Задачи с окружностью, описанной около четырехугольника. Задачи с окружностью, вписанной в четырехугольник

Окружность называется вписанной в четырехугольник, если все стороны четырехугольника являются касательными к окружности.

Центром этой окружности является точка пересечения биссектрис углов четырехугольника. В этом случае радиусы, проведенные в точки касания являются перпендикулярами к сторонам четырехугольника

Окружность называется описанной около четырехугольника, если она проходит через все его вершины.

Центром этой окружности является точка пересечения серединных перпендикуляров к сторонам четырехугольника

Не во всякий четырехугольник можно вписать окружность и не около всякого четырехугольника можно описать окружность

СВОЙСТВА ВПИСАННЫХ И ОПИСАННЫХ ЧЕТЫРЕХУГОЛЬНИКОВ

ТЕОРЕМА В выпуклом вписанном четырехугольнике суммы противолежащих углов равны между собой и равны 180°.

ТЕОРЕМА Обратно: если в четырехугольнике суммы противолежащих углов равны, то около четырехугольника можно описать окружность. Ее центр - точка пересечения серединных перпендикуляров к сторонам.

ТЕОРЕМА Если в четырехугольник вписана окружность, то суммы противолежащих сторон его равны.

ТЕОРЕМА Обратно: если в четырехугольнике суммы противолежащих сторон равны, то в него можно вписать окружность. Ее центр - точка пересечения биссектрис.

Следствия: из всех параллелограммов только около прямоугольника (в частности около квадрата) можно описать окружность.

Из всех параллелограммов только в ромб (в частности в квадрат) можно вписать окружность (центр - точка пересечения диагоналей, радиус - равен половине высоты).

Если около трапеции можно описать окружность, то она равнобедренная. Около любой равнобедренной трапеции можно описать окружность.

Если в трапецию вписана окружность, то радиус ее равен половине высоты.

Задания с решениями

1. Найти диагональ прямоугольника, вписанного в окружность, радиус которой равен 5.

Центром окружности, описанной около прямоугольника является точка пересечения его диагоналей. Следовательно, диагональ АС равна 2R . То есть АС =10
Ответ: 10.

2. Около трапеции, основания которой 6 см и 8 см, а высота 7см, описан круг Найти площадь этого круга.

Пусть DC =6, AB =8. Так как около трапеции описана окружность, то она равнобедренная.

Проведем две высоты DM и CN .Так как трапеция равнобедренная, то AM=NB =

Тогда AN =6+1=7

Из треугольника ANС по теореме Пифагора найдем АС .

Из треугольника CВN по теореме Пифагора найдем ВС .

Окружность, описанная около трапеции, является и окружностью, описанной около треугольника АСВ.

Найдем площадь этого треугольника двумя способами по формулам

Гдe h - высота и - основание треугольника

Где R- радиус описанной окружности.

Из этих выражений получаем уравнение . Откуда

Площадь круга будет равна

3. Углы , и четырехугольника относятся как . Найдите угол , если около данного четырехугольника можно описать окружность. Ответ дайте в градусах

Из условия следует, что .Так как около четырехугольника можно описать окружность, то

Получаем уравнение . Тогда . Сумма всех углов четырехугольника равна 360º. Тогда

. откуда получаем, что

4.Боковые стороны трапеции, описанной около окружности, равны 3 и 5. Найдите среднюю линию трапеции.

Тогда средняя линия равна

5. Периметр прямоугольной трапеции, описанной около окружности, равен 22, ее большая боковая сторона равна 7. Найдите радиус окружности.

В трапеции радиус вписанной окружности равен половине высоты. Проведем высоту СК.

Тогда .

Так как в трапецию вписана окружность, то суммы длин противоположных сторон равны. Тогда

Тогда периметр

Получаем уравнение

6. Основания равнобедренной трапеции равны 8 и 6. Радиус описанной окружности равен 5. Найдите высоту трапеции.

Пусть О центр описанной около трапеции окружности. Тогда .

