумана на содержание и распределение примесей в воздухе весьма сложно и разнообразно. Здесь довольно часто наблюдается специфические метеоусловия (инверсии, штиль или слабый ветер), которые уже сами по себе способствуют накоплению примесей в приземном слое, а также происходит поглощение примесей каплями. Эти примеси с каплями остаются в приземном слое воздуха. За счет создания значительных градиентов концентраций (вне капель) происходит перенос примесей из окружающего пространства в область тумана, поэтому суммарная концентрация веществ возрастает. Значительную опасность представляет расположение над слоем тумана факелов дыма, которые под воздействием указанного эффекта распространяются в приземный слой воздуха.

Накопление примесей в атмосфере, обусловленное слабыми ветрами в большой толще атмосферы и инверсиями, усиливается в условиях туманов. Туманы, содержащие частицы дыма и вредных веществ, получили название смогов. С наличием смогов связывают периоды особо опасного загрязнения воздуха, сопровождающегося ростом заболеваемости и смертности населения. Различают смоги, связанные с осаждением вредных веществ на каплях туманов и образующиеся в результате фотохимических реакций вредных веществ.

В туманах наблюдается эффект аккумуляции примесей из выше- и нижележащих слоев. Вследствие этого эффекта возрастает концентрация примесей в воздухе и каплях, находящихся в тумане. При поглощении примесей влагой образуются новые более токсичные вещества.

При низкой температуре воздуха (-35° С и ниже) выбросы от тепловых электростанций и котельных способствуют образованию тумана, содержащего частицы замершей влаги с высоким содержанием серной кислоты.

При наличии инверсии и тумана содержание примесей на 20-30% больше, чем только при тумане, а через 6 часов после начала тумана при наличии инверсии это различие восставляет 30-60%.

Опасные условия загрязнения воздуха складывались и при фотохимическом смоге. Окислители, включая озон, являются продуктами реакций окислов азота и углеводородов. Химические реакции, приводящие к образованию фотохимического смога, очень сложны, а их количество велико. Озон и атомарный кислород, взаимодействуя с органическими соединениями, образуют вещество, которое и представляет собой главный видимый и наиболее вредный конечный продукт фотохимического смога - пероксиацетилнитрат (ПАН). Поскольку концентрации ПАН обычно не измеряется, интенсивность смога характеризуется концентрацией озона. Слабый смог наблюдается обычно при концентрации озона 0,2-0,35 мг/м3. Формирование фотохимического смога происходит в районах, где приток солнечной радиации является наибольшим, а интенсивность движения автомобилей обуславливает высокие концентрации окислов азота и углеводородов.

1.5 Инерционный фактор

Р Р Р (пли другого обобщенного показателя загрязнения воздуха в городе) велико, то и в текущий день загрязнение воздуха, как правило, повышено. Обратная ситуация имеет место, когда значение обобщенного по городу показателя загрязнения в предшествующий день мало (Р ?<0,1). В этом случае в последующие дни загрязнение воздуха чаще всего понижено, в том числе и в такой неблагоприятной ситуации, как застой воздуха. Коэффициент корреляции между значениями параметра Р в соседние дни составляет 0,6-0,7.

Действие вышеназванного фактора в значительной степени определяется метеорологической инерцией, которая означает тенденцию к сохранению атмосферных процессов, определяющих уровень концентраций. Некоторые из метеорологических факторов, влияющих на концентрации примесей в воздухе, могут быть неизвестны, и при учете установившегося уровня загрязнения воздуха они в какой-то степени учитываются автоматически. Существенную роль может играть и инерция самого загрязнения воздуха.

1.6 Метеорологический потенциал самоочищения атмосферы

Влияние метеорологических факторов на уровень загрязнения атмосферы проявляется более четко, если рассматривается сочетание метеорологических величин. В последнее время наряду с такими комплексными характеристиками, как потенциал загрязнения атмосферы (ПЗА) и рассеивающая способность атмосферы (РСА), используется коэффициент самоочищения атмосферы .

Потенциал загрязнения атмосферы представляет собой отношение средних уровней концентраций вредных примесей при заданных выбросах в конкретном qср.i и условном qср.о районе:

РСА - величина, обратная ПЗА. Коэффициент самоочищения атмосферы К определяется как отношение повторяемости условий, способствующих накоплению примесей, к повторяемости условий, способствующих удалению примесей из атмосферы:

где Рш 0 повторяемость скоростей ветра 0 0 1 м/с, Рт 0 повторяемость туманов, Рв 0 повторяемость скорости ветра??6 м/с, Ро 0 повторяемость осадков??0,5 мм.

Однако в таком виде К характеризует условия накопления, а не рассеивания. Поэтому коэффициентом самоочищения атмосферы лучше считать величину K2, обратную К.

Для тех районов, в которых повторяемость туманов мала, но значительна повторяемость приземных задерживающих слоев (ПЗС), имеет смысл при расчете K2 учитывать вместо повторяемости туманов (Рт) повторяемость ПЗС (Рин). Тогда

Рв + Ро

K2 =--------------

Рш + Рин

При K2???0,33 складываются условия крайне неблагоприятные для рассеивания, при 0,33 < K2???0,8 - неблагоприятные, при 0,8 < K2??1,25 - ограниченно благоприятные и при К2?> 1,25 - благоприятные условия.

Коэффициент самоочищения атмосферы позволяет оценить вклад метеорологических величин и явлений в формирование уровня загрязнения воздуха.

2 Оценка загрязнения атмосферного воздуха г. Балаково в осенние сезоны 2006-2007 годов

В настоящее время для оценки уровня загрязнения атмосферы в России создана Государственная сеть мониторинга загрязнения атмосферы (ГСМЗА), которая охватывает 264 города (659 станций Росгидромета и 64 ведомственных станций - 1996г.).

