Ядерный реактор: история создания и принцип действия. Назначение и область применения Что такое реактор в электрике

Реакторы с естественным или принудительным воздушным охлаждением предназначены для ограничения токов короткого замыкания в электрических сетях и сохранения определенного уровня напряжения в электроустановках в случае короткого замыкания в энергосистемах с частотой 50 и 60 Гц в условиях умеренно-холодного климата и в условиях сухого и влажного тропического климата для внутренней и наружной установки.

Реакторы применяются в схемах электрических станций и подстанций с электрическими параметрами в соответствии с паспортными данными.

Применение реакторов дает возможность ограничить номинальный ток отключения линейных выключателей и обеспечить термическую стойкость отходящих кабелей. Благодаря реактору все неповрежденные линии находятся под напряжением, близким к номинальному (реактор поддерживает напряжение на сборных шинах), что повышает надежность работы электроустановок и облегчает условия работы электрооборудования.

Реакторы предназначены для работы на открытом воздухе (климатическое исполнение УХЛ, Т категория размещения 1 по ГОСТ 15150-69) и в закрытых помещениях с естественной вентиляцией (климатическое исполнение УХЛ, Т категория размещения 2, 3 по ГОСТ 15150-69).

Условия эксплуатации:

  • высота установки над уровнем моря, м 1000;
  • тип атмосферы в месте установки тип I или тип II по ГОСТ15150-69 и ГОСТ 15543-70;
  • рабочее значение температуры окружающего воздуха, °С от минус 50 до плюс 45;
  • относительная влажность воздуха при температуре плюс 27 °С, % 80;
  • сейсмостойкость по шкале МSК-64 ГОСТ 17516-90, балл 8 - для вертикальной и ступенчатой (угловой) установки; 9 - для горизонтальной установки.

СХЕМЫ ВКЛЮЧЕНИЯ И РАСПОЛОЖЕНИЕ ФАЗ РЕАКТОРА

По схеме присоединения к сети реакторы разделяются на одинарные и сдвоенные. Одинарные реакторы на номинальные токи выше 1600 А могут иметь секционную обмотку катушки из двух параллельно соединенных секций. Принципиальные схемы включения фазы показаны на рисунке 1.

Рисунок 1 - Принципиальные схемы включения фазы

В зависимости от места установки и особенностей распределительных устройств трехфазный комплект реактора может иметь вертикальное, ступенчатое (угловое) и горизонтальное расположение фаз, показанное на рисунках 2, 3, 4.

Рисунок 2 - Вертикальное (угловое) расположение

Рисунок 3 - Ступенчатое расположение

Рисунок 4 - Горизонтальное расположение

Крупногабаритные реакторы, реакторы наружной установки (категория размещения 1) и реакторы на класс напряжения 20 кВ изготавливаются только с горизонтальным расположением фаз. Фазы реактора, изготовленные для вертикальной установки, могут использоваться как для ступенчатой (угловой) так и для горизонтальной установки. Фазы реактора, изготовленные для ступенчатой (угловой) установки, могут использоваться и для горизонтальной установки. Фазы реактора, изготовленные для горизонтальной установки, не могут быть использованы ни для вертикальной, ни для ступенчатой (угловой) установки.

Реакторы выполнены в пофазном исполнении.

Каждая фаза реактора (см. рисунок 5, 6) представляет собой катушку индуктивности с линейным индуктивным сопротивлением без стального магнитопровода. Обмотка катушки выполнена по кабельной схеме намотки в виде концентрических витков, поддерживаемых радиально-расположенными опорными колонками (бетонными или сборной конструкции). Колонки устанавливаются на опорные изоляторы, которые обеспечивают необходимый изоляционный уровень для соответствующего класса напряжения. Обмотка катушки выполняется в один или несколько параллельных проводов в зависимости от величины номинального тока. Обмотка катушки фазы выполнена из специального изолированного реакторного провода с алюминиевыми токопроводящими жилами. Катушки фаз исполнения «С» при вертикальной и исполнения «СГ» при ступенчатой (угловой) установке имеют направление намотки обмотки обратное катушкам фаз исполнений «В», «Н», что обеспечивает выгодное распределение усилий, возникающих в обмотках во время короткого замыкания. Выводы обмотки выполнены в виде алюминиевых пластин, причем каждый выводной провод обмотки имеет собственную контактную пластину. Такая конструкция позволяет сделать монтаж и ошиновку реактора легко и просто.

У одинарных реакторов с секционной обмоткой катушка состоит из двух параллельно соединяемых секций обмоток, намотанных в противоположных направлениях.

У сдвоенных реакторов обмотка катушки состоит из двух ветвей обмоток с высокой взаимоиндуктивностью и одинаковым направлением намотки обмоток ветвей.

Угол (Ψ) между выводами обмотки фазы показан на рисунках 7, 8, 9 и обычно составляет 0º; 90º; 180º; 270º . Отсчет углов ведется против хода часовой стрелки и определяется:

  • для одинарных реакторов:
    • от нижнего вывода к верхнему выводу - для простой обмотки;
    • от нижнего и верхнего выводов к среднему - для секционной обмотки;
  • для сдвоенных реакторов - от нижнего вывода к среднему выводу и от среднего вывода к верхнему выводу.

Рисунок 7 - Углы между выводами обмотки фазы одинарного реактора

Рисунок 8 - Углы между выводами обмотки фазы одинарного реактора с секционной обмоткой

Рисунок 9 - Углы между выводами обмотки фазы сдвоенного реактора

Маркировка вывода наносится на верхней стороне каждой контактной пластины.

Принцип действия реакторов основан на повышении реактивного сопротивления обмотки в момент короткого замыкания, что обеспечивает уменьшение (ограничение) токов КЗ и позволяет поддерживать в момент КЗ уровень напряжения неповрежденных присоединений.

Одинарные реакторы позволяют осуществлять одно- или двухступенчатую схему реактирования. В зависимости от места установки в той или иной схеме соединений одинарные реакторы применяются в качестве линейных (индивидуальных), групповых и межсекционных.

Принципиальные схемы применения одинарных реакторов показаны на рисунке 10.

Рисунок 10 - Принципиальные схемы применения одинарных реакторов

Линейные реакторы L1 ограничивают мощность короткого замыкания на отходящей линии, в сети и на подстанциях, питающихся на данной линии. Линейные реакторы рекомендуется устанавливать после выключателя. При этом разрывная мощность линейного выключателя выбирается с учетом ограничения мощности короткого замыкания реактором, так как авария на участке «выключатель - реактор» маловероятна.

Групповые реакторы L2 применяются в тех случаях, когда маломощные присоединения можно объединить таким образом, чтобы реактор, ограничивающий всю группу присоединений, не приводил к недопустимому снижению напряжения в нормальном режиме. Групповые реакторы позволяют сэкономить объем распределительных устройств (РУ) по сравнению с вариантом применения линейных реакторов.

Межсекционные реакторы L3 применяются в РУ мощных станций и подстанций. Разделяя отдельные участки, они ограничивают мощность короткого замыкания в пределах самой станции и РУ. Использование межсекционных реакторов связано со значительной степенью ограничения мощности короткого замыкания и поэтому, во избежание больших падений напряжений при номинальном режиме, следует стремиться к максимальному значению коэффициента мощности «cos», проходящей по реактору нагрузки. Межсекционные реакторы не заменяют линейные и групповые реакторы, поскольку при отсутствии последних токи КЗ от части генераторов не ограничиваются.

Сдвоенные реакторы позволяют осуществлять полное одноступенчатое ограничение токов КЗ путем непосредственного реактирования основных генерирующих цепей (генератора, трансформатора) и обеспечивают: упрощение схемы соединений и конструкции РУ; улучшение коэффициента мощности; улучшение режима напряжений при примерно равно нагруженных ветвях. Генерирующая мощность подключается к средним контактным выводам. Допускается любое соотношение нагрузки ветвей в пределах длительно допустимого действующего тока нагрузки. Реактивное сопротивление ветви реактора зависит от режима работы. В рабочем режиме (встречное включение) ограничивающие свойства, потери мощности и реактивная мощность являются минимальными.

В режиме короткого замыкания реактивность ветви реактора, через которую питается поврежденное присоединение, проявляется полностью, так как влияние относительно малого рабочего тока ветви неповрежденного присоединения незначительно. При наличии генерирующих мощностей со стороны ветви реактора, через которое питается поврежденное присоединение, ток в обеих ветвях сдвоенного реактора проходит последовательно (согласное включение), и за счет дополнительной реактивности, обусловленной взаимной индуктивностью ветвей, токоограничивающие свойства реактора проявляются в полной мере.

Сдвоенные реакторы применяются в качестве групповых и секционных (см. рисунок 11)

Рисунок 11 - Принципиальные схемы применения сдвоенных реакторов

Реакторы должны использоваться по своему назначению и эксплуатироваться в условиях, соответствующих их климатическому исполнению и категории размещения.

В случае применения токоограничивающих реакторов для других целей, не по их прямому назначению, следует учитывать возможность влияния режима эксплуатации (перегрузки, перенапряжения, систематичность воздействия ударных токов) на показатели и надежность реакторов.

Режимы нагрузки и охлаждения реакторов должны соответствовать их паспортным данным.

Толчки нагрузки, воздействующие разнонаправлено на ветви сдвоенного реактора, от самозапуска электрических машин, находящихся за реактором, не должны превышать пятикратного значения номинального тока и быть продолжительностью более 15 секунд. Подвергать реактор воздействию таких толчков нагрузки, более чем 15 раз в год, не рекомендуется.

При применении сдвоенных реакторов в схемах, где разнонаправленные в ветвях реактора токи самозапуска электрических машин могут превышать 2,5-кратный номинальный ток реактора, включение ветвей должно производиться поочередно с выдержкой по времени не менее 0,3 секунды.

Реакторы внутренней установки следует устанавливать в сухих и вентилируемых помещениях, где разность температур отходящего и приточного воздуха не превышает 20 ºС.

Для реакторов, требующих при номинальных нагрузках устройства принудительного воздушного охлаждения, должен быть обеспечен обдув обмотки фаз воздухом из расчета расхода воздуха 3 - 5 м3/мин на каждый кВт потерь*. Охлаждающий воздух наиболее рационально подавать снизу через отверстие в центре фундамента**.

Реакторы наружной установки следует устанавливать на специально отведенных и оборудованных ограждениями, соответственно действующих правил, площадках.

Для защиты обмотки фаз от прямого попадания атмосферных осадков и солнечных лучей может быть установлен общий навес или защитная крыша, устанавливаемая отдельно на каждой фазе.

Реакторы должны устанавливаться на фундаменты, высота которых указана в паспорте реактора.

В местах установки не допускается наличие короткозамкнутых контуров, деталей из ферромагнитных материалов в стенах помещений, отведенных для установки реакторов, в конструкциях фундаментов и ограждений. Наличие магнитных материалов увеличивает потери, возможен чрезмерный нагрев смежных металлических частей, а при коротком замыкании - опасные усилия на конструктивные элементы из ферромагнитных материалов. Наиболее опасными с точки зрения недопустимых перегревов являются торцовые металлоконструкции - пол, потолок.

При наличии магнитных материалов необходимо выдерживать, указанные в паспорте реактора, монтажные расстояния X, Y, Y1, h, h1 от реактора до строительных конструкций и ограждений.

При отсутствии магнитных материалов и замкнутых токопроводящих контуров в строительных конструкциях и ограждениях монтажные расстояния можно снизить до величин изоляционных расстояний согласно правил устройства электроустановок (ПУЭ).

При горизонтальной и ступенчатой (угловой) установке фаз реакторов необходимо строго выдерживать, указанные в паспорте, минимальные расстояния S и S1 между осями фаз, определяемые допустимыми горизонтально действующими усилиями при гарантированной электродинамической стойкости.

Эти расстояния могут быть снижены, если в схеме установки реактора наибольшее возможное значение ударного тока меньше, чем значение тока электродинамической стойкости, указанное в паспорте реактора .

* Количество охлаждающего воздуха - по паспорту реактора.
** Конструктивное решение подачи охлаждающего воздуха определяется и выполняется потребителем самостоятельно.

Для всех фаз реакторов вертикальной установки и фаз «В» и «СГ» реакторов ступенчатой (угловой) установки контактные пластины одноименных выводов (нижних, средних, верхних) при монтаже должны находиться на одной вертикали один над другим.

Для выбора наиболее благоприятного расположения выводов с точки зрения подключения к ошиновке, допускается поворачивать каждую фазу относительно другой вокруг вертикальной оси на угол равный 360º/N, где N - количество колонок фазы.

Для одинарных реакторов - за подводящие выводы принимать или все нижние «Л2» или все верхние «Л1» выводы (см. рисунок 7).

Для одинарных реакторов с секционной обмоткой - за подводящие выводы принимать или нижние и верхние «Л2» или средние «Л1» выводы (см. рисунок 8).

Для сдвоенных реакторов - генерирующая мощность должна подключаться к средним выводам «Л1-М1» тогда нижние выводы «М1» составят одно , а верхние выводы «Л2» составят другое трехфазное присоединения (см. рисунок 9).