Проведем высоту КН через точку О

Тогда , где КО и ОН высоты и одновременно медианы равнобедренных треугольников DOC и АОВ. Тогда

По теореме Пифагора.

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Четырёхугольник вписан в окружность (задачи). Продолжаем рассматривать задания входящие в состав ЕГЭ по математике. В этой статье мы решим несколько задач с использованием свойств вписанного угла. Теория была подробно уже изложена, . В указанной статье решение заданий по сути сводилось к применению свойства вписанного угла сразу же, то есть это были задания практически в одно действие. Здесь нужно чуть подумать, ход решения не всегда с ходу очевиден.

Применяются: теорема о сумме углов треугольника, свойства вписанного угла, свойство четырёхугольника вписанного в окружность. О последнем подробнее.

*Это свойство было уже представлено, но в другой интерпретации. Итак:


Свойства:

Вписанный четырехугольник - это четырехугольник, все вершины которого лежат на одной окружности.

Четырехугольник можно вписать в окружность тогда и только тогда, когда суммы его противоположных углов равны 180 градусам.

То есть, если мы такой четырёхугольник, то сумма его противоположных углов равна 180 градусам.

Рассмотрим задачи:

27870. В окружности с центром O AC и BD - диаметры. Центральный угол AOD равен 110 0 . Найдите вписанный угол ACB . Ответ дайте в градусах.

Треугольник B ОC равнобедренный, так как ОС=ОВ (это радиусы). Известно, что сумма углов треугольника равна 180 градусам. Рассмотрим ∠BOC и ∠AOD:

Следовательно

Углы при основании равнобедренного треугольника равны, то есть

Другой способ:

Угол АОВ является центральным углом для вписанного угла АСВ. По свойству вписанного в окружность угла

Сумма смежных углов равна 180 0 , значит

Таким образом

Ответ: 35

27871. Угол А четырехугольника ABCD, вписанного в окружность, равен 58 0 . Найдите угол C этого четырехугольника. Ответ дайте в градусах.

Здесь достаточно вспомнить свойство такого четырёхугольника. Известно, что сумма его противоположных углов такого равна 180 градусам, значит угол С будет равен

Второй способ:

Построим ОВ и OD.

По свойству вписанного угла градусная величина дуги BCD равна

2∙58 0 = 116 0

Следовательно градусная величина дуги BAD будет равна

360 0 – 116 0 = 244 0

По свойству вписанного угла угол С будет в два раза меньше, то есть 122 0 .

Ответ: 122

27872. Стороны четырехугольника ABCD AB , BC , CD и AD стягивают дуги описанной окружности, градусные величины которых равны соответственно 95 0 , 49 0 , 71 0 , 145 0 . Найдите угол B этого четырехугольника. Ответ дайте в градусах.

Построим радиусы АО, OD, OC:

Градусная величина дуги AD равна 145 0 , градусная величина дуги СD равна 71 0 , значит градусная величина дуги АDС равна 145 0 + 71 0 = 216 0 .

По свойству вписанного угла угол В будет в два раза меньше центрального угла соответствующего дуге АDС, то есть

Ответ: 108

27874. Четырехугольник ABCD вписан в окружность. Угол ABC равен 105 0 , угол CAD равен 35 0 . Найдите угол ABD . Ответ дайте в градусах.

Данная задача может вызвать затруднение. Сразу невозможно явно увидеть ход решения. Вспомним, что известно про вписанный четырёхугольник: сумма его противоположных углов равна 180 градусам. Найдём

На данный момент мы нашли тот угол, который сразу же возможно определить по известному свойству. Если есть возможность найти какую-либо величину, сделайте это, пригодится. Действуем по принципу «находим то, что можно найти исходя из данных величин».

Вписанные углы ABD и ACD опираются на одну и туже дугу, это означает, что они равны, то есть

Ответ: 70

27875. Четырехугольник ABCD вписан в окружность. Угол ABD равен 75 0 , угол CAD равен 35 0 . Найдите угол ABC . Ответ дайте в градусах.

Известно, что вписанные углы опирающиеся на одну и ту же дугу, и лежащие от неё по одну сторону равны. Следовательно

В треугольнике ACD известно два угла, можем найти третий:

Отмечу, что важно помнить указанные свойства и задачи вы решите без проблем. Конечно, можно выстроить решение не совсем корректно. Например, в задаче 27876 для самостоятельного решения приведено «длинное», или как ещё говорят нерациональное решение. Ничего страшного, если вы именно также решите задачу.

Главное чтобы вы помнили и применяли теорию, и в конечном итоге РЕШИЛИ задание.

В данной рубрике продолжим рассматривать задачи, приглашаю вас на блог!

На этом всё. Успеха вам!

С уважением, Александр Крутицких

Комиссия спрашивает у директора простой сельской школы:
— По какой причине у вас все дети говорят: пришедши, ушедши?
— А кто их знает, может они так привыкши!

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Материал из Википедии - свободной энциклопедии

  • В евклидовой геометрии , вписанный четырехугольник - это четырехугольник, у которого все вершины лежат на одной окружности. Эта окружность называется описанной окружностью четырехугольника, а вершины, как говорят, лежат на одной окружности. Центр этой окружности и ее радиус называются соответственно центром и радиусом описанной окружности. Другие термины для этого четырехугольника: четырехугольник лежит на одной окружности , стороны последнего четырехугольника являются хордами окружности. Обычно предполагается, что выпуклый четырехугольник является выпуклым четырехугольником. Формулы и свойства, приведенные ниже, действительны в выпуклом случае.
  • Говорят, что если около четырёхугольника можно описать окружность , то четырёхугольник вписан в эту окружность , и наоборот.

Общие критерии вписанности четырехугольника

  • Около выпуклого четырёхугольника \pi радиан), то есть:
\angle A+\angle C = \angle B + \angle D = 180^\circ

или в обозначениях рисунка:

\alpha + \gamma = \beta + \delta = \pi = 180^{\circ}.

  • Можно описать окружность около любого четырехугольника, у которого пересекаются в одной точке четыре серединных перпендикуляра его сторон (или медиатрисы его сторон, то есть перпендикуляры к сторонам, проходящие через их середины).
  • Можно описать окружность около любого четырехугольника, у которого один внешний угол, смежный с данным внутренним углом , точно равен другому внутреннему углу, противолежащему данному внутреннему углу . По сути это условие есть условие антипараллельности двух противоположных сторон четырехугольника. На рис. ниже показан внешний и смежный с ним внутренний углы зеленого пятиугольника.
\displaystyle AX\cdot XC = BX\cdot XD.
  • Пересечение X может быть внутренним или внешним по отношению к кругу. В первом случае получим вписанный четырехугольник является ABCD , а в последнем случае получим вписанный четырехугольник ABDC . При пересечении внутри круга, равенство гласит, что произведение длин сегментов, в котором точка X делит одну диагональ, равна произведению длин сегментов, в котором точка X делит другую диагональ. Это условие известно, как "теорема о пересекающихся хордах". В нашем случае диагонали вписанного четырехугольника являются хордами окружности.
  • Еще один критерий вписанности. Выпуклый четырехугольник ABCD вписан круг тогда и только тогда, когда
\tan{\frac{\alpha}{2}}\tan{\frac{\gamma}{2}}=\tan{\frac{\beta}{2}}\tan{\frac{\delta}{2}}=1.

Частные критерии вписанности четырехугольника

Вписанный простой (без самопересечений) четырёхугольник является выпуклым . Около выпуклого четырёхугольника можно описать окружность тогда и только тогда, когда сумма его противоположных углов равна 180° (\pi радиан). Можно описать окружность около:

  • любого антипараллелограмма
  • любого прямоугольника (частный случай квадрат)
  • любой равнобедренной трапеции
  • любого четырехугольника, у которого два противоположных угла прямые.

Свойства

Формулы с диагоналями

ef=ac+bd; \frac{e}{f} = \frac{a\cdot d+b\cdot c}{a\cdot b+c\cdot d}.

В последней формуле пары смежных сторон числителя a и d , b и c опираются своими концами на диагональ длиной e . Аналогичное утверждение имеет место для знаменателя.

  • Формулы для длин диагоналей (следствия ):
e = \sqrt{\frac{(ac+bd)(ad+bc)}{ab+cd}} и f = \sqrt{\frac{(ac+bd)(ab+cd)}{ad+bc}}

Формулы с углами

Для вписанного четырехугольника с последовательностью сторон a , b , c , d , с полупериметром p и углом A между сторонами a и d , тригонометрические функции угла A даются формулами

\cos A = \frac{a^2 + d^2 - b^2 - c^2}{2(ad + bc)}, \sin A = \frac{2\sqrt{(p-a)(p-b)(p-c)(p-d)}}{(ad+bc)}, \tan \frac{A}{2} = \sqrt{\frac{(p-a)(p-d)}{(p-b)(p-c)}}.

Угол θ между диагоналями есть :p.26

\tan \frac{\theta}{2} = \sqrt{\frac{(p-b)(p-d)}{(p-a)(p-c)}}.

  • Если противоположные стороны a и c пересекаются под углом φ , то он равен
\cos{\frac{\varphi}{2}}=\sqrt{\frac{(p-b)(p-d)(b+d)^2}{(ab+cd)(ad+bc)}},

где p есть полупериметр . :p.31

Радиус окружности, описанной около четырёхугольника

Формула Парамешвара (Parameshvara)

Если четырехугольник с последовательными сторонами a , b , c , d и полупериметром p вписан окружность, то ее радиус равен по формуле Парамешвара :p. 84

R= \frac{1}{4} \sqrt{\frac{(ab+cd)(ad+bc)(ac+bd)}{(p-a)(p-b)(p-c)(p-d)}}.

Она была получена индийским математиком Парамешваром в 15 веке (ок. 1380–1460 гг.)

  • Выпуклый четырёхугольник (см. рис. справа), образованный четырьмя данными прямыми Микеля , вписан в окружность тогда и только тогда, когда точка Микеля M четырёхугольника лежит на прямой, соединяющей две из шести точек пересечения прямых (те, которые не являются вершинами четырёхугольника). То есть, когда M лежит на EF .

Критерий того, что четырехугольник, составленный из двух треугольников, вписан в некоторую окружность

f^2 = \frac{(ac+bd)(ad+bc)}{(ab+cd)}.
  • Последнее условие дает выражение для диагонали f четырёхугольника, вписанного в окружность, через длины четырех его сторон (a , b , c , d ). Эта формула немедленно следует при перемножении и при приравнивании друг другу левых и правых частей формул, выражающих суть первой и второй теорем Птолемея (см.выше).

Критерий того, что четырехугольник, отрезанный прямой линией от треугольника, вписан в некоторую окружность

  • Прямая, антипараллельная стороне треугольника и пересекающая его, отсекает от него четырёхугольник, около которого всегда можно описать окружность.
  • Следствие. Около антипараллелограмма , у которого две противоположные стороны антипараллельны, всегда можно описать окружность.

Площадь вписанного в окружность четырёхугольника

Варианты формулы Брахмагупты

S=\sqrt{(p-a)(p-b)(p-c)(p-d)}, где p - полупериметр четырёхугольника. S= \frac{1}{4} \sqrt{- \begin{vmatrix}

a & b & c & -d \\ b & a & -d & c \\ c & -d & a & b \\ -d & c & b & a \end{vmatrix}}

Другие формулы площади

S = \tfrac{1}{2}(ab+cd)\sin{B} S = \tfrac{1}{2}(ac+bd)\sin{\theta},

где θ любой из углов между диагоналями. При условии, что угол A не является прямым, площадь также может быть выражена как :p.26

S = \tfrac{1}{4}(a^2-b^2-c^2+d^2)\tan{A}. \displaystyle S=2R^2\sin{A}\sin{B}\sin{\theta},

где R есть радиус описанной окружности . Как прямое следствие имеем неравенство

S\le 2R^2,

где равенство возможно тогда и только тогда, когда этот четырехугольник является квадратом.

Четырехугольники Брахмагупты

Четырехугольник Брахмагупты является четырехугольником, вписанным в окружность, с целыми значениями длин сторон, целыми значениями его диагоналей и с целым значением его площади. Все возможные четырехугольники Брахмагупты со сторонами a , b , c , d , с диагоналями e , f , с площадью S , и радиусом описанной окружности R могут быть получены путем освобождения от знаменателей следующих выражений, включающих рациональные параметры t , u , и v :

a= b=(1+u^2)(v-t)(1+tv) c=t(1+u^2)(1+v^2) d=(1+v^2)(u-t)(1+tu) e=u(1+t^2)(1+v^2) f=v(1+t^2)(1+u^2) S=uv 4R=(1+u^2)(1+v^2)(1+t^2).

Примеры

  • Частными четырёхугольниками, вписанными в окружность, являются: прямоугольник , квадрат , равнобедренная или равнобочная трапеция , антипараллелограмм .

Четырехугольники, вписанные в окружность с перпендикулярными диагоналями (вписанные ортодиагональные четырехугольники)

Свойства четырехугольников, вписанных в окружность с перпендикулярными диагоналями

Радиус описанной окружности и площадь

У четырехугольника, вписанного в окружность с перпендикулярными диагоналями, предположим, что пересечение диагоналей делит одну диагональ на отрезки длины p 1 и p 2 , а другую диагональ делит на отрезки длины q 1 и q 2 . Тогда (Первое равенство является Предложением 11 у Архимеда " Книга лемм )

D^2=p_1^2+p_2^2+q_1^2+q_2^2=a^2+c^2=b^2+d^2,

где D - диаметр cокружности . Это справедливо, потому что диагонали перпендикулярны хорды окружности . Из этих уравнений следует, что радиус описанной окружности R может быть записан в виде

R=\tfrac{1}{2}\sqrt{p_1^2+p_2^2+q_1^2+q_2^2}

или в терминах сторон четырехугольника в виде

R=\tfrac{1}{2}\sqrt{a^2+c^2}=\tfrac{1}{2}\sqrt{b^2+d^2}.

Отсюда также следует, что

a^2+b^2+c^2+d^2=8R^2.

  • Для вписанных ортодиагональных четырехугольников справедлива теорема Брахмагупты :

Если вписанный четырёхугольник имеет перпендикулярные диагонали, пересекающиеся в точке M, то две пары его антимедиатрис проходят через точку M.

Замечание . В этой теореме под антимедиатрисой понимают отрезок FE четырехугольника на рисунке справа (по аналогии с серединным перпендикуляром (медиатрисой) к стороне треугольника). Он перпендикулярен одной стороне и одновременно проходит через середину противоположной ей стороны четырехугольника.

Напишите отзыв о статье "Четырехугольники, вписанные в окружность"

Примечания

  1. Bradley, Christopher J. (2007), The Algebra of Geometry: Cartesian, Areal and Projective Co-Ordinates , Highperception, с. 179, ISBN 1906338000 , OCLC
  2. . Вписанные четырёхугольники.
  3. Siddons, A. W. & Hughes, R. T. (1929), Trigonometry , Cambridge University Press, с. 202, OCLC
  4. Durell, C. V. & Robson, A. (2003), , Courier Dover, ISBN 978-0-486-43229-8 ,
  5. Alsina, Claudi & Nelsen, Roger B. (2007), "", Forum Geometricorum Т. 7: 147–9,
  6. Johnson, Roger A., Advanced Euclidean Geometry , Dover Publ., 2007 (orig. 1929).
  7. Hoehn, Larry (March 2000), "Circumradius of a cyclic quadrilateral", Mathematical Gazette Т. 84 (499): 69–70
  8. .
  9. Altshiller-Court, Nathan (2007), College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle (2nd ed.), Courier Dover, сс. 131, 137–8, ISBN 978-0-486-45805-2 , OCLC
  10. Honsberger, Ross (1995), , Episodes in Nineteenth and Twentieth Century Euclidean Geometry , vol. 37, New Mathematical Library, Cambridge University Press, сс. 35–39, ISBN 978-0-88385-639-0
  11. Weisstein, Eric W. (англ.) на сайте Wolfram MathWorld .
  12. Bradley, Christopher (2011), ,
  13. .
  14. Coxeter, Harold Scott MacDonald & Greitzer, Samuel L. (1967), , Geometry Revisited , Mathematical Association of America, сс. 57, 60, ISBN 978-0-88385-619-2
  15. .
  16. Andreescu, Titu & Enescu, Bogdan (2004), , Mathematical Olympiad Treasures , Springer, сс. 44–46, 50, ISBN 978-0-8176-4305-8
  17. .
  18. Buchholz, R. H. & MacDougall, J. A. (1999), "", Bulletin of the Australian Mathematical Society Т. 59 (2): 263–9, DOI 10.1017/S0004972700032883
  19. .
  20. Johnson, Roger A., Advanced Euclidean Geometry , Dover Publ. Co., 2007
  21. , с. 74.
  22. .
  23. .
  24. .
  25. Peter, Thomas (September 2003), "Maximizing the area of a quadrilateral", The College Mathematics Journal Т. 34 (4): 315–6
  26. Prasolov, Viktor, ,
  27. Alsina, Claudi & Nelsen, Roger (2009), , , Mathematical Association of America, с. 64, ISBN 978-0-88385-342-9 ,
  28. Sastry, K.R.S. (2002). «» (PDF). Forum Geometricorum 2 : 167–173.
  29. Posamentier, Alfred S. & Salkind, Charles T. (1970), , Challenging Problems in Geometry (2nd ed.), Courier Dover, сс. 104–5, ISBN 978-0-486-69154-1
  30. .
  31. .
  32. .

См. также

Тема «Окружность, описанная около правильного многоугольника» довольно подробно рассматривается в рамках школьной программы. Несмотря на это, задания, относящиеся к данному разделу планиметрии, вызывают у многих старшеклассников определенные сложности. При этом понимать принцип решения задач ЕГЭ с окружностью, описанной около многоугольника, должны выпускники с любым уровнем подготовки.

Как подготовиться к единому госэкзамену?

Для того чтобы задания ЕГЭ по теме «Окружность, описанная около правильного многоугольника» не вызывали у учащихся затруднений, занимайтесь вместе с образовательным порталом «Школково». С нами вы сможете повторить теоретический материал по темам, которые вызывают у вас трудности. Теоремы и формулы, которые раньше казались достаточно сложными, у нас изложены доступно и понятно.

Чтобы освежить в памяти основные определения и понятия об углах и центре окружности, описанной около многоугольника, а также теоремы, связанные с длинами отрезков , выпускникам достаточно перейти в раздел «Теоретическая справка». Здесь мы разместили материал, составленный нашими опытными сотрудниками специально для учащихся с различным уровнем подготовки.

Чтобы закрепить усвоенную информацию, старшеклассники могут попрактиковаться в выполнении упражнений. На образовательном портале «Школково» в разделе «Каталог» представлена большая база задач различной сложности для максимально эффективной подготовки к ЕГЭ. В каждом задании на сайте прописан алгоритм решения и дан правильный ответ. База упражнений «Школково» регулярно обновляется и дополняется.

Практиковаться в выполнении задач на нашем сайте учащиеся из Москвы и других российских городов могут в онлайн-режиме. В случае необходимости любое упражнение можно сохранить в разделе «Избранное». В дальнейшем к этому заданию можно будет вернуться и, к примеру, обсудить алгоритм его решения со школьным преподавателем или репетитором.