Основными задачами Федеральной системы мониторинга загрязнения атмосферы являются всесторонняя и полная оценка состояния загрязнения атмосферы в городах России для принятия решений по экологической безопасности, контроль эффективности выполнения мероприятий по снижению выбросов, выявление районов с опасно высоким уровнем загрязнения, создающим риск здоровью и жизни населения. Советом Европейского экономического сообщества в 1996 году рекомендован перечень веществ, концентрации которых необходимо контролировать во всех странах: диоксид серы, диоксид азота, взвешенные частицы диаметром менее 10 микрон (РМ-10), общие взвешенные вещества, свинец, озон, бензол, оксид углерода, кадмий, мышьяк, никель, ртуть, ароматические углеводороды, включающие бенз(а)пирен. Из этого списка в России в настоящее время не определяются концентрации РМ-10 и озона, эпизодически измеряются концентрации кадмия и мышьяка. В большинстве городов имеется 205 стационарных постов (ПНЗ), в крупных городах с населением более 1 млн. жителей - более 10. Имеются также регулярные наблюдения на маршрутных постах, с помощью оборудованных для этой цели автомашин.

Наблюдения на стационарных постах осуществляются по одной из трех программ: полной, неполной и сокращенной. Наблюдения по полной программе выполняются четыре раза в сутки: в 1, 7, 13, 19 часов по местному времени, по неполной программе - три раза в сутки: в 7, 13, 19 часов, по сокращенной - в 7 и 13 часов.

В каждом городе определяются концентрации основных и наиболее характерных для выбросов промышленных предприятий веществ. Например, в районе алюминиевого завода оценивают концентрации фторида водорода, в районе предприятий, производящих минеральные удобрения, определяют концентрации аммиака и оксидов азота и т.д. Правила выполнения работ, связанных с организацией и деятельностью сети мониторинга загрязнения атмосферы отражены в «Руководстве по контролю загрязнения атмосферы» .

В настоящее время ведется большая работа по созданию автоматической сети наблюдений и контроля окружающей среды (АНКОС), с помощью которых определяются пять загрязняющих веществ и четыре метеорологических параметра. Информация поступает в центр сбора на ЭВМ, которая обрабатывает и воспроизводит ее на телеэкране.

2.1 Обобщенные показатели загрязнения воздуха

Для оценки степени загрязнения атмосферы города в целом используются различные обобщенные показатели. Одним из наиболее простых интегральных показателей загрязнения воздуха является нормированная (безразмерная) концентрация примесей (q), осредненная по всему городу и по всем срокам наблюдений :

где qi - средняя за день концентрация на i -том пункте, qсз.сез.. - средне-сезонная концентрация в том же пункте, N - число стационарных пунктов (ПНЗ) в городе.

Нормирование на средне-сезонную концентрацию позволяет исключить влияние изменения общей концентрации от года к году, что дает возможность использовать её для анализа ряда наблюдений за несколько лет.

Для характеристики загрязнения воздуха по городу в целом в качестве обобщенного показателя по рекомендации ГГО используется параметр фонового загрязнения

Р = m/n ,

где n - общее количество наблюдений за концентрацией примесей в городе в течение одного дня на всех стационарных пунктах, m - количество наблюдений в течение того же дня с повышенной концентрацией q, которая превышает средне-сезонное значение qср.сез более чем в 1,5 раза (q>1,5 qср.сез.)

По материалам наблюдений за прошлые годы рассчитывается qср.сез за зиму, весну, лето и осень для каждого стационарного поста отдельно для каждого года.

При расчете параметра Р с целью его использования в качестве характеристики фонового загрязнения воздуха необходимо, чтобы количество стационарных постов в городе было не менее трех, а количество наблюдений за концентрацией примесей на всех пунктах в течение дня не менее 20.

Параметр Р подсчитывается для каждого дня по отдельным примесям и по всем примесям вместе. Для многих городов параметр Р можно рассчитывать по нескольким примесям (пыль, диоксид серы, оксид углерода, диоксид азота). Следует лишь исключить те специфические примеси, которые измеряются на отдельных ПНЗ. Параметр Р может изменяться от 1 (все измеренные концентрации превышают 1,5 qср.сез) до нуля (ни одна из концентраций не превышает 1,5 qср.сез).

Выделяют три уровня загрязнения воздуха в городе:

Высокий (I группа) - Р >0,35;

Повышенный (II группа) - 0,20<Р ?0,35

Пониженный (III группа) - Р ?0,20.

В случае малой повторяемости значений Р >0,35 за высокий уровень принимают Р >0,30 или Р >0,25, а за пониженный - Р ?0,15 или Р ?0,10.

Параметры q и P являются относительными характеристиками и не зависят от среднего уровня загрязнения воздуха. Следовательно, их значения в основном определяются метеорологическими условиями.

В настоящее время для характеристики качества воздуха в городах и выявления веществ, вносящих наибольший вклад в загрязнение атмосферы, а также для сравнительной оценки загрязнения атмосферного воздуха отдельных районов или городов принято использовать стандартный индекс (СИ) и комплексный индекс загрязнения атмосферы (КИЗА).

СИ - наибольшая измеренная за короткий период (20 минут) концентрация вещества, деленная на максимальную разовую предельно допустимую концентрацию (ПДК м.р.). При СИ < 1 загрязнение воздуха не оказывает заметного влияния на здоровье человека и окружающую среду. При СИ > 10 загрязнение воздуха характеризуется как высокое .

Комплексный индекс загрязнения атмосферы (КИЗА) позволяет выявить во сколько раз суммарный уровень загрязнения воздуха несколькими примесями превышает допустимое значение. Для этого уровни загрязнения различными веществами приводят к уровню загрязнения одним каким-либо веществом (обычно диоксидом серы). Это приведение осуществляется с помощью показателя степени Сi . Индекс загрязнения атмосферы для э того вещества (ИЗА) рассчитывается по формуле (1):

где qср. i - средняя за месяц, сезон, год концентрация отдельной примеси, ПДКc.c.i - средне-суточная предельно допустимая концентрация этой же примеси.

Для веществ различных классов опасности получены следующие значения Сi

Для приведения степени загрязнения всеми веществами к загрязнению веществом третьего класса опасности (диоксид серы) можно записать формулу КИЗА (2), учитывающего n веществ:

Таким образом, КИЗА представляет собой сумму деленных на ПДКс.с.i средних за месяц, сезон, год концентраций qср. i обычно пяти веществ, приведенных к величине концентрации диоксида серы в долях ПДК. В соответствии с существующими методами оценки уровень загрязнения считается низким, если КИЗА ниже 5, повышенным при КИЗА от 5 до 6, высоким при КИЗА от 7 до 13 и очень высоким при КИЗА равном или большим 14.

Степень загрязнения воздуха по городу в целом связана с инерционным фактором. Загрязнение воздуха в городе Р зависит от его значения в предшествующий день Р ?. Если в предшествующий день значение параметра Р (или другого обобщенного показателя загрязнения воздуха в городе) велико, то и в текущий день загрязнение воздуха, как правило, повышено. Обратная ситуация имеет место, когда значение обобщенного по городу показателя загрязнения в предшествующий день мало (Р ?<0,1). В этом случае в последующие дни загрязнение воздуха чаще всего понижено, в том числе и в такой неблагоприятной ситуации, как застой воздуха. Коэффициент корреляции между значениями параметра Р в соседние дни составляет 0,6-0,7 .

2.2 Краткая характеристика г. Балаково

Город Балаково -- крупный промышленный центр Саратовской области - расположен на левом берегу Волги, на границе Среднего и Нижнего Поволжья, в 181 км от г.Саратова, 260 км от г.Самары. Численность постоянного населения на 01.01.2009 составляет 198,00 тыс.чел.

Город поделен на три части: островную, заканальную и центральную. Деловой Балаково представлен двумя десятками предприятий химии, машиностроения, энергетики, строительной индустрии, пищевой промышленности.

На гербе города изображена символизированная ладья с пшеничным снопом, плывущая по Волге. Поволжье - хлебный край. А современными символами города считаются химическая ретора, строительный мастерок и мирный атом. Балаково - город химиков, энергетиков, строителей.

Географическая близость Балакова к ряду крупных региональных центров обеспечивает устойчивые экономические связи города с соседними регионами и способствует расширению ассортимента отраслевых рынков.

Город расположен на железнодорожной линии Сенная-Вольск-Пугачев, связан с городами и близлежащими населенными пунктами автомобильными маршрутами.

Выгодное географическое положение г. Балаково на пересечении магистральной железной дороги с главной рекой Европейской части предопределило размещение в городе крупного речного порта. Продолжительность навигации составляет 7-8 месяцев. Водная акватория составляет 31,9 тыс.га.

Климат Балакова умеренно континентальный, засушливый. Характерной особенностью климата является преобладание в течение года ясных и малооблачных дней, умеренно холодная и малоснежная зима, непродолжительная засушливая весна, жаркое сухое лето. В последнее время климат имеет тенденцию к потеплению в зимний период. Число безморозных дней в г.Балаково достигает 150-160 в году, что обусловлено близостью широкой водной поверхности Волги. Количество осадков неравномерно, в течение года бывает от 50 до 230% от нормы, в среднем в год выпадает от 340 до 570 мм.

Для района характерно довольно большое разнообразие ландшафтов. Основным источником хозяйственно-питьевого и производственного водоснабжения служат в г. Балаково воды реки Волги.

Промышленность города: Балаковская АЭС, Саратовская ГЭС, Балаковская ТЭЦ-4, ОАО "Балаковский пассажирский автокомбинат", Завод «Аргон» (производство углеродного волокна), Балаковорезинотехника, ООО «Балаковские минеральные удобрения», Волжский дизель им. Маминых (Бывший «Волгодизельмаш» и завод им. Дзержинского в СССР), Судоремонтный завод, «ЗЭМК ГЭМ», ЗАО «Химформ», ОАО «Балаковский растворо-бетонный завод» (ОАО «БРБЗ») .

2.3 Анализ результатов исследования загрязнения атмосферного воздуха в г. Балаково в осенний сезон 2006 года

Материалом для анализа загрязнения атмосферного воздуха в г.Балаково послужили данные трех пунктов, расположенных в различных районах города (Приложение).

ПНЗ-01 находится на пересечении улиц Титова и Ленина вблизи берега Волги. Недалеко расположены Саратовская ГЭС, ЗАО «Химформ». ПНЗ-04 находится на пересечении улиц Трнавская и Бульвар роз, характеризует состояние атмосферного воздуха около улиц с интенсивным движением автотранспорта, ООО «Балаковские минеральные удобрения» и Балаковской АЭС. ПНЗ-05 находится на пересечении улиц Вокзальная и Саратовское шоссе вблизи железно-дорожных путей. Также неподалеку расположены Балаковская ТЭЦ-4, Завод «Аргон» (производство углеродного волокна), ОАО «Балаковорезинотехника».

Наблюдения за загрязнением воздуха проводятся по неполной программе в 07, 13, 19 ч местного времени за основными примесями: пылью, оксидом углерода и диоксидами серы и азота. Кроме того, на всех пунктах отбираются пробы на специфические вредные примеси: на ПНЗ-01 - оксид азота, сероводород; на ПНЗ-04 - сероуглерод, фтороводород, аммиак, формальдегид; на ПНЗ-05 - сероводород, фенол, аммиак, формальдегид. Для анализа загрязнения воздуха использовались измеренные на отдельных ПНЗ концентрации примесей в мг/м3.

Размещено на Allbest.ru

Подобные документы

    Основные загрязнители атмосферного воздуха и глобальные последствия загрязнения атмосферы. Естественные и антропогенные источники загрязнения. Факторы самоочищения атмосферы и методы очистки воздуха. Классификация типов выбросов и их источников.

    презентация , добавлен 27.11.2011

    Оценка качества воздуха по содержанию отдельных загрязнителей. Комплексная оценка степени загрязнения воздушного бассейна с помощью суммарный санитарно-гигиенического критерия – индекса загрязнения атмосферы. Оценка степени загрязнения воздуха в городах.

    контрольная работа , добавлен 12.03.2015

    Состав атмосферного воздуха. Особенности рекогносцировочного метода получения репрезентативной информации о пространственной и временной изменчивости загрязнения воздуха. Задачи маршрутного и передвижного постов наблюдений загрязнения атмосферы.

    презентация , добавлен 08.10.2013

    Основные источники загрязнения атмосферного воздуха и экологические последствия. Средства защиты атмосферы: сухие и мокрые пылеуловители, фильтры. Абсорбционная, адсорбционная, каталитическая и термическая очистка воздуха. Расчет циклона ЦН-24 и бункера.

    курсовая работа , добавлен 17.12.2014

    Загрязнение атмосферы в результате антропогенной деятельности, изменение химического состава атмосферного воздуха. Природное загрязнение атмосферы. Классификация загрязнения атмосферы. Вторичные и первичные промышленные выбросы, источники загрязнения.

    реферат , добавлен 05.12.2010

    Строение и состав атмосферы. Загрязнение атмосферы. Качество атмосферы и особенности ее загрязнения. Основные химические примеси, загрязняющие атмосферу. Методы и средства защиты атмосферы. Классификация систем очистки воздуха и их параметры.

    реферат , добавлен 09.11.2006

    Параметры источников выброса загрязняющих веществ. Степень влияния загрязнения атмосферного воздуха на населенные пункты в зоне влияния производства. Предложения по разработке нормативов ПДВ в атмосферу. Определение ущерба от загрязнения атмосферы.

    дипломная работа , добавлен 05.11.2011

    Метеорологические условия, влияющие на формирование загрязнения атмосферного воздуха в городской среде. Оценка и сравнительный анализ состояния воздушной среды городов Вологда и Череповец. Организация контроля и мониторинга уровней загрязнения.

    дипломная работа , добавлен 16.09.2017

    Санитарно-гигиенические нормы допустимых уровней ионизации воздуха. Состояние качества атмосферного воздуха, источники загрязнения атмосферы. Государственный и ведомственный контроль за соблюдением санитарных норм и правил. Морфология воздуха.

    реферат , добавлен 13.12.2007

    Количество вредных веществ, выделяемых в атмосферу. Подразделение атмосферы на слои в соответствии с температурой. Основные загрязнители атмосферы. Кислотные дожди, влияние на растения. Уровни фотохимического загрязнения воздуха. Запыленность атмосферы.

Загрязнение атмосферного воздуха- любое изменение его состава и свойств, которое оказывает негативное воздействие на здоровье человека и животных, состояние растений и экосистем. Загрязнение атмосферного воздуха одна из самых значительных проблем современности

Главные загрязнители (поллютанты) атмосферного воздуха, образующиеся в процессе производственной и иной деятельности человека - диоксид серы, оксиды азота, оксид углерода и твердые частицы . На их долю приходится около 98% в общем объеме выбросов вредных веществ. Помимо главных загрязнителей в атмосфере городов и поселков наблюдается еще более 70 наименований вредных веществ, среди которых -формальдегид, фтористый водород, соединения свинца, аммиак, фенол, бензол, сероуглерод и др . Однако именно концентрации главных загрязнителей (диоксид серы и др.) наиболее часто превышают допустимые уровни.

выброс в атмосферу четырех главных загрязнителей (поллютантов) атмосферы- выбросы в атмосферу диоксида серы, оксидов азота, оксида углерода и углеводородов . Кроме указанных главных загрязнителей в атмосферу попадает много других очень опасных токсичных веществ:свинец, ртуть, кадмий и другие тяжелые металлы (источники выброса: автомобили, плавильные заводы и др.);углеводороды (CnHm), среди них наиболее опасен бенз(а)пирен, обладающий канцерогенным действием (выхлопные газы, топка котлов и др.), альдегиды, и в первую очередьформальдегид, сероводород, токсичные летучие растворители (бензины, спирты, эфиры) и др.

Наиболее опасное загрязнение атмосферы - радиоактивное. В настоящее время оно обусловлено в основном глобально распределенными долгоживущими радиоактивными изотопами - продуктами испытания ядерного оружия, проводившихся в атмосфере и под землей. Приземный слой атмосферы загрязняют также выбросы в атмосферу радиоактивных веществ с действующих АЭС в процессе их нормальной эксплуатации и другие источники.

Еще одной формой загрязнения атмосферы является локальное избыточное поступление тепла от антропогенных источников. Признаком теплового (термического) загрязнения атмосферы служат так называемые термические зоны, например, «остров тепла» в городах, потепление водоемов и.т. п.

13. Экологические последствия глобального загрязнения атмосферы.

Парниковый эффект – подъем температуры на поверхности планеты в результате тепловой энергии, которая появляется в атмосфере из-за нагревания газов. Основные газы, которые ведут к парниковому эффекту на Земле – это водяные пары и углекислый газ.

Явление парникового эффекта позволяет поддерживать на поверхности Земли температуру, при которой возможно возникновение и развитие жизни. Если бы парниковый эффект отсутствовал, средняя температура поверхности земного шара была бы значительно ниже, чем она есть сейчас. Однако при повышении концентрации парниковых газов увеличивается непроницаемость атмосферы для инфракрасных лучей, что приводит к повышению температуры Земли.

Озоновый слой.

В 20 - 50 километрах над поверхностью Земли в атмосфере находится слой озона. Озон - это особая форма кислорода. Большинство молекул кислорода воздуха состоит из двух атомов. Молекула же озона состоит из трех атомов кислорода. Озон образуется под действием солнечного света. При столкновении фотонов ультрафиолетового света с молекулами кислорода от них отщепляется атом кислорода, который, присоединившись к другой моле куле 02, образует Оз (озон). Озоновый слой атмосферы очень тонок. Если всем имеющимся в наличии озоном атмосферы равномерно покрыть участок площадью в 45 квадратных километров, то получится слой толщиной в 0,3 сантиметра. Немного озона проникает с потоками воздуха в нижние слои атмосферы. Когда лучи света реагируют с веществами, содержащимися в выхлопных газах и промышленных дымах, тоже образуется озон.

Кислотные дожди - это следствие загрязнения воздуха. Дым, образующийся при сжигании угля, нефти и бензина, содержит газы - двуокись серы и двуокись азота. Эти газы попадают в атмосферу, где растворяются в капельках воды, образуя слабые растворы кислот, которые затем выпадают на землю с дождем. Кислотные дожди вызывают гибель рыбы и наносят ущерб лесам в Северной Америке и Европе. Они также портят посевы сельскохозяйственных культур и даже воду, которую мы пьем.

Растениям, животным и зданиям кислотные дожди наносят вред. Воздействие их особенно ощутимо вблизи городов и промышленных зон. Ветер переносит облака с капельками воды, в которых растворены кислоты, на большие расстояния, поэтому кислотные дожди могут выпадать за тысячи километров от того места, где первоначально зародились. Например, большинство кислотных дождей, выпадающих в Канаде, вызвано дымом заводов и электростанций США. Последствия кислотных дождей вполне понятны, однако механизма их возникновения в точности никто не знает.

14 вопрос Изложенные принципы формирования и анализа различных форрм экологического риска окружающей среды для здоровья населения воплощаются в нескольких взаимоувязанных этапах : 1. Идентификация риска по отдельным видам промышленных и агропроизводственных нагрузок с выделением в их структуре химических и физических факторов по уровню экологической безопасности и токсичности. 2. Оценка реального и потенциального воздействия токсических веществ на человека по отдельным территориям, с учетом комплекса загрязняющих веществ и природных факторов. Особое значение придается сложившейся плотности сельского населения и численности городских поселений. 3. Выявление количественных закономерностей реакции человеческой популяции (разных возрастных когорт) на определенный уровень воздействия. 4. Экологический риск рассматривается в качестве одной из важнейших компонент специальных модулей геоинформационной системы. В таких модулях формируются проблемные медико-экологические ситуации. Блоки ГИС включают информацию о существующих, планируемых и предполагаемых изменениях в структуре территориально- производственных комплексов. Информамционная база такого содержания необходима для выполнения соответствующего моделирования. 5. Характеристика риска совокупного воздействия природных и антропогенных факторов на здоровье населения. 6. Выявление пространственных сочетаний природных и антропогенных факторов, что может способствовать более детальному их прогнозированию и анализу возможной динамики локальных и площадных комбинаций риска на региональном уровне. 7. Дифференциация территорий по уровням и формам экологического риска и выделение медико-экологических районов по региональным уровням антропогенного риска. При оценке антропогенного рискка учитывается комплекс приоритетных токсикантов и других антропогенных факторов.

15вопрос СМОГ Смог (англ. smog, от smoke - дым и fog - туман), сильное загрязнение воздуха в больших городах и промышленных центрах. Смог бывает следующих типов: Влажный смог лондонского типа - сочетание тумана с примесью дыма и газовых отходов производства. Ледяной смог аляскинского типа - смог, образующийся при низких температурах из пара отопительных систем и бытовых газовых выбросов. Радиационный туман - туман, который появляется в результате радиационного охлаждения земной поверхности и массы влажного приземного воздуха до точки росы. Обычно радиационный туман возникает ночью в условиях антициклона при безоблачной погоде и легком бризе. Часто радиационный туман возникает в условиях температурной инверсии, препятствующей подъему воздушной массы. В промышленных районах может возникнуть крайняя форма радиационного тумана - смог. Сухой смог лос-анджелесского типа - смог, возникающий в результате фото- химических реакций, которые происходят в газовых выбросах под действием солнечной радиации; устойчивая синеватая дымка из едких газов без тумана. Фотохимический смог - смог, основной причиной возникновения которого считаются автомобильные выхлопы. Автомобильные выхлопные газы и загрязняющие выбросы предприятий в условиях инверсии температуры вступают в химическую реакцию с солнечным излучением, образуя озон. Фотохимический смог может вызвать поражение дыхательных путей, рвоту, раздражение слизистой оболочки глаз и общую вялость. В ряде случаев в фотохимическом смоге могут присутствовать соединения азота, которые повышают вероятность возникновения раковых заболеваний. Фотохимический смог ПОДРОБНО: Фотохимический туман представляет собой многокомпонентную смесь газов и аэрозольных частиц первичного и вторичного происхождения. В состав основных компонентов смога входят озон, оксиды азота и серы, многочисленные органические соединения перекисной природы, называемые в совокупности фотооксидантами. Фотохимический смог возникает в результате фотохимических реакций при определенных условиях: наличии в атмосфере высокой концентрации оксидов азота, углеводородов и других загрязнителей, интенсивной солнечной радиации и безветрие или очень слабого обмена воздуха в приземном слое при мощной и в течение не менее суток повышенной инверсии. Устойчивая безветренная погода, обычно сопровождающаяся инверсиями, необходима для создания высокой концентрации реагирующих веществ. Такие условия создаются чаще в июне - сентябре и реже зимой. При продолжительной ясной погоде солнечная радиация вызывает расщепление молекул диоксида азота с образованием оксида азота и атомарного кислорода. Атомарный кислород с молекулярным кислородом дают озон. Казалось бы, последний, окисляя оксид азота, должен снова превращаться в молекулярный кислород, а оксид азота - в диоксид. Но этого не происходит. Оксид азота вступает в реакции с олефинами выхлопных газов, которые при этом расщепляются по двойной связи и образуют осколки молекул, и избыток озона. В результате продолжающейся диссоциации новые массы диоксида азота расщепляются и дают дополнительные количества озона. Возникает циклическая реакция, в результате которой в атмосфере постепенно накапливается озон. Этот процесс в ночное время прекращается. В свою очередь озон вступает в реакцию с олефинами. В атмосфере концентрируются различные перекиси, которые в сумме и образуют характерные для фотохимического тумана оксиданты. Последние являются источником так называемых свободных радикалов, отличающихся особой реакционной способностью. Такие смоги - нередкое явление над Лондоном, Парижем, Лос - Анжелесом, Нью - Йорком и другими городами Европы и Америки. По своему физиологическому воздействию на организм человека они крайне опасны для дыхательной и кровеносной систем и часто бывают причиной преждевременной смерти городских жителей с ослабленным здоровьем. Смог наблюдается обычно при слабой турбулентности (завихрение воздушных потоков) воздуха, и следовательно, при устойчивом распределении температуры воздуха по высоте, особенно при инверсиях температуры, при слабом ветре или штиле. Инверсии температуры в атмосфере, повышение температуры воздуха с высотой вместо обычного для тропосферы её убывания. Инверсия температуры встречаются и у земной поверхности (приземные инверсии температуры.), и в свободной атмосфере. Приземные инверсия температуры чаще всего образуются в безветренные ночи (зимой иногда и днём) в результате интенсивного излучения тепла земной поверхностью, что приводит к охлаждению как её самой, так и прилегающего слоя воздуха. Толщина приземных инверсия температуры составляет десятки - сотни метров. Увеличение температуры в инверсионном слое колеблется от десятых долей градусов до 15-20 °С и более. Наиболее мощны зимние приземные инверсия температуры в Восточной Сибири и в Антарктиде. В тропосфере, выше приземного слоя, инверсия температуры чаще образуются в антициклона

16вопрос В атмосферном воздухе измерялись концентрации веществ, определяемые приоритетным списком вредных примесей, установленным согласно "Временных рекомендаций для составления приоритетного списка вредных примесей, подлежащих контролю в атмосфере", Ленинград, 1983 г. Измерялись концентрации 19 загрязняющих веществ: основных (взвешенные вещества, диоксид серы, оксида углерод, диоксид азота), и специфических (формальдегид, фтористые соединения, бенз(а)пирен, металлы, ртуть).

17 вопрос В Казахстане - 7 крупных рек, длина каждой из которых превышает 1000 км. В их числе: река Урал (её верхнее течение располагается на территории России), впадающая в Каспийское море; Сырдарья (её верхнее течение располагается на территории Киргизии, Узбекистана и Таджикистана) - в Аральское море; Иртыш (его верховья в Китае; на территории Казахстана имеет крупные притоки Тобол и Ишим) пересекает республику, и уже на территории России впадает в Обь, текущую в Северный Ледовитый океан; река Или (её верховья располагаются на территории Китая) впадает в озеро Балхаш. В Казахстане много больших и малых озёр. Самые большие среди них - Каспийское море, Аральское море, Балхаш, Алаколь, Зайсан, Тенгиз. К Казахстану относится большая часть северного и половина восточного побережья Каспийского моря. Длина берега Каспийского моря в Казахстане 2340 км. В Казахстане имеется 13 водохранилищ общей площадью 8816 км² и общим объёмом воды 87,326 км³. Страны мира обеспечены водными ресурсами крайне неравномерно. Наиболее обеспечены водными ресурсами следующие страны: Бразилия (8 233 км3), Россия (4 508 км3), США (3 051 км3), Канада (2 902 км3), Индонезия (2 838 км3), Китай (2 830 км3), Колумбия (2 132 км3), Перу (1 913 км3), Индия (1 880 км3), Конго (1 283 км3), Венесуэла (1 233 км3), Бангладеш (1 211 км3), Бирма (1 046 км3).

Введение

Атмосфера представляет собой среду, в которой происходит распространение атмосферных загрязнителей от их источника; при этом влияние каждого данного источника определяется продолжительностью времени, частотой выпуска загрязнений и той концентрацией, воздействию.которой подвергается какой-либо объект. С другой стороны, метеорологические условия играют лишь незначительную роль в уменьшении или устранении загрязнения воздуха, поскольку, во-первых, они не изменяют абсолютную массу выброса, во-вторых, в настоящее время мы еще не умеем воздействовать на основные протекающие в атмосфере процессы, определяющие степень рассеивания загрязняющих веществ. Проблема атмосферных загрязнений может решаться по трем направлениям: а) путем устранения образования отходов; б) путем установки оборудования для улавливания отходов на месте их образования; в) путем улучшения рассеивания выбросов в атмосфере.

Если допустить, что наилучшим способом устранения атмосферных загрязнений является контроль источников их образования, то практическая задача сводится к тому, чтобы привести расходы по снижению степени загрязнения в соответствие с объемом работ, уменьшающих до приемлемого уровня количество отходов. Величина требуемого для этого уменьшения абсолютной массы выброса загрязнений данным источником, зависит непосредственно от метеорологических условий и их изменения во времени и пространстве над данным районом.

Основные параметры, определяющие распространение и рассеивание загрязняющих веществ в атмосфере, могут быть описаны качественно и полуколичественно. Такие данные позволяют сопоставить различные географические пункты или определить возможную частоту условий, при которых будет происходить быстрая или замедленная диффузия в атмосфере. Наиболее характерным свойством атмосферы является ее непрерывная изменчивость: температура, ветер и осадки широко варьируют в зависимости от широты местности, времени года и топографических условий. Эти условия хорошо изучены и довольно подробно представлены в литературе.

В меньшей мере изучены и описаны в литературе другие важные метеорологические параметры, влияющие на концентрацию атмосферных загрязнений, а именно турбулентная структура ветра, низкие уровни температуры воздуха и градиенты ветра. Эти параметры широко изменяются во времени и пространстве и представляют собой на деле почти единственные метеорологические факторы, которые человек может изменить существенным образом и то лишь локально.

Загрязнение атмосферного воздуха населенных мест рассматривают обычно как результат индустриализации, однако оно включает не только вещества, выделяющиеся в процессе промышленного производства, но и естественные загрязнения, возникающие в результате вулканических извержений (Wexler, 1951), пылевых бурь (Warn, 1953), океанских прибоев (Holzworth, 1957), лесных пожаров (Wexler, 1950), спорообразования растений (Hewson, 1953) и т. д. Оценка физиологического воздействия природных загрязнений атмосферы часто может быть более легкой, чем оценка влияния сложного загрязнения промышленными отходами. Характер природных загрязнений, а часто и их источники, как правило, лучше изучены.

Для того чтобы оценить роль атмосферы в качестве рассеивающей среды, необходимо рассмотреть физические процессы, способствующие рассеиванию различных веществ в атмосфере, а также значение таких неметеорологических факторов, как топография и география местности.

Воздушные течения

Основным параметром, определяющим распространение атмосферных загрязнителей, является ветер, его скорость и направление, которые в свою очередь взаимосвязаны с вертикальным и горизонтальным градиентами температуры воздуха в больших и малых масштабах. Основная закономерность заключается в том что чем больше скорость ветра, тем больше турбулентность и тем быстрее и полнее происходит рассеивание загрязнений с атмосфере. Taк как вертикальный и горизонтальный градиенты температуры зимой увеличиваются, то и скорость, ветра обычно возрастает. Это особенно характерно для умеренных и полярных широт и менее отчетливо проявляется в тропиках, где сезонные колебания невелики. Однако иногда и в зимнее время, особенно в глубине крупных континентов, могут возникать продолжительные периоды слабого движения воздуха или полного штиля. Изучение частоты длительных периодов слабого движения воздуха на североамериканском континенте к востоку от Скалистых гор показало, что такие ситуации возникают наиболее часто поздней весной и ранней осенью. На значительной части европейского континента слабые ветры наблюдаются поздней осенью и ранней зимой (Jalu, 1965). Кроме сезонных колебаний, на многих территориях отмечаются дневные изменения в движении воздуха, которые могут быть даже более заметными. На большинстве континентальных территорий в ночные часы обычно наблюдается устойчивое слабое движение воздуха. В результате ухудшения условий для вертикального распространения атмосферных загрязнений последние рассеиваются медленно и могут концентрироваться в относительно малых объемах воздуха. Содействующий этому слабый, изменчивый ветер может привести даже к обратному распространению загрязнений по направлению к их источнику. В противоположность этому в дневное время ветры характеризуются большей турбулентностью и скоростью; вертикальные токи усиливаются, поэтому в ясный солнечный день происходит максимальное рассеивание загрязняющих веществ.

Местные ветры могут заметно отличаться от общего потока воздуха, характерного для данной области. Разница температур суши и воды вдоль побережья континентов или крупных озер является достаточной для возникновения местных движений воздуха с моря на сушу днем и с суши на море ночью (Pierson, I960); Schmidt, 1957). В умеренных широтах такие закономерности движения морского бриза хорошо заметны лишь летом, в другие времена года они маскируются общими ветрами. Однако в тропических и субтропических районах они могут являться характерными чертами погоды и наблюдаться почти с часовой регулярностью изо дня в день.

Помимо закономерностей движения морского бриза в приморских районах, очень важными факторами являются также топография местности, расположение на ней источников загрязнений или объектов их воздействия. Следует отметить, однако, что замкнутость пространства не является необходимым условием для создания чрезвычайного уровня атмосферных загрязнении, если в этом пространстве имеется достаточно интенсивный источник загрязнения. Лучшим доказательством этого являются эпизодически наблюдающиеся токсические туманы (smog) в Лондоне, где топографические условия не играют почти, или совершенно никакой роли. Однако, за исключением Лондона, все крупные воздушные катастрофы, вызванные загрязнением атмосферы, о которых мы знаем, возникали там, где движение воздуха значительно ограничивалось рельефом местности, так что движение воздуха происходило лишь в одном направлении или в пределах относительно малой территории (Firket, 1936; US Public Health Service, 1949), движение.воздуха в узких долинах характеризуется тем, что днем нагретые солнцем воздушные потоки направляются по склонам долины вверх, тогда как непосредственно перед или после захода солнца воздушные потоки опрокидываются и стекают по склонам долины.вниз (Defant, 1951). Поэтому в условиях долины атмосферные загрязнения могут подвергаться длительному застою на небольшом пространстве (Hewson a. Gill, 1944). Кроме того, поскольку склоны долин защищают их от влияния общей циркуляции воздуха, ветер здесь отличается меньшей скоростью по сравнению с равнинными территориями. B некоторых районах такие местные восходящие и нисходящие потоки воздуха в долинах могут происходить почти ежедневно, в других они наблюдаются лишь как исключительное явление. Существование местных воздушных течений и их изменения во времени являются одной из основных причин, обусловливающих необходимость детального исследования местности для исчерпывающей характеристики закономерностей загрязнения атмосферы (Holland, 1953). Обычная сеть метеорологических станций не в состоянии обнаружить эти небольшие воздушные течения.

Кроме изменений движения воздуха во времени и по горизонтали, обычно наблюдаются значительные различия в его движении и.по вертикали. Неровности земной поверхности, как естественные, так и созданные человеком, образуют препятствия, обусловливающие механические завихрения, уменьшающиеся с увеличением высоты. Кроме того, в результате нагревания земли солнцем образуются термические завихрения, максимальные у земной поверхности и убывающие с высотой, что приводит к уменьшению порывистости ветра по вертикали и последовательному снижению скорости рассеивания загрязнений с увеличением высоты (Magi 11, Holder) a. Ackley, 1956),

Турбулентность, или вихревое движение, представляет собой механизм, обеспечивающий эффективную диффузию в атмосфере. Поэтому изучение спектра распространения энергии в вихрях, проводящееся значительно более интенсивно в настоящее время (Panofsky a. McCormick, 1954; Van Dcr Hovcn, 1957), теснейшим образом связано с проблемой рассеивания атмосферных загрязнений. Общая турбулентность состоит в основном из двух компонентов - механической и термической турбулентности. Механическая турбулентность возникает при движении ветра над аэродинамически шероховатой поверхностью земли и пропорциональна степени этой шероховатости и скорости ветра. Термическая турбулентность возникает в результате нагревания земли солнцем и зависит от широты местности, величины излучающей поверхности, и стабильности атмосферы. Она достигает максимума в ясные летние дни и снижается до минимума в течение длинных зимних ночей. Обычно влияние солнечной радиации на тепловую турбулентность измеряется не непосредственно, а путем измерения вертикального градиента температуры. Если вертикальный градиент температуры нижних слоев атмосферы превышает адиабатическую скорость падения температуры, то возрастает вертикальное движение воздуха более заметным становится рассеивание загрязнений, особенно по вертикали. С другой стороны, в стабильных атмосферных условиях, когда различные слои атмосферы имеют одинаковую температуру или когда температурный градиент с увеличением высоты становится положительным, необходимо затратить значительную энергию для увеличения вертикального движения. Даже при эквивалентных скоростях ветра стабильные атмосферные условия обычно приводят к концентрации загрязнений в относительно ограниченных слоях воздуха.

Типичный дневной цикл изменения температурного градиента над открытой местностью в безоблачный день начинается с образования неустойчивой скорости падения температуры, усиливающейся днем благодаря интенсивному тепловому излучению солнца, что приводит к возникновению сильной турбулентности. Непосредственно перед или вскоре после захода солнца приземный слой воздуха быстро охлаждается и возникает устойчивая скорость падения температуры (повышение температуры c высотой). В течение ночи интенсивность и глубина этой инверсии возрастают, достигая максимума между полуночью и тем временем суток, когда земная поверхность имеет минимальную температуру. В течение этого периода атмосферные загрязнения эффективно задерживаются внутри слоя инверсии или ниже его благодаря слабому или полном отсутствию рассеивания загрязнений по вертикали. Следует отметить, что в условиях застоя загрязнители, сбрасываемые у поверхности земли, не распространяются в верхние слои воздуха и, наоборот, выбросы из высоких труб в этих условиях большей частью не проникают е ближайшие к земле слои воздуха (Church, 1949). С наступлением дня земля начинает нагреваться и инверсия постепенно ликвидируется. Это может привести к "фумигации" (Hewson a. Gill. 1944) благодаря тому, что загрязнения, попавшие в течение ночи в верхние слои воздуха, начинают быстро перемешиваться и устремляются вниз, поэтому в ранние предполуденные часы, предшествующие полному развитию турбулентности, заканчивающей дневной цикл и обеспечивающей мощное перемешивание, часто возникают высокие концентрации атмосферных загрязнений. Этот цикл может быть нарушен или изменен при наличии облаков или осадков, препятствующих интенсивной конвекции в дневные часы, но могущих также препятствовать и возникновению сильной инверсии в ночное время.

Установлено, что в городских районах, где чаще всего наблюдается загрязнение атмосферного воздуха, типичный для открытых территорий режим падения температуры подвергается изменениям, особенно в ночное время (Duckworth a. Sandberg, 1954). Промышленные процессы, повышенное выделение тепла в городских районах и неровности поверхности, создаваемые зданиями, способствуют термической и механической турбулентности, усиливающей перемешивание воздушных масс и препятствующей образованию поверхностной инверсии. Благодаря этому основание инверсии, которое в условиях открытой местности располагалось бы на уровне земли, находится здесь над слоем интенсивного перемешивания обычно толщиной около 30-150 м. Эти условия могут свести на нет преимущества выброса загрязнений через высокие трубы, поскольку выпускаемые отходы будут концентрироваться в относительно ограниченном пространстве.

При анализе воздушных течений в большинстве случаев для удобства допускается, что ветер сохраняет постоянное направление и скорость на обширной территории в течение значительного периода. В действительности это не так, и при детальном анализе движения воздуха необходимо учитывать эти отклонения. Там где движение ветра вследствие различия градиента атмосферного давления или топографии местности меняется от места к месту или со временем, крайне важно производить анализы метеорологических траекторий при изучении влияния выпускаемых загрязнений или установлении возможного источника их (Nciburgcr, 1956). Вычисление детальных траекторий требует множества точных измерений ветра, однако и вычисление приблизительных траекторий, для чего часто бывает достаточно лишь немногих наблюдений над движением ветра, также может принести пользу.

При краткосрочных исследованиях атмосферных загрязнений, локализованных на небольших территориях, обычные метеорологические данные являются недостаточными. В значительной мере это объясняется затруднениями, возникающими вследствие использования приборов, обладающих различными характеристиками, неодинакового местоположения приборов, различных способов отбора проб и различных периодов наблюдения.

Диффузионные процессы в атмосфере

Мы не будем пытаться перечислять здесь разнообразные теоретические предпосылки к проблеме диффузии в атмосфере или рабочие формулы, которые разработаны в этой области. Исчерпывающие данные по этим вопросам приводятся в литературе (Bat-chelor a. Davies, 3956; iMagill, Bolden a. Ackley, 3956; Sutton, 1053; US Atomic Energy Commision a. US Wacther Bureau, 1955). Кроме того, специальная группа Всемирной метеорологической организации периодически представляет обзоры этой проблемы. Поскольку проблема "Понимается лишь в общих чертах и формулировки имеют приблизительную точность, математические сложности, возникающие при изучении изменений ветра и тепловой структуры нижних слоев атмосферы, еще далеко не преодолены для всего разнообразия метеорологических условий. Точно так же в настоящее время мы располагаем лишь отрывочными сведениями относительно турбулентности, распределения ее энергии в трех измерениях, изменений во времени и пространстве. Несмотря на недостаточное понимание турбулентных процессов, рабочие формулы позволяют вычислить концентрации выбросов из отдельных источников, которые удовлетворительно согласуются с данными инструментальных замеров, если не считать высотных труб в условиях инверсии. Соответствующее применение этих формул дало возможность сделать полезные практические выводы об уровне загрязнений атмосферного воздуха из единичного источника. Очень немногие попытки (Frenkel, 1956; Lettau, 1931) сводились к использованию аналитических методов для расчета концентрации атмосферных загрязнений, выбрасываемых из множественных источников, как это имеет место в крупных городах. Такой подход обладает значительными преимуществами, но он требует выполнения очень сложных расчетов, а также разработки эмпирических приемов для учета топографических и зональных параметров. Несмотря на эти затруднения, точность методов аналитического расчета, по-видимому, в настоящее время соответствует точности наших знаний о распределении источников загрязнений, их мощности и колебаний во времени. Поэтому для получения полезных практических выводов эта точность достаточна. Периодическое выполнение аналитических расчетов этого типа позволило бы определять возможность повторения периодов высоких концентраций атмосферных загрязнений, определять их "хронический" уровень, оценивать роль (различных источников при разных метеорологических условиях и подвести математическую базу под различные меры снижения загрязнения воздуха (зонирование, размещение промышленных предприятий, ограничение выбросов и др.).