Для предохранения выводов реактора от электродинамических усилий короткого замыкания подвод шин к реактору необходимо осуществлять в радиальном направлении с закреплением их на расстоянии не более 400-500 мм.

Перед началом монтажа необходимо проверить сопротивление изоляции обмоток фаз относительно всех крепежных элементов. Сопротивление изоляции измеряют мегомметром, имеющим напряжение 2500 В (допускается применение мегомметров на 1000 В). Величина сопротивления изоляции должна быть не менее 0,5 МОм при температуре плюс (10-30) °С.

Техническое обслуживание реакторов состоит из внешнего осмотра (через каждые три месяца эксплуатации), очистки изоляторов и обмоток от пыли сжатым воздухом и проверки заземления.

Упаковка фаз реактора обеспечивает их сохранность при транспортировании и хранении.

Транспортная тара - сборно-щитовой ящик по ГОСТ 10198-91 собранный из отдельных щитов (днище, боковые и торцовые щиты, крышка), скрепленных между собой гвоздями.

Каждая фаза упакована в отдельном ящике совместно с комплектующими и крепежными изделиями, необходимыми для монтажа и подключения.

Фаза установлена на днище на деревянных подкладках и крепится к днищу с помощью деревянных брусков, расположенных между опорными колонками. Бруски прибиваются к днищу гвоздями и предохраняют фазу от перемещения в ящике в горизонтальной плоскости.

Фазы, отправляемые в отдаленные районы, транспортируемые водными путями, дополнительно крепятся растяжками, которые предохраняют фазу от перемещения в ящике в вертикальной плоскости.

Крепежные изделия упакованы в пластиковые пакеты и размещены внутри обмотки фазы.

Документация (паспорт, РЭ) упакована в полиэтиленовый пакет и уложена между витками обмотки фазы.

В общем случае в состав трехфазного комплекта реактора входит:

  • фаза;
  • вставка*;
  • опора*;
  • фланец;
  • переходник *;
  • изолятор;
  • крепежные изделия;
  • комплект защиты для эксплуатации на открытом воздухе **.

____________________

* Для реакторов серии РТ.
** Для реакторов наружной установки (серии РБ, РТ) по желанию потребителя.

СТРУКТУРА УСЛОВНОГО ОБОЗНАЧЕНИЯ

Реакторы серии РБ

  1. Условное обозначение реактора токоограничивающего бетонного с вертикальным расположением фаз, с естественным воздушным охлаждением, класса напряжения 10 кВ, с номинальным током 1000 А, с номинальным индуктивным сопротивлением 0,45 Ом, климатического исполнения УХЛ, категории размещения 1
    РБ 10 - 1000 - 0,45 УХЛ 1 ГОСТ 14794-79.
  2. То же, с горизонтальным расположением фаз, с принудительно-воздушным охлаждением, класса напряжения 10 кВ, с номинальным током 2500 А, с номинальным индуктивным сопротивлением 0,35 Ом, климатического исполнения УХЛ, категории размещения 3
    РБДГ 10 - 2500 - 0,35 УХЛ 3 ГОСТ 14794-79.

Реакторы серии РТ

  1. Условное обозначение трехфазного комплекта реактора токоограничивающего сборного одинарного с вертикальным расположением фаз, класса напряжения 10 кВ, с номинальным током 2500 А, с номинальным индуктивным сопротивлением 0,14 Ом, с обмоткой из реакторного провода с алюминиевыми жилами, с принудительным воздушным охлаждением, климатического исполнения УХЛ, категории размещения 3
    РТВ 10-2500-0,14 АД УХЛ 3 ТУ 3411-020-14423945-2009.
  2. То же, с горизонтальным расположением фаз, класса напряжения 20 кВ, с номинальным током 2500 А, с номинальным индуктивным сопротивлением 0,25 Ом, с обмоткой из реакторного провода с алюминиевыми (или медными) жилами, с естественным воздушным охлаждением, кли- матического исполнения ТС, категории размещения 1
    РТГ 20-2500-0,25 ТС 1 ТУ 3411-020-14423945-2009.

ТЕХНИЧЕСКИЕ ДАННЫЕ

Основные данные и технические параметры приведены в таблице 1

Таблица 1 - Технические параметры

Наименование параметра Значение параметра Примечание
Класс напряжения, кВ 6, 10, 15, 20
Наибольшее рабочее напряжение, кВ 7,2; 12; 17,5; 24 В соответствии с клас-сом напряжения
Частота, Гц 50
Тип исполнения Одинарные; сдвоенные Способ присоединенияк сети
Номинальные токи, А 400; 630; 1000; 1600; 2500; 4000
Номинальное индуктивное сопротивление, Ом 1) 0,14; 0,18; 0,20; 0,22; 0,25; 0,28; 0,35; 0,40; 0,45; 0,56
Сочетание номинальных токов и индуктивных сопротивлений:- одинарные на 6 и 10 кВ- одинарные на 15 и 20 кВ- сдвоенные на 6 и 10 кВ 400-0,35; 400-0,45; 630-0,25;630-0,40; 630-0,56; 1000-0,14; 1000-0,22; 1000-0,28; 1000-0,35; 1000-0,45; 1000-0,56; 1600-0,14; 1600-0,20; 1600-0,25; 1600-0,35; 2500-0,14; 2500-0,20; 2500-0,25; 2500-0,35; 4000-0,10; 4000-0,181000-0,45; 1000-0,56; 1600-0,25; 1600-0,35; 2500-0,14; 2500-0,20; 2500-0,25; 2500-0,352×630-0,25; 2×630-0,40;2×630-0,56; 2×1000-0,14;2×1000-0,22; 2×1000-0,28;2×1000-0,35; 2×1000-0,45;2×1000-0,56; 2×1600-0,14;2×1600-0,20; 2×1600-0,25;2×1600-0,35; 2×2500-0,14;2×2500-0,20 Тип реакторасерия РБсерия РТсерия РТсерия РБ
Расположение фаз Вертикальное;ступенчатое (угловое);горизонтальное
Допуск на номинальное значение,%:- индуктивное сопротивление- потери мощности- коэффициент связи от 0 до +15+15+10
Класс нагревостойкости изоляции А; Е; Н* * для медного провода

Реактором назвают статическое электромагнитное устройство, предназначенное для использования его индуктивности в электрической цепи. На э. п. с. переменного и постоянного тока и на тепловозах широко применяют реакторы: сглаживающие - для сглаживания пульсаций выпрямленного тока; переходные - для переключения выводов трансформатора; делительные - для равномерного распределения тока нагрузки между параллельно включенными вентилями; токоограничивающие - для ограничения тока короткого замыкания; помехоподавления - для подавления радиопомех, возникающих при работе электрических машин и аппаратов; индуктивные шунты - для распределения при переходных процессах тока между обмотками возбуждения тяговых двигателей и включенными параллельно им резисторами и пр.

Катушка с ферромагнитным сердечником в цепи переменного тока. При подключении катушки с ферромагнитным сердечником в цепь переменного тока (рис. 231, а) протекающий по ней ток определяется потоком, который необходимо создать, чтобы индуцируемая в катушке э. д. с. e L была равна и противоположна по фазе приложенному к ней напряжению. Этот ток называют намагничивающим. Он зависит от числа витков катушки, магнитного сопротивления ее магнитопровода (т. е. от площади поперечного сечения, длины и материала магнитопровода), напряжения и частоты его изменения. При увеличении поданного на катушку напряжения u возрастает поток Ф, сердечник ее насыщается, что вызывает резкое увеличение намагничивающего тока. Следовательно, такая катушка представляет собой нелинейное индуктивное сопротивление X L , значение которого зависит от приложенного к ней напряжения. Вольт-амперная характеристика катушки с ферромагнитным сердечником (рис. 231,б) имеет вид, подобный кривой намагничивания. Как было показано в главе III, магнитное сопротивление магнитопровода определяется также размерами воздушных зазоров, имеющихся в магнитной цепи. Поэтому форма вольт-амперной характеристики катушки зависит от воздушного зазора б в магнитной цепи. Чем больше этот зазор, тем больший ток i проходит через катушку при заданном напряжении и, следовательно, тем меньше индуктивное сопротивление X L катушки. С другой стороны, чем больше магнитное сопротивление, создаваемое воздушным зазором, по сравнению с магнитным сопротивлением ферромагнитных участков магнитопровода, т. е. чем больше зазор б, тем больше вольт-амперная характеристика катушки приближается к линейной.

Регулировать индуктивное сопротивление X L катушки с ферромагнитным сердечником можно не только путем изменения воздушного зазора 8, но и путем подмагничивания ее сердечника постоянным током. Чем больше подмагничивающий ток, тем большее насыщение создается в магнитопроводе катушки и тем меньше ее индуктивное сопротивление Х L . Катушка с ферромагнитным сердечником, подмагничиваемым постоянным током, называется насыщающимся реактором.

Применение реакторов для регулирования и ограничения тока в электрических цепях переменного тока вместо резисторов обеспечивает значительную экономию электрической энергии, так как в реакторе в отличие от резистора потери мощности незначительны (они определяются малым активным сопротивлением проводов реактора).

При включении катушки с ферромагнитным сердечником в цепь переменного тока протекающий по ней ток не будет синусоидальным. Из-за насыщения сердечника катушки в кривой тока i получаются «пики» тем больше, чем больше насыщение магнитопровода (рис. 231, в).

Сглаживающие реакторы. На электровозах и электропоездах переменного тока с выпрямителями для сглаживания пульсаций выпрямленного тока в цепях тяговых двигателей применяют сглаживающие реакторы, выполненные в виде катушки со стальным сердечником. Активное сопротивление катушки весьма мало, поэтому она практически не влияет на постоянную составляющую выпрямленного тока. Для переменной же составляющей тока катушка создает индуктивное сопротивление X L = ? L тем большее, чем выше частота? соответствующей гармоники. В результате этого амплитуды гармонических составляющих выпрямленного тока резко уменьшаются и, следовательно, снижается пульсация тока. На э. п. с. переменного тока с выпрямителями, работающими от контактной сети с частотой 50 Гц, основной гармоникой выпрям-

ленного тока, которая имеет наибольшую амплитуду, является гармоника с частотой 100 Гц. Для эффективного ее подавления необходимо было бы включить сглаживающий реактор с большой индуктивностью, т. е. довольно значительных размеров. Поэтому практически эти реакторы рассчитывают так, чтобы снизить коэффициент пульсации тока до 25-30%.

Индуктивность реактора, а следовательно, и его габаритные размеры зависят от наличия в нем ферромагнитного сердечника. При отсутствии сердечника для получения требуемой индуктивности реактор должен иметь катушку значительного диаметра и с большим числом витков. Реакторы без сердечника устанавливают на тяговых подстанциях для сглаживания пульсации тока, поступающего в контактную сеть от выпрямителей. Они имеют большие габаритные размеры и массу и требуют значительного расхода меди. На э.п.с. устанавливать подобные устройства не представляется возможным.

Однако выполнять реактор с замкнутым стальным сердечником, как у трансформатора, нецелесообразно, так как протекающая по его катушке постоянная составляющая тока вызвала бы при больших нагрузках сильное насыщение сердечника и снижение индуктивности реактора. Поэтому магнитную систему сглаживающего
реактора должны рассчитывать так, чтобы она не насыщалась от постоянной составляющей тока. Для этой цели магнитопровод 1 реактора выполняют незамкнутым (рис. 232, а) так, чтобы его магнитный поток частично проходил по воздуху, либо замкнутым, но с большими воздушными зазорами (рис. 232, б). Чтобы уменьшить расход меди и снизить массу
и габаритные размеры реактора, его обмотку 2 рассчитывают на повышенную плотность тока и интенсивно охлаждают. На электровозах и электро-

поездах применяют реакторы с принудительным воздушным охлаждением. Такой реактор заключают в специальный цилиндрический кожух; охлаждающий воздух проходит по каналам между его сердечником и обмоткой. Имеются также конструкции реакторов, в которых сердечник с обмоткой установлен в баке с трансформаторным маслом. Для уменьшения вихревых токов, которые снижают индуктивность реактора, его сердечник собирают из изолированных листов электротехнической стали.

Подобную же конструкцию имеют индуктивные шунты, которые обеспечивают при переходных процессах требуемое распределение токов между обмоткой возбуждения тягового двигателя и шунтирующим резистором (при регулировании частоты вращения двигателей путем уменьшения магнитного потока).

Токоограничивающие реакторы . На э. п. с. переменного тока с полупроводниковыми выпрямителями в некоторых случаях последовательно с выпрямительной установкой включают токоограничивающие реакторы. Полупроводниковые вентили имеют малую перегрузочную способность и при больших токах быстро выходят из строя. Поэтому при использовании их необходимо принимать специальные меры для ограничения тока короткого замыкания и быстрого отключения выпрямительной установки от источника питания до того, как этот ток достигнет значения, опасного для вентилей. При коротком замыкании в цепи нагрузки и пробое вентилей индуктивность реактора ограничивает ток. короткого замыкания (примерно в 4-5 раз по сравнению с током без реактора) и замедляет скорость его нарастания. В результате этого за период времени, необходимый для срабатывания защитной аппаратуры, ток короткого замыкания не успевает возрасти до опасного значения. В токоограничивающих реакторах иногда применяют дополнительную обмотку, выполняющую роль вторичной обмотки трансформатора. При возникновении короткого замыкания резко возрастает ток, проходящий по основной обмотке реактора, и увеличивающийся магнитный поток индуцирует в дополнительной обмотке импульс напряжения. Этот импульс служит сигналом для срабатывания устройства защиты, отключающего выпрямительную установку.

: … довольно банально, но тем не менее я так и не нашел инфу в удобоваримой форме — как НАЧИНАЕТ работать атомный реактор. Про принцип и устройство работы всё уже 300 раз разжеванно и понятно, но вот то как получают топливо и из чего и почему оно не столь опасно пока не в реакторе и почему не вступает в реакцию до погружения в реактор! — ведь оно разогревается только внутри, тем не менее перед загрузкой твлы холодные и всё нормально, так что-же служит причиной нагрева элементов не совсем ясно, как на них воздействуют и так далее, желательно не по научному).

Сложно конечно такую тему оформить не «по научному», но попробую. Давайте сначала разберемся, что из себя представляют эти самые ТВЭЛы.

Ядерное топливо представляет собой таблетки черного цвета диаметром около 1 см. и высотой около 1.5 см. В них содержится 2 % двуокиси урана 235, и 98 % урана 238, 236, 239. Во всех случаях при любом количестве ядерного топлива ядерный взрыв развиться не может, т.к.для лавинообразной стремительной реакции деления, характерной для ядерного взрыва требуется концентрация урана 235 более 60%.

Двести таблеток ядерного топлива загружаются в трубку, изготовленную из металла цирконий. Длина этой трубки 3.5м. диаметр 1.35 см. Эта трубка называется ТВЭЛ- тепловыделяющий элемент. 36 ТВЭЛов собираются в кассету (другое название «сборка»).

Устройство твэла реактора РБМК: 1 - заглушка; 2 - таблетки диоксида урана; 3 - оболочка из циркония; 4 - пружина; 5 - втулка; 6 - наконечник.

Превращение вещества сопровождается выделением свободной энергии лишь в том случае, если вещество обладает запасом энергий. Последнее означает, что микрочастицы вещества находятся в состоянии с энергией покоя большей, чем в другом возможном, переход в которое существует. Самопроизвольному переходу всегда препятствует энергетический барьер, для преодоления которого микрочастица должна получить извне какое-то количество энергии - энергии возбуждения. Экзоэнергетическая реакция состоит в том, что в следующем за возбуждением превращении выделяется энергии больше, чем требуется для возбуждения процесса. Существуют два способа преодоления энергетического барьера: либо за счёт кинетической энергии сталкивающихся частиц, либо за счёт энергии связи присоединяющейся частицы.

Если иметь в виду макроскопические масштабы энерговыделения, то необходимую для возбуждения реакций кинетическую энергию должны иметь все или сначала хотя бы некоторая доля частиц вещества. Это достижимо только при повышении температуры среды до величины, при которой энергия теплового движения приближается к величине энергетического порога, ограничивающего течение процесса. В случае молекулярных превращений, то есть химических реакций, такое повышение обычно составляет сотни градусов Кельвина, в случае же ядерных реакций - это минимум 107 K из-за очень большой высоты кулоновских барьеров сталкивающихся ядер. Тепловое возбуждение ядерных реакций осуществлено на практике только при синтезе самых лёгких ядер, у которых кулоновские барьеры минимальны (термоядерный синтез).

Возбуждение присоединяющимися частицами не требует большой кинетической энергии, и, следовательно, не зависит от температуры среды, поскольку происходит за счёт неиспользованных связей, присущих частицам сил притяжения. Но зато для возбуждения реакций необходимы сами частицы. И если опять иметь в виду не отдельный акт реакции, а получение энергии в макроскопических масштабах, то это возможно лишь при возникновении цепной реакции. Последняя же возникает, когда возбуждающие реакцию частицы снова появляются, как продукты экзоэнергетической реакции.

Для управления и защиты ядерного реактора используются регулирующие стержни, которые можно перемещать по всей высоте активной зоны. Стержни изготавливаются из веществ, сильно поглощающих нейтроны – например, из бора или кадмия. При глубоком введении стержней цепная реакция становится невозможной, поскольку нейтроны сильно поглощаются и выводятся из зоны реакции.

Перемещение стержней производится дистанционно с пульта управления. При небольшом перемещении стержней цепной процесс будет либо развиваться, либо затухать. Таким способом регулируется мощность реактора.

Ленинградская АЭС, Реактор РБМК

Начало работы реактора:

В начальный момент времени после первой загрузки топливом, цепная реакция деления в реакторе отсутствует, реактор находится в подкритическом состоянии. Температура теплоносителя значительно меньше рабочей.

Как мы уже тут упоминали, для начала цепной реакции делящийся материал должен образовать критическую массу, - достаточное количество спонтанно расщепляющегося вещества в достаточно небольшом пространстве, условие, при котором число нейтронов, выделяющихся при делении ядер должно быть больше числа поглощенных нейтронов. Это можно сделать, повысив содержание урана-235 (количество загруженных ТВЭЛОВ), либо замедлив скорость нейтронов, чтобы они не пролетали мимо ядер урана-235.

Вывод реактора на мощность осуществляется в несколько этапов. С помощью органов регулирования реактивности реактор переводится в надкритическое состояние Кэф>1 и происходит рост мощности реактора до уровня 1-2 % от номинальной. На этом этапе производится разогрев реактора до рабочих параметров теплоносителя причем скорость разогрева ограничена. В процессе разогрева органы регулирования поддерживают мощность на постоянном уровне. Затем производится пуск циркуляционных насосов и вводится в действие система отвода тепла. После этого мощность реактора можно повышать до любого уровня в интервале от 2 — 100 % номинальной мощности.

При разогреве реактора реактивность меняется, в виду изменения температуры и плотности материалов активной зоны. Иногда при разогреве меняется взаимное положение активной зоны и органов регулирования, которые входят в активную зону или выходят из нее, вызывая эффект реактивности при отсутствии активного перемещения органов регулирования.

Регулирование твердыми, движущимися поглощающими элементами

Для оперативного изменения реактивности в подавляющем большинстве случаев используется твердые подвижные поглотители. В реакторе РБМК управляющие стержни содержат втулки из карбида бора заключенные в трубку из алюминиевого сплава диаметром 50 или 70 мм. Каждый регулирующий стержень помещен в отдельный канал и охлаждается водой контура СУЗ (система управления и защиты) при средней температуре 50 ° С. По своему назначению стержни делятся на стержни АЗ (аварийной зашиты), в РБМК таких стержней 24 штуки. Стержни автоматического регулирования — 12 штук, Стержни локального автоматического регулирования — 12 штук, стержни ручного регулирования -131, и 32 укороченных стержня поглотителя (УСП). Всего имеется 211 стержней. Причем укороченные стержни вводятся в АЗ с низу остальные с верху.

Реактор ВВЭР 1000. 1 - привод СУЗ; 2 - крышка реактора; 3 - корпус реактора; 4 - блок защитных труб (БЗТ); 5 - шахта; 6 - выгородка активной зоны; 7 - топливные сборки (ТВС) и регулирующие стержни;

Выгорающие поглощающие элементы.

Для компенсации избыточной реактивности после загрузки свежего топлива, часто используют выгорающие поглотители. Принцип работы которых состоит в том, что они, подобно топливу, после захвата нейтрона в дальнейшем перестают поглощать нейтроны (выгорают). Причем скорости убыли в результате поглощения нейтронов, ядер поглотителей, меньше или равна скорости убыли, в результате деления, ядер топлива. Если мы загружаем в АЗ реактора топливо рассчитанное на работу в течении года, то очевидно, что количество ядер делящегося топлива в начале работы будет больше чем в конце, и мы должны скомпенсировать избыточную реактивность поместив в АЗ поглотители. Если для этой цели использовать регулирующие стержни, то мы должны постоянно перемещать их, по мере того как количество ядер топлива уменьшается. Использование выгорающих поглотителей позволяет уменьшить использование движущихся стержней. В настоящее время выгорающие поглотители часто помешают непосредственно в топливные таблетки, при их изготовлении.

Жидкостное регулирование реактивности.

Такое регулирование применяется, в частности, при работе реактора типа ВВЭР в теплоноситель вводится борная кислота Н3ВО3, содержащая ядра 10В поглощающие нейтроны. Изменяя концентрацию борной кислоты в тракте теплоносителя мы тем самым изменяем реактивность в АЗ. В начальный период работы реактора когда ядер топлива много, концентрация кислоты максимальна. По мере выгорания топлива концентрация кислоты снижается.

Механизм цепной реакции

Ядерный реактор может работать с заданной мощностью в течение длительного времени только в том случае, если в начале работы имеет запас реактивности. Исключение составляют подкритические реакторы с внешним источником тепловых нейтронов. Освобождение связанной реактивности по мере её снижения в силу естественных причин обеспечивает поддержание критического состояния реактора в каждый момент его работы. Первоначальный запас реактивности создается путём постройки активной зоны с размерами, значительно превосходящими критические. Чтобы реактор не становился надкритичным, одновременно искусственно снижается k0 размножающей среды. Это достигается введением в активную зону веществ-поглотителей нейтронов, которые могут удаляться из активной зоны в последующем. Так же как и в элементах регулирования цепной реакции, вещества-поглотители входят в состав материала стержней того или иного поперечного сечения, перемещающихся по соответствующим каналам в активной зоне. Но если для регулирования достаточно одного-двух или нескольких стержней, то для компенсации начального избытка реактивности число стержней может достигать сотни. Эти стержни называются компенсирующими. Регулирующие и компенсирующие стержни не обязательно представляют собой различные элементы по конструктивному оформлению. Некоторое число компенсирующих стержней может быть стержнями регулирования, однако функции тех и других отличаются. Регулирующие стержни предназначены для поддержания критического состояния в любой момент времени, для остановки, пуска реактора, перехода с одного уровня мощности на другой. Все эти операции требуют малых изменений реактивности. Компенсирующие стержни постепенно выводятся из активной зоны реактора, обеспечивая критическое состояние в течение всего времени его работы.

Иногда стержни управления делаются не из материалов-поглотителей, а из делящегося вещества или материала-рассеивателя. В тепловых реакторах - это преимущественно поглотители нейтронов, эффективных же поглотителей быстрых нейтронов нет. Такие поглотители, как кадмий, гафний и другие, сильно поглощают лишь тепловые нейтроны благодаря близости первого резонанса к тепловой области, а за пределами последней ничем не отличаются от других веществ по своим поглощающим свойствам. Исключение составляет бор, сечение поглощения нейтронов которого снижается с энергией значительно медленнее, чем у указанных веществ, по закону l / v. Поэтому бор поглощает быстрые нейтроны хотя и слабо, но несколько лучше других веществ. Материалом-поглотителем в реакторе на быстрых нейтронах может служить только бор, по возможности обогащенный изотопом 10В. Помимо бора в реакторах на быстрых нейтронах для стержней управления применяются и делящиеся материалы. Компенсирующий стержень из делящегося материала выполняет ту же функцию, что и стержень-поглотитель нейтронов: увеличивает реактивность реактора при естественном её снижении. Однако, в отличие от поглотителя, такой стержень в начале работы реактора находится за пределами активной зоны, а затем вводится в активную зону.

Из материалов-рассеивателей в быстрых реакторах употребляется никель, имеющий сечение рассеяния быстрых нейтронов несколько больше сечений других веществ. Стержни-рассеиватели располагаются по периферии активной зоны и их погружение в соответствующий канал вызывает снижение утечек нейтронов из активной зоны и, следовательно, возрастание реактивности. В некоторых специальных случаях целям управления цепной реакцией служат подвижные части отражателей нейтронов, при перемещении изменяющие утечки нейтронов из активной зоны. Регулирующие, компенсирующие и аварийные стержни совместно со всем оборудованием, обеспечивающим их нормальное функционирование, образуют систему управления и защиты реактора (СУЗ).

Аварийная защита:

Аварийная защита ядерного реактора – совокупность устройств, предназначенная для быстрого прекращения цепной ядерной реакции в активной зоне реактора.

Активная аварийная защита автоматически срабатывает при достижении одним из параметров ядерного реактора значения, которое может привести к аварии. В качестве таких параметров могут выступать: температура, давление и расход теплоносителя, уровень и скорость увеличения мощности.

Исполнительными элементами аварийной защиты являются, в большинстве случаев, стержни с веществом, хорошо поглощающим нейтроны (бором или кадмием). Иногда для остановки реактора жидкий поглотитель впрыскивают в контур теплоносителя.

Дополнительно к активной защите, многие современные проекты включают также элементы пассивной защиты. Например, современные варианты реакторов ВВЭР включают «Систему аварийного охлаждения активной зоны» (САОЗ) – специальные баки с борной кислотой, находящиеся над реактором. В случае максимальной проектной аварии (разрыва первого контура охлаждения реактора), содержимое этих баков самотеком оказываются внутри активной зоны реактора и цепная ядерная реакция гасится большим количеством борсодержащего вещества, хорошо поглощающего нейтроны.

Согласно «Правилам ядерной безопасности реакторных установок атомных станций», по крайней мере одна из предусмотренных систем остановки реактора должна выполнять функцию аварийной защиты (АЗ). Аварийная защита должна иметь не менее двух независимых групп рабочих органов. По сигналу АЗ рабочие органы АЗ должны приводиться в действие из любых рабочих или промежуточных положений.

Аппаратура АЗ должна состоять минимум из двух независимых комплектов.

Каждый комплект аппаратуры АЗ должен быть спроектирован таким образом, чтобы в диапазоне изменения плотности нейтронного потока от 7% до 120% номинального обеспечивалась защита:

1. По плотности нейтронного потока – не менее чем тремя независимыми каналами;
2. По скорости нарастания плотности нейтронного потока – не менее чем тремя независимыми каналами.

Каждый комплект аппаратуры АЗ должен быть спроектирован таким образом, чтобы во всем диапазоне изменения технологических параметров, установленном в проекте реакторной установки (РУ), обеспечивалась аварийная защита не менее чем тремя независимыми каналами по каждому технологическому параметру, по которому необходимо осуществлять защиту.

Управляющие команды каждого комплекта для исполнительных механизмов АЗ должны передаваться минимум по двум каналам. При выводе из работы одного канала в одном из комплектов аппаратуры АЗ без вывода данного комплекта из работы для этого канала должен автоматически формироваться аварийный сигнал.

Срабатывание аварийной защиты должно происходить как минимум в следующих случаях:

1. При достижении уставки АЗ по плотности нейтронного потока.
2. При достижении уставки АЗ по скорости нарастания плотности нейтронного потока.
3. При исчезновении напряжения в любом не выведенном из работы комплекте аппаратуры АЗ и шинах электропитания СУЗ.
4. При отказе любых двух из трех каналов защиты по плотности нейтронного потока или по скорости нарастания нейтронного потока в любом не выведенном из работы комплекте аппаратуры АЗ.
5. При достижении уставок АЗ технологическими параметрами, по которым необходимо осуществлять защиту.
6. При инициировании срабатывания АЗ от ключа с блочного пункта управления (БПУ) или резервного пункта управления (РПУ).

Может кто то сможет еще менее по научному объяснить кратко как начинает работу энергоблок АЭС? :-)

Вспомните такую тему, как и Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -


Использование ядерной энергии для получения электроэнергии осуществляется при помощи специальных аппаратов, которые называют ядерными реакторами . В реакторе процесс высвобождения энергии идет постепенно, поскольку в цепной реакции деления нейтроны освобождаются не одновременно. Большая часть нейтронов образуется менее чем через 0,001 секунды – это так называемые мгновенные нейтроны. Другая часть (около 0,7%) образуется через 13 секунд – это запоздалые нейтроны. Именно они дают возможность регулировать скорость прохождения цепной реакции при помощи специальных стержней, которые поглощают избыток нейтронов. Стержни вводятся в активную зону реактора и стабилизируют процесс размножение нейтронов на безопасном уровне.

Что собой представляет ядерный реактор?

Существует две основные категории реакторов – реакторы на тепловых (медленных) нейтронах и реакторы на быстрых нейтронах. В дальнейшем речь будет идти о реакторах на тепловых нейтронах

Основным элементом ядерного реактора является активная зона , в которую загружают тепловыделяющие элементы (ТВЭЛы). В этих элементах и происходит цепная реакция. ТВЭЛ реактора РБМК – это циркониевая трубка диаметром 10 мм и длинной 3,5 м. В трубке помещены таблетки двуокиси урана (UO 2). ТВЭЛы размещены в замедлителе. В реакторах РБМК Чернобыльской АЭС в качестве замедлителя используют графит. К слову, именно это существенно усугубило ситуацию в апреле 1986 года. В конструкциях других атомных реакторов в качестве замедлителя используют воду.

Тепло, которое выделяется в ТВЭЛах в результате деления урана, отводится при помощи теплоносителя (например, водой). Теплоноситель непрерывно циркулирует сквозь активную зону. Через реактор РБМК-1000 ежечасно проходить 37500 м 3 воды. Управление работой реактора осуществляется при помощи системы управления и защиты (СУЗ). СУЗ обеспечивает запуск, остановку реактора а также осуществляет регулирование его мощности. К ней относятся стержни, которые наполнены веществом сильно поглощающем нейтроны (кадмий, бор и т.д.). Введение в активную зону стержней приводит к остановке реактора, а извлекая их из реактора осуществляется регулировка мощности. Для реакторов на тепловых нейтронах характерным является наличие замедлителя в активной зоне (вода и графит).

Существует большое количество других типов реакторов, которые отличаются конструкцией, типом теплоносителя, энергией используемых нейтронов и т.д.

Принципиальная схема устройства ядерного реактора (активной зоны ) представлена на рисунке.

Тип ядерного реактора на ЧАЭС

На Чернобыльской АЭС было установлено четыре реактора РБКМ-1000. Аббревиатура РБМК – реактор большой мощности канальный. Цифра 1000 указывает мощность энергетической установки, которая способна генерировать 1000 мегаватт электроэнергии в час. Необходимо отметить, что ядерный реактор, кроме энергетической мощности имеет тепловую мощность выделения тепла в реакторе. Тепловая энергия составляет 3000 мегаватт. Используя эти два значения (значения тепловой и энергетической мощности) можно легко рассчитать коэффициент полезного действия ядерного реактора РБКМ–1000 – 31%.

Важной особенностью устройства РБМК является наличие каналов в активной зоне, по которым движется теплоноситель (вода). То есть, наличие каналов в толще замедлителя дает возможность двигаться теплоносителю, который нагреваясь превращается в пар, который в свою очередь вырабатывает электроэнергию. Такая схема генерации энергии позволила сконструировать мощные реакторы. Так, активная зона РБМК имеет вид вертикального цилиндра высотой 7 метров, а диаметр 11,8 метров. Весь внутренний объем реактора заполнен графитовыми блоками размерами 25x25x60 см 3 . Общий вес графита в реакторе составляет 1850 тонн.

Графитовые блоки имеют в центре цилиндрическое отверстие, через которое проходит канал с водой, которая является теплоносителем. Графитовые блоки, которые находятся на периферии реактора отверстий и каналов не имеют. Эти блоки играют роль отражателя. Толщина этого слоя один метр.

Графитовая кладка окружена цилиндрическим металлическим баком с водой. Он играет роль биологической защиты. Графит опирается на плиту, которая состоит из металлоконструкций, а сверху графит также накрыт подобной плитой. Верхняя плита, для защиты от излучений, накрыта дополнительным настилом.

ЧАЭС: Устройство реактора РБМК

Общее устройство реактора РБМК :

1 – опорная металлоконструкция;

2 – индивидуальные водяные трубопроводы;

3 – нижняя металлоконструкция;

4 – боковая биологическая защита;

5 – графитовая кладка;

6 – барабан-сепаратор;

7 – индивидуальные пароводяные трубопроводы;

8 – верхняя металлоконструкция;

9 – разгрузочно-загрузочная машина;

10 – верхнее центральное перекрытие;

11 – верхнее боковое перекрытие;

12 – система контроля герметичности оболочек твэлов;

13 – главный циркуляционный насос.

В реакторах типа РБМК находится 1661 канал в которых размещены кассеты с ядерным топливом. Ядерное топливо – двуокись урана, который запечен в виде таблеток. Такие таблетки имеют диаметр около одного сантиметра и высотой полтора сантиметра. Таблетки собирают в колону в количестве двухсот штук и загружают в ТВЭЛ. ТВЭЛ – пустотелый циркониевый цилиндр с примесью (1%) ниобия, длинной 3,5 метра и диаметров 13,5 мм. 36 ТВЭЛов собирают в кассету, которая вставляется в канал реактора. Общий вес урана, который при этом загружается в реактор – 190 тонн. В других 211 каналах реактора двигаются стержни-поглотители.

Литературные источники:

  • Бар"яхтар В.Г. та ін. Радіація. Що ми про неї знаємо? / В.Г.Бар"яхтар, В.І. Стрижак, В.О.Поярков. К.: Наук.думка, 1991. – 32 с.
  • Мухин К.Н. Экспериментальная ядерная физика: В 2-х т. Т.1. Физика атомного ядра. – М.: Атомиздат, 1974 – 584 с.
  • Пристер Б.С., Лощилов Н.А., Немец О.Ф., Поярков В.А. Основы сельскохозяйственной радиологии. – Киев: Урожай, 1988. - 256 с.

Устройство и принцип действия основаны на инициализации и контроле самоподдерживающейся ядерной реакции. Его используют в качестве исследовательского инструмента, для производства радиоактивных изотопов и в качестве источника энергии для атомных электростанций.

принцип работы (кратко)

Здесь используется процесс при котором тяжелое ядро ​​распадается на два более мелких фрагмента. Эти осколки находятся в очень возбужденном состоянии и испускают нейтроны, другие субатомные частицы и фотоны. Нейтроны могут вызвать новые деления, в результате которых их излучается еще больше, и так далее. Такой непрерывный самоподдерживающийся ряд расщеплений называется цепной реакцией. При этом выделяется большое количество энергии, производство которой является целью использования АЭС.

Принцип работы ядерного реактора и таков, что коло 85% энергии расщепления высвобождается в течение очень короткого промежутка времени после начала реакции. Остальная часть вырабатывается в результате радиоактивного распада продуктов деления, после того как они излучили нейтроны. Радиоактивный распад является процессом, при котором атом достигает более стабильного состояния. Он продолжается и после завершения деления.

В атомной бомбе цепная реакция увеличивает свою интенсивность, пока не будет расщеплена большая часть материала. Это происходит очень быстро, производя чрезвычайно мощные взрывы, характерные для таких бомб. Устройство и принцип действия ядерного реактора основаны на поддержании цепной реакции на регулируемом, почти постоянном уровне. Он сконструирован таким образом, что взорваться, как атомная бомба, не может.

Цепная реакция и критичность

Физика ядерного реактора деления состоит в том, что цепная реакция определяется вероятностью расщепления ядра после испускания нейтронов. Если популяция последних уменьшается, то скорость деления в конце концов упадет до нуля. В этом случае реактор будет находиться в докритическом состоянии. Если же популяция нейтронов поддерживается на постоянном уровне, то скорость деления будет оставаться стабильной. Реактор будет находиться в критическом состоянии. И, наконец, если популяция нейтронов со временем растет, скорость деления и мощность будет увеличиваться. Состояние активной зоны станет сверхкритическим.

Принцип действия ядерного реактора следующий. Перед его запуском популяция нейтронов близка к нулю. Затем операторы удаляют управляющие стержни из активной зоны, увеличивая деление ядер, что временно переводит реактор в сверхкритическое состояние. После выхода на номинальную мощность операторы частично возвращают управляющие стержни, регулируя количество нейтронов. В дальнейшем реактор поддерживается в критическом состоянии. Когда его необходимо остановить, операторы вставляют стержни полностью. Это подавляет деление и переводит активную зону в докритическое состояние.

Типы реакторов

Большинство существующих в мире ядерных установок являются энергетическими, генерирующими тепло, необходимое для вращения турбин, которые приводят в движение генераторы электрической энергии. Также есть много исследовательских реакторов, а некоторые страны имеют подводные лодки или надводные корабли, движимые энергией атома.

Энергетические установки

Существует несколько видов реакторов этого типа, но широкое применение нашла конструкция на легкой воде. В свою очередь, в ней может использоваться вода под давлением или кипящая вода. В первом случае жидкость под высоким давлением нагревается теплом активной зоны и поступает в парогенератор. Там тепло от первичного контура передается на вторичный, также содержащий воду. Генерируемый в конечном счете пар служит рабочей жидкостью в цикле паровой турбины.

Реактор кипящего типа работает по принципу прямого энергетического цикла. Вода, проходя через активную зону, доводится до кипения на среднем уровне давления. Насыщенный пар проходит через серию сепараторов и сушилок, расположенных в корпусе реактора, что приводит его в сверхперегретое состояние. Перегретый водяной пар затем используется в качестве рабочей жидкости, вращающей турбину.

Высокотемпературные с газовым охлаждением

Высокотемпературный газоохлаждаемый реактор (ВТГР) - это ядерный реактор, принцип работы которого основан на применении в качестве топлива смеси графита и топливных микросфер. Существуют две конкурирующие конструкции:

  • немецкая «засыпная» система, которая использует сферические топливные элементы диаметром 60 мм, представляющие собой смесь графита и топлива в графитовой оболочке;
  • американский вариант в виде графитовых гексагональных призм, которые сцепляются, создавая активную зону.

В обоих случаях охлаждающая жидкость состоит из гелия под давлением около 100 атмосфер. В немецкой системе гелий проходит через промежутки в слое сферических топливных элементов, а в американской - через отверстия в графитовых призмах, расположенных вдоль оси центральной зоны реактора. Оба варианта могут работать при очень высоких температурах, так как графит имеет чрезвычайно высокую температуру сублимации, а гелий полностью инертен химически. Горячий гелий может быть применен непосредственно в качестве рабочей жидкости в газовой турбине при высокой температуре или его тепло можно использовать для генерации пара водяного цикла.

Жидкометаллический и принцип работы

Реакторам на быстрых нейтронах с натриевым теплоносителