Зачем нужно классическое определение вероятности. Классическая вероятность

Теория вероятностей - математическая наука, изучающая закономерности в случайных явлениях. Возникновение теории относится к середине XVII века и связано с именем Гюйгенса, Паскаля, Ферма, Я. Бернулли.

Неразложимые исходы,..., некоторого эксперимента будем называть элементарными событиями, а их совокупность

(конечным) пространством элементарных событий, или пространством исходов.

Пример 21. а) При подбрасывании игральной кости пространство элементарных событий состоит из шести точек:

б) Подбрасываем монету два раза подряд, тогда

где Г - "герб", Р - "решетка" и общее число исходов

в) Подбрасываем монету до первого появления "герба", тогда

В этом случае называется дискретным пространством элементарных событий.

Обычно интересуются не тем, какой конкретно исход имеет место в результате испытания, а тем, принадлежит ли исход тому или иному подмножеству всех исходов. Все те подмножества, для которых по условиям эксперимента возможен ответ одного из двух типов: "исход " или "исход ", будем называть событиями.

В примере 21 б) множество = {ГГ, ГР, РГ} является событием, состоящим в том, что выпадает по крайней мере один "герб". Событие состоит из трех элементарных исходов пространства, поэтому

Суммой двух событий и называется событие, состоящее в выполнении события или события.

Произведением событий и называется событие, состоящее в совместном исполнении события и события.

Противоположным по отношению к событию называется событие, состоящее в непоявлении и, значит, дополняющее его до.

Множество называется достоверным событием, пустое множество - невозможным.

Если каждое появление события сопровождается появлением, то пишут и говорят, что предшествует или влечет за собой.

События и называются равносильными, если и.

Определение. Вероятностью события называется число, равное отношению числа элементарных исходов, составляющих событие, к числу всех элементарных исходов

Случай равновозможных событий, (называется "классическим", поэтому и вероятность

называется "классической".

Элементарные события (исходы опыта), входящие в событие, называются "благоприятными".

Свойства классической вероятности:

Если (и - несовместные события).

Пример 22 (задача Гюйгенса). В урне 2 белых и 4 черных шара. Один азартный человек держит пари с другим, что среди вынутых 3 шаров будет ровно один белый. В каком отношении находятся шансы спорящих?

Решение 1 (традиционное). В данном случае испытание = {вынимание 3 шаров}, а событие - благоприятствующее одному из спорящих:

= {достать ровно один белый шар}.

Поскольку порядок вынимания трех шаров не важен, то

Один белый шар можно достать в случаев, а два черных - , и тогда по основному правилу комбинаторики. Отсюда а по пятому свойству вероятности Следовательно,

Решение 2. Составим вероятностное дерево исходов:

Пример 23. Рассмотрим копилку, в которой осталось четыре монеты - три по 2 руб. и одна в 5 руб. Извлекаем две монеты.

Решение. а) Два последовательных извлечения (с возвращением) могут привести к следующим исходам:

Какова вероятность каждого из этих исходов?

В таблице показаны все шестнадцать возможных случаев.

Следовательно,

К тем же результатам ведет и следующее дерево:

б) Два последовательных извлечения (без повторения) могут привести к следующим трем исходам:

В таблице покажем все возможные исходы:

Следовательно,

К тем же результатам ведет и соответствующее дерево:

Пример 24 (задача де Мере). Двое играют в "орлянку" до пяти побед. Игра прекращена, когда первый выиграл четыре партии, а второй - три. Как в этом случае следует поделить первоначальную ставку?

Решение. Пусть событие = {выиграть приз первым игроком}. Тогда вероятностное дерево выигрыша для первого игрока следующее:

Отсюда, и три части ставки следует отдать первому игроку, а второму - одну часть.

Покажем эффективность решения вероятностных задач с помощью графов и на следующем примере, который мы рассматривали в §1 (пример 2).

Пример 25. Является ли выбор с помощью "считалки" справедливым?

Решение. Составим вероятностное дерево исходов:

и, следовательно, при игре в "считалки" выгодней стоять вторым.

В последнем решении использованы интерпретации на графах теорем сложения и умножения вероятностей:

и в частности

Если и - несовместные события

и, если и - независимые события.

Статическая вероятность

Классическое определение при рассмотрении сложных проблем наталкивается на трудности непреодолимого характера. В частности, в некоторых случаях выявить равновозможные случаи может быть невозможно. Даже в случае с монеткой, как известно существует явно не равновероятная возможность выпадения "ребра", которую из теоретических соображений оценить невозможно (можно только сказать, что оно маловероятно и то это соображение скорее практическое). Поэтому еще на заре становления теории вероятностей было предложено альтернативное "частотное" определение вероятности. А именно, формально вероятность можно определить как предел частоты наблюдений события A, предполагая однородность наблюдений (то есть одинаковость всех условий наблюдения) и их независимость друг от друга:

где - количество наблюдений, а - количество наступлений события.

Несмотря на то, что данное определение скорее указывает на способ оценки неизвестной вероятности - путем большого количества однородных и независимых наблюдений - тем не менее в таком определении отражено содержание понятия вероятности. А именно, если событию приписывается некоторая вероятность, как объективная мера его возможности, то это означает, что при фиксированных условиях и многократном повторении мы должны получить частоту его появления, близкую к (тем более близкую, чем больше наблюдений). Собственно, в этом заключается исходный смысл понятия вероятности. В основе лежит объективистский взгляд на явления природы. Ниже будут рассмотрены так называемые законы больших чисел, которые дают теоретическую основу (в рамках излагаемого ниже современного аксиоматического подхода) в том числе для частотной оценки вероятности.

Классическая вероятность и ее свойства

Вероятность - одно из основных понятий теории вероятностей. Существует несколько определений этого понятия. Приведем определение, которое называют классическим.

Вероятностью события называется отношение числа элементарных исходов, благоприятствующих данному событию, к числу всех равновозможных исходов опыта, в котором может появиться это событие.

Вероятность события А обозначают через Р(А) (здесь Р – первая буква французского слова probabilite – вероятность).

В соответствии с определением

где – число элементарных исходов испытания, благоприятствующих появлению события ;

Общее число возможных элементарных исходов испытания.

Это определение вероятности называют классическим . Оно возникло на начальном этапе развития теории вероятностей.

Часто число называют относительной частотой появления события А в опыте.

Чем больше вероятность события, тем чаще оно наступает, и наоборот, чем меньше вероятность события, тем реже оно наступает. Когда вероятность события близка к единице или равна единице, то оно наступает почти при всех испытаниях. О таком событии говорят, что оно практически достоверно , т. е. что можно наверняка рассчитывать на его наступление.

Наоборот, когда вероятность равна нулю или очень мала, то событие наступает крайне редко; о таком событии говорят, что оно практически невозможно .

Иногда вероятность выражают в процентах: Р(А) 100% есть средний процент числа появлений события A .

Пример 2.13. Набирая номер телефона, абонент забыл одну цифру и набрал ее наудачу. Найти вероятность того, что набрана нужная цифра.

Решение.

Обозначим через А событие - «набрана нужная цифра».

Абонент мог набрать любую из 10 цифр, поэтому общее число возможных элементарных исходов равно 10. Эти исходы несовместны, равновозможны и образуют полную группу. Благоприятствует событию А лишь один исход (нужная цифра лишь одна).

Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:

Формула классической вероятности дает очень простой, не требующий проведения экспериментов, способ вычисления вероятностей. Однако простота этой формулы очень обманчива. Дело в том, что при ее использовании возникают, как правило, два очень непростых вопроса:

1. Как выбрать систему исходов опыта так, чтобы они были равновозможны, и можно ли это сделать вообще?

2. Как найти числа m и n ?

Если в опыте участвуют несколько предметов, равновозможные исходы увидеть не всегда просто.

Великий французский философ и математик Даламбер вошел в историю теории вероятностей со своей знаменитой ошибкой, суть которой в том, что он неверно определил равновозможность исходов в опыте всего с двумя монетами!

Пример 2.14. (ошибка Даламбера ). Подбрасываются две одинаковые монеты. Какова вероятность того, что они упадут на одну и ту же сторону?

Решение Даламбера.

Опыт имеет три равновозможных исхода:

1. Обе монеты упадут на «орла»;

2. Обе монеты упадут на «решку»;

3. Одна из монет упадет на «орла», другая на «решку».

Правильное решение.

Опыт имеет четыре равновозможных исхода:

1. Первая монета упадет на «орла», вторая тоже на «орла»;

2. Первая монета упадет на «решку», вторая тоже на «решку»;

3. Первая монета упадет на «орла», а вторая - на «решку»;

4. Первая монета упадет на «решку», а вторая - на «орла».

Из них благоприятными для нашего события будут два исхода, поэтому искомая вероятность равна .

Даламбер совершил одну из самых распространенных ошибок, допускаемую при вычислении вероятности: он объединил два элементарных исхода в один, тем самым сделав его не равным по вероятности оставшимся исходам опыта.

Вероятностью события называется отношение числа элементарных исходов, благоприятствующих данному событию, к числу всех равно­возможных исходов опыта в котором может появиться это событие. Вероятность события А обозначают через Р(А) (здесь Р - первая буква французского слова probabilite - вероятность). В соответствии с определением
(1.2.1)
где - число элементарных исходов, благоприятствующих событию А; - число всех равновозможных элементарных исходов опыта, образующих полную группу событий.
Это определение вероятности называют классическим. Оно возникло на начальном этапе развития теории вероятностей.

Вероятность события имеет следующие свойства:
1. Вероятность достоверного события равна единице. Обозначим достоверное событие буквой . Для достоверного события , поэтому
(1.2.2)
2. Вероятность невозможного события равна нулю. Обозначим невозможное событие буквой . Для невозможного события , поэтому
(1.2.3)
3. Вероятность случайного события выражается положительным числом, меньшим единицы. Поскольку для случайного события выполняются неравенства , или , то
(1.2.4)
4. Вероятность любого события удовлетворяет неравенствам
(1.2.5)
Это следует из соотношений (1.2.2) -(1.2.4).

Пример 1. В урне 10 одинаковых по размерам и весу шаров, из ко­торых 4 красных и 6 голубых. из урны извлекается один шар. Какова вероятность того, что извлеченный шар окажется голубым?

Решение . Событие "извлеченный шар оказался голубым" обозначим буквой А. Данное испытание имеет 10 равновозможных элементарных исходов, из которых 6 благоприятствуют событию А. В соответствии с формулой (1.2.1) получаем

Пример 2. Все натуральные числа от 1 до 30 записаны на одинако­вых карточках и помещены в урну. После тщательного перемешивания карточек из урны извлекается одна карточка. Какова вероятность того,что число на взятой карточке окажется кратным 5?

Решение. Обозначим через А событие "число на взятой карточке кратно 5". В данном испытании имеется 30 равновозможных элементар­ных исходов, из которых событию А благоприятствуют 6 исходов (числа 5, 10, 15, 20, 25, 30). Следовательно,

Пример 3. Подбрасываются два игральных кубика, подсчитывается сумма очков на верхних гранях. Найти вероятность события В, состоя­щего в том, что на верхних гранях кубиков в сумме будет 9 очков.

Решение. В этом испытании всего 6 2 = 36 равновозможных элемен­тарных исходов. Событию В благоприятствуют 4 исхода: (3;6), (4;5), (5;4), (6;3), поэтому

Пример 4 . Наудачу выбрано натуральное число, не превосходящее 10. Какова вероятность того, что это число является простым?

Решение. Обозначим буквой С событие "выбранное число является простым". В данном случае n = 10, m = 4 (простые числа 2, 3, 5, 7). Следовательно, искомая вероятность

Пример 5. Подбрасываются две симметричные монеты. Чему равна вероятность того, что на верхних сторонах обеих монет оказались цифры?

Решение. Обозначим буквой D событие "на верхней стороне каж­дой монеты оказалась цифра". В этом испытании 4 равновозможных элементарных исходов: (Г, Г), (Г, Ц), (Ц, Г), (Ц, Ц). (Запись (Г, Ц) озна­чает, что на первой монете герб, на второй - цифра). Событию D благо­приятствует один элементарный исход (Ц, Ц). Поскольку m = 1, n = 4 , то

Пример 6. Какова вероятность того, что в наудачу выбранном дву­значном числе цифры одинаковы?

Решение. Двузначными числами являются числа от 10 до 99; всего таких чисел 90. Одинаковые цифры имеют 9 чисел (это числа 11, 22, 33, 44, 55, 66, 77, 88, 99). Так как в данном случае m = 9, n = 90, то
,
где А -событие "число с одинаковыми цифрами".

Пример 7. Из букв слова дифференциал наугад выбирается одна буква. Какова вероятность того, что эта буква будет: а) гласной, б) согласной, в) буквой ч ?

Решение . В слове дuфференцuал 12 букв, из них 5 гласных и 7 со­гласных. Буквы ч в этом слове нет. Обозначим события: А - "гласная буква", В - "согласная буква", С - "буква ч ". Число благоприятствующих элементарных исходов: -для события А, - для события В, - для события С. Поскольку n = 12 , то
, и .

Пример 8. Подбрасывается два игральных кубика, отмечается чис­ло очков на верхней грани каждого кубика. Найти вероятность того, на обоих кубиках выпало одинаковое число очков.

Решение. Обозначим это событие буквой А. Событюо А благопри­ятствуют 6 элементарных исходов: (1;]), (2;2), (3;3), (4;4), (5;5), (6;6). Всего равновозможных элементарных исходов, образующих полную группу событий, в данном случае n=6 2 =36. Значит, искомая вероятность

Пример 9. В книге 300 страниц. Чему равна вероятность того, что наугад открытая страница будет иметь порядковый номер, кратный 5?

Решение. Из условия задачи следует, что всех равновозможных элементарных исходов, образующих полную группу событий, будет n = 300. Из них m = 60 благоприятствуют наступлению указанного со­бытия. Действительно, номер, кратный 5, имеет вид 5k, где k -натураль­ное число, причем , откуда . Следовательно,
, где А - событие "страница" имеет порядковый номер, кратный 5".

Пример 10 . Подбрасываются два игральных кубика, подсчитыва­ется сумма очков на верхних гранях. Что вероятнее -получить в сумме 7 или 8?

Решение . Обозначим события: А - "выпало 7 очков", В - "выпало 8 очков". Событию А благоприятствуют 6 элементарных исходов: (1; 6), (2; 5),(3; 4), (4; 3), (5; 2), (6; 1), а событию В - 5 исходов: (2; 6), (3; 5), (4; 4), (5; 3), (6; 2). Всех равновозможных элементарных исходов n = 6 2 = 36. Значит, и .

Итак, Р(А)>Р(В), то есть получить в сумме 7 очков - более вероятное собы­тие, чем получить в сумме 8 очков.

Задачи

1. Наудачу выбрано натуральное число, не превосходящее 30. Како­ва вероятность того, что это число кратно 3?
2. В урне a красных и b голубых шаров, одинаковых по размерам и весу. Чему равна вероятность того, что наудачу извлеченный шар из этой урны окажется голубым?
3. Наудачу· выбрано число, не превосходящее 30. Какова вероятность того, что это число является делителем зо?
4. В урне а голубых и b красных шаров, одинаковых по размерам и весу. Из этой урны извлекают один шар и откладывают в сторону. Этот шар оказался красным. После этого из урны вынимают еще один шар. Найти вероятность того, что второй шар также красный.
5. Наудачу выбрано наryральное число, не превосходящее 50. Какова вероятность того, что это число является простым?
6. Подбрасывается три игральных кубика, подсчитывается сумма очков на верхних гранях. Что вероятнее - получить в сумме 9 или 10 оч­ков?
7. Подбрасывается три игральных кубика, подсчитывается сумма выпавших очков. Что вероятнее - получить в сумме 11 (событие А) или 12 очков (событие В)?

Ответы

1. 1/3. 2 . b /(a +b ). 3 . 0,2. 4 . (b -1)/(a +b -1). 5 .0,3.6 . p 1 = 25/216 - вероятность получить в сумме 9 очков; p 2 = 27/216 - вероятность получить в сумме 10 очков; p 2 > p 1 7 . Р(А) = 27/216, Р(В) = 25/216, Р(А) > Р(В).

Вопросы

1. Что называют вероятностью события?
2. Чему равна вероятность достоверного события?
3. Чему равна вероятность невозможного события?
4. В каких пределах заключена вероятность случайного события?
5. В каких пределах заключена вероятность любого события?
6. Какое определение вероятности называют классическим?

3) P (Æ )=0.

Будем говорить, что задано вероятностное пространство , если задано пространство элементарных исходов9 и определено соответствие

w i ® P(w i ) =Pi .

Возникает вопрос: как определить из конкретных условий решаемой задачи вероятность P (w i ) отдельных элементарных исходов?

Классическое определение вероятности.

Вычислять вероятности P (w i ) можно, используя априорный подход, который заключается в анализе специфических условий данного эксперимента (до проведения самого эксперимента).

Возможна ситуация, когда пространство элементарных исходов состоит из конечного числа N элементарных исходов, причем случайный эксперимент таков, что вероятности осуществления каждого из этихN элементарных исходов представляются равными.Примеры таких случайных экспериментов: подбрасывание симметричной монеты, бросание правильной игральной кости, случайное извлечение игральной карты из перетасованной колоды. В силу введенной аксиомы вероятности каждого элементарного

исхода в этом случае равны N . Из этого следует, что если событиеА содержитN A элементарных исходов, то в соответствии с определением (*)

P(A) = A

В данном классе ситуаций вероятность события определяется как отношение числа благоприятных исходов к общему числу всех возможных исходов.

Пример . Из набора, содержащего 10 одинаковых на вид электроламп, среди которых 4 бракованных, случайным образом выбирается 5 ламп. Какова вероятность, что среди выбранных ламп будут 2 бракованные?

Прежде всего отметим, что выбор любой пятерки ламп имеет одну и ту же вероятность. Всего существует C 10 5 способов составить такую пятерку, то есть случайный эксперимент в данном случае имеетC 10 5 равновероятных исходов.

Сколько из этих исходов удовлетворяют условию "в пятерке две бракованные лампы", то есть сколько исходов принадлежат интересующему нас событию?

Каждую интересующую нас пятерку можно составить так: выбрать две бракованные лампы, что можно сделать числом способов, равным C 4 2 . Каждая пара бракованных ламп может встретиться столько раз, сколькими способами ее можно дополнить тремя не бракованными лампами, то естьÑ 6 3 раз. Получается, что число пятерок, содержащих две

Статистическое определение вероятности.

Рассмотрим случайный эксперимент, заключающийся в том, что подбрасывается игральная кость, сделанная из неоднородного материала. Ее центр тяжести не находится в геометрическом центре. В этом случае мы не можем считать исходы (выпадение единицы, двойки и т.д.) равновероятными. Из физики известно, что кость более часто будет падать на ту грань, которая ближе к центру тяжести. Как определить вероятность выпадения, например, трех очков? Единственное, что можно сделать, это подбросить эту кость n раз (где n -достаточно большое число, скажемn =1000 илиn =5000), подсчитать число выпадений трех очковn 3 и считать вероятность исхода, заключающегося в выпадении трех очков, равнойn 3 /n - относительной частоте выпадения трех очков. Аналогичным образом можно определить вероятности остальных элементарных исходов - единицы, двойки, четверки и т.д. Теоретически такой образ действий можно оправдать, если ввестистатистическое определение вероятности .

Вероятность P(M i ) определяется как предел относительной частоты появления исходаM i в процессе неограниченного увеличения числа случайных экспериментовn , то есть

P i = P (M i ) = lim m n (M i ) , n ®¥n

где m n (M i ) – число случайных экспериментов (из общего числаn произведенных случайных экспериментов), в которых зарегистрировано появление элементарного исходаM i .

Так как здесь не приводится никаких доказательств, мы можем только надеяться, что предел в последней формуле существует, обосновывая надежду жизненным опытом и интуицией.

Геометрическая вероятность

В одном специальном случае дадим определение вероятности события для случайного эксперимента с несчетным множеством исходов.

Если между множеством W элементарных исходов случайного эксперимента и множеством точек некоторой плоской фигурыS (сигма большая) можно установить взаимно-однозначное соответствие, а также можо установить взаимно-однозначное соответствие между множеством элементарных исходов, благоприятствующих событиюА , и множеством точек плоской фигурыI (сигма малая), являющейся частью фигурыS , то

P(A) = S ,

где s - площадь фигурыs ,S - площадь фигурыS .

Пример. Два человека обедают в столовой, которая открыта с 12 до 13 часов. Каждый из них приходит в произвольный момент времени и обедает в течение 10 минут. Какова вероятность их встречи?

Пусть x - время прихода первого в столовую, аy - время прихода второго

12 £ x £ 13; 12 £y £ 13.

Можно установить взаимно-однозначное соответствие между всеми парами чисел (x ;y ) (или множеством исходов) и множеством точек квадрата со стороной, равной 1, на координатной плоскости, где начало координат соответствует числу 12 по осиX и по осиY , как изображено на рисунке 6. Здесь, например, точкаА соответствует исходу, заключающемуся в том, что первый пришел в 12.30, а второй - в 13.00. В этом случае, очевидно,

встреча не состоялась.

Если первый пришел не позже второго (y ³ x ), то

встреча произойдет при условии 0 £ y - x £ 1/6

(10 мин.- это 1/6 часа).

Если второй пришел не позже первого (x ³ y ), то

встреча произойдет при условии 0 £ x - y £ 1/6..

Между множеством исходов, благоприятствующих

встрече, и множеством точек области s , изображенной на

рисунке 7 в заштрихованном виде, можно установить

взаимно-однозначное cоответствие.

Искомая вероятность p равна отношению площади

области s к площади всего квадрата.. Площадь квадрата

равна единице, а площадь области s можно определить как

разность единицы и суммарной площади двух

треугольников, изображенных на рисунке 7. Отсюда следует:

p =1 -

Непрерывное вероятностное пространство.

Как уже говорилось ранее, множество элементарных исходов может быть более, чем счетным (то есть несчетным). В этом случае нельзя считать любое подмножество множества W событием.

Чтобы ввести определение случайного события, рассмотрим систему (конечную или счетную) подмножеств A 1 , A 2 ,... A n пространства элементарных исходовW .

В случае выполнения трех условий: 1) W принадлежит этой системе;

2) из принадлежности А этой системе следует принадлежностьA этой системе;

3) из принадлежностиA i иA j этой системе следует принадлежностьA i U A j этой

системе такая система подмножеств называется алгеброй.

Пусть W - некоторое пространство элементарных исходов. Убедитесь в том, что две системып одмножеств:

1) W ,Æ ; 2)W ,А ,A ,Æ (здесьА - подмножествоW ) являются алгебрами.

Пусть A 1 иA 2 принадлежат некоторой алгебре. Докажите, чтоA 1 \A 2 иA 1 ∩ A 2 принадлежат этой алгебре.

Подмножество А несчетного множества элементарных исходов 9 является событием, если оно принадлежит некоторой алгебре.

Сформулируем аксиому, называемую аксиомой А.Н. Колмогорова.

Каждому событию соответствует неотрицательное и не превосходящее единицы число P(А), называемое вероятностью событияА , причем функцияP(А) обладает следующими свойствами:

1) Р (9 )=1

2) если события A 1 ,A 2 ,...,A n несовместны, то

P (A 1 U A 2 U ... U A n ) =P (A 1 ) +P (A 2 ) +... +P (A n )

Если задано пространство элементарных исходов W , алгебра событий и определенная на ней функцияР , удовлетворяющая условиям приведенной аксиомы, то говорят, что задановероятностное пространство .

Это определение вероятностного пространства можно перенести на случай конечного пространства элементарных исходов W . Тогда в качестве алгебры можно взять систему всех подмножеств множестваW .

Формулы сложения вероятностей.

Из пункта 2 приведенной аксиомы следует, что если A 1 и A2 несовместные события, то

P (A 1 U A 2 ) =P (A 1 ) +P (A 2 )

Если A 1 иA 2 - совместные события, тоA 1 U A 2 =(A 1 \A 2 )U A 2 , причем очевидно, чтоA 1 \A 2 иA 2 - несовместные события. Отсюда следует:

P (A 1 U A 2 ) =P (A1 \A 2 ) +P (A2 )

Далее очевидно: A 1 = (A1 \A 2 )U (A 1 ∩ A 2 ), причем A1 \A 2 иA 1 ∩ A 2 - несовместные события, откуда следует:P (A 1 ) =P (A1 \A 2 ) +P (A 1 ∩ A 2 ) Найдем из этой формулы выражение дляP (A1 \A 2 ) и подставим его в правую часть формулы (*). В результате получим формулу сложения вероятностей:

P (A 1 U A 2 ) =P (A 1 ) +P (A 2 ) –P (A 1 ∩ A 2 )

Из последней формулы легко получить формулу сложения вероятностей для несовместных событий, положив A 1 ∩ A 2 =Æ .

Пример. Найти вероятность вытащить туза или червовую масть при случайном отборе одной карты из колоды в 32 листа.

Р (ТУЗ) = 4/32 = 1/8;Р (ЧЕРВОВАЯ МАСТЬ) = 8/32 = 1/4;

Р (ТУЗ ЧЕРВЕЙ) = 1/32;

Р ((ТУЗ)U (ЧЕРВОВАЯ МАСТЬ)) = 1/8 + 1/4 - 1/32 =11/32

Того же результата можно было достичь с помощью классического определения вероятности, пересчитав число благоприятных исходов.

Условные вероятности.

Рассмотрим задачу. Студент перед экзаменом выучил из 30 билетов билеты с номерами с 1 по 5 и с 26 по 30. Известно, что студент на экзамене вытащил билет с номером, не превышающим 20. Какова вероятность, что студент вытащил выученный билет?

Определим пространство элементарных исходов: W =(1,2,3,...,28,29,30). Пусть событиеА заключается в том, что студент вытащил выученный билет:А = (1,...,5,25,...,30,), а событиеВ - в том, что студент вытащил билет из первых двадцати:В = (1,2,3,...,20)

Событие А ∩ В состоит из пяти исходов: (1,2,3,4,5), и его вероятность равна 5/30. Это число можно представить как произведение дробей 5/20 и 20/30. Число 20/30 - это вероятность событияB . Число 5/20 можно рассматривать как вероятность событияА при условии, что событиеВ произошло (обозначим еёР (А /В )). Таким образом решение задачи определяется формулой

P (А ∩ В ) =Р (А /В )Р (B )

Эта формула называется формулой умножения вероятностей, а вероятность Р (А /В ) - условной вероятностью событияA .

Пример..Из урны, содержащей 7 белых и 3 черных шаров, наудачу один за другим извлекают (без возвращения) два шара. Какова вероятность того, что первый шар будет белым, а второй черным?

Пусть X - событие, состоящее в извлечении первым белого шара, аY - событие, состоящее в извлечении вторым черного шара. ТогдаX ∩ Y - событие, заключающееся в том, что первый шар будет белым, а второй - черным.P (Y /X ) =3/9 =1/3 - условная вероятность извлечения вторым черного шара, если первым был извлечен белый. Учитывая, чтоP (X ) = 7/10, по формуле умножения вероятностей получаем:P (X ∩ Y ) = 7/30

Событие А называется независимым от события В (иначе: события А и В называются независимыми), если Р (А / В )= Р (А ). За определение независимых событий можно принять следствие последней формулы и формулы умножения

P (А ∩ В ) =Р (А )Р (B )

Докажите самостоятельно, что если А иВ - независимые события, тоA иB тоже являются независимыми события.

Пример.Рассмотрим задачу, аналогичную предыдущей, но с одним дополнительным условием: вытащив первый шар, запоминаем его цвет и возвращаем шар в урну, после чего все шары перемешиваем. В данном случае результат второго извлечения никак не зависит от того, какой шар - черный или белый появился при первом извлечении. Вероятность появления первым белого шара (событие А ) равна 7/10. Вероятность событияВ - появления вторым черного шара - равна 3/10. Теперь формула умножения вероятностей дает:P (А ∩ В ) = 21/100.

Извлечение шаров способом, описанным в этом примере, называется выборкой с возвращением иливозвратной выборкой .

Следует отметить, что если в двух последних примерах положить изначальные количества белых и черных шаров равными соответственно 7000 и 3000, то результаты расчетов тех же вероятностей будут отличаться пренебрежимо мало для возвратной и безвозвратной выборок.

МУНИЦИПАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ГИМНАЗИЯ № 6

на тему «Классическое определение вероятности».

Выполнила ученица 8 «Б» класса

Климантова Александра.

Учитель по математике: Виденькина В. А.

Воронеж, 2008


Во многих играх используют игральный кубик. У кубика 6 граней, на каждой грани отмечено различное количество точек-от 1 до 6. Играющий бросает кубик и смотрит, сколько точек имеется на выпавшей грани (на той грани, которая располагается сверху). Довольно часто точки на грани кубика заменяют соответствующим числом и тогда говорят о выпадении 1, 2 или 6. Бросание кубика можно считать опытом, экспериментом, испытанием, а полученный результат-исходом испытания или элементарным событием. Людям интересно угадывать наступление того или иного события, предсказывать его исход. Какие предсказания они могут сделать, когда бросают игральный кубик? Например, такие:

1) событие А-выпадает цифра 1, 2, 3, 4, 5 или 6;

2) событие В-выпадает цифра 7, 8 или 9;

3) событие С-выпадает цифра 1.

Событие А, предсказанное в первом случае, обязательно наступит. Вообще, событие, которое в данном опыте обязательно наступит, называют достоверным событием .

Событие В, предсказанное во втором случае, никогда не наступит, это просто невозможно. Вообще, событие, которое в данном опыте наступить не может, называют невозможным событием .

А событие С, предсказанное в третьем случае, наступит или не наступит? На этот вопрос мы с полной уверенностью ответить не в состоянии, поскольку 1 может выпасть, а может и не выпасть. Событие, которое в данном опыте может как наступить, так и не наступить, называют случайным событием .

Думая про наступление достоверного события, мы слово «вероятно» использовать, скорее всего, не будем. Например, если сегодня среда, то завтра четверг, это-достоверное событие. Мы в среду не станем говорить: «Вероятно, завтра четверг», мы скажем коротко и ясно: «Завтра четверг». Правда, если мы склонны к красивым фразам, то можем сказать так: «Со стопроцентной вероятностью утверждаю, что завтра четверг». Напротив, если сегодня среда, то наступление назавтра пятницы-невозможное событие. Оценивая это событие в среду, мы можем сказать так: «Уверен, что завтра не пятница». Или так: «Невероятно, что завтра пятница». Ну а если мы склонны к красивым фразам, то можем сказать так: «Вероятность того, что завтра пятница, равна нулю». Итак, достоверное событие-это событие, наступающее при данных условиях со стопроцентной вероятностью (т. е. наступающее в 10 случаях из 10, в 100 случаях из 100 и т. д.). Невозможное событие-это событие, не наступающее при данных условиях никогда, событие с нулевой вероятностью .

Но, к сожалению (а может быть, и к счастью), не все в жизни так четко и ясно: это будет всегда (достоверное событие), этого не будет никогда (невозможное событие). Чаще всего мы сталкиваемся именно со случайными событиями, одни из которых более вероятны, другие менее вероятны. Обычно люди используют слова «более вероятно» или «менее вероятно», как говорится, по наитию, опираясь на то, что называют здравым смыслом. Но очень часто такие оценки оказываются недостаточными, поскольку бывает важно знать, на сколько процентов вероятно случайное событие или во сколько раз одно случайное событие вероятнее другого. Иными словами, нужны точные количественные характеристики, нужно уметь охарактеризовать вероятность числом.

Первые шаги в этом направлении мы уже сделали. Мы говорили, что вероятность наступления достоверного события характеризуется как стопроцентная , а вероятность наступления невозможного события-как нулевая . Учитывая, что 100 % равно 1, люди договорились о следующем:

1) вероятность достоверного события считается равной 1;

2) вероятность невозможного события считается равной 0.

А как подсчитать вероятность случайного события? Ведь оно произошло случайно , значит, не подчиняется закономерностям, алгоритмам, формулам. Оказывается, и в мире случайного действуют определенные законы, позволяющие вычислять вероятности. Этим занимается раздел математики, который так и называется–теория вероятностей .

Математика имеет дело с моделью некоторого явления окружающей нас действительности. Из всех моделей, используемых в теории вероятностей, мы ограничимся самой простой.

Классическая вероятностная схема

Для нахождения вероятности события А при проведении некоторого опыта следует:

1) найти число N всех возможных исходов данного опыта;

2) принять предположение о равновероятности (равновозможности) всех этих исходов;

3) найти количество N(А) тех исходов опыта, в которых наступает событие А;

4) найти частное; оно и будет равно вероятности события А.

Принято вероятность события А обозначать: Р(А). Объяснение такого обозначения очень простое: слово «вероятность» по-французски–probabilite , по-английски–probability .В обозначении используется первая буква слова.

Используя это обозначение, вероятность события А по классической схеме можно найти с помощью формулы

Р(А)=.

Часто все пункты приведенной классической вероятностной схемы выражают одной довольно длинной фразой.

Классическое определение вероятности

Вероятностью события А при проведении некоторого испытания называют отношение числа исходов, в результате которых наступает событие А, к общему числу всех равновозможных между собой исходов этого испытания.

Пример 1 . Найти вероятность того, что при одном бросании игрального кубика выпадет: а) 4; б) 5; в) четное число очков; г) число очков, большее 4; д) число очков, не кратное трем.

Решение . Всего имеется N=6 возможных исходов: выпадение грани куба с числом очков, равным 1, 2, 3, 4, 5 или 6. Мы считаем, что ни один из них не имеет никаких преимуществ перед другими, т. е. принимаем предположение о равновероятности этих исходов.

а) Ровно в одном из исходов произойдет интересующее нас событие А–выпадение числа 4. Значит, N(A)=1 и

P ( A )= =.

б) Решение и ответ такие же, как и в предыдущем пункте.

в) Интересующее нас событие В произойдёт ровно в трёх случаях, когда выпадает число очков 2, 4 или 6. Значит,

N ( B )=3 и P ( B )==.

г) Интересующее нас событие С произойдет ровно в двух случаях, когда выпадет число очков 5 или 6. Значит,

N ( C ) =2 и Р(С)=.

д) Из шести возможных выпавших чисел четыре (1, 2, 4 и 5) не кратны трем, а остальные два (3 и 6) делятся на три. Значит, интересующее нас событие наступает ровно в четырех из шести возможных и равновероятных между собой и равновероятных между собой исходах опыта. Поэтому в ответе получается

. ; б) ; в) ; г) ; д).

Реальный игральный кубик вполне может отличаться от идеального (модельного) кубика, поэтому для описания его поведения требуется более точная и детальная модель, учитывающая преимущества одной грани перед другой, возможное наличие магнитов и т. п. Но «дьявол кроется в деталях», а большая точность ведет, как правило, к большей сложности, и получение ответа становится проблемой. Мы же ограничиваемся рассмотрением простейшей вероятностной модели, где все возможные исходы равновероятны.

Замечание 1 . Рассмотрим еще пример. Был задан вопрос: «Какова вероятность выпадения тройки при одном бросании кубика?» Ученик ответил так: «Вероятность равна 0, 5». И объяснил свой ответ: «Тройка или выпадет, или нет. Значит, всего есть два исхода и ровно в одном наступает интересующее нас событие. По классической вероятностной схеме получаем ответ 0, 5». Есть в этом рассуждении ошибка? На первый взгляд–нет. Однако она все же есть, причем в принципиальном моменте. Да, действительно, тройка или выпадет, или нет, т. е. при таком определении исхода бросания N=2. Правда и то, что N(A)=1 и уж, разумеется, верно, что

=0, 5, т. е. три пункта вероятностной схемы учтены, а вот выполнение пункта 2) вызывает сомнения. Конечно, с чисто юридической точки зрения, мы имеем право считать, что выпадение тройки равновероятно ее невыпадению. Но вот можем ли мы так считать, не нарушая свои же естественные предположения об «одинаковости» граней? Конечно, нет! Здесь мы имеем дело с правильным рассуждением внутри некоторой модели. Только вот сама эта модель «неправильная», не соответствующая реальному явлению.

Замечание 2 . Рассуждая о вероятности, не упускайте из виду следующее важное обстоятельство. Если мы говорим, что при бросании кубика вероятность выпадения одного очка равна

, это совсем не значит, что, кинув кубик 6 раз, вы получите одно очко ровно один раз, бросив кубик 12 раз, вы получите одно очко ровно два раза, бросив кубик 18 раз, вы получите одно очко ровно три раза и т. д. Слово вероятно носит предположительный характер. Мы предполагаем, что скорее всего может произойти. Вероятно, если мы бросим кубик 600 раз, одно очко выпадет 100 раз или около 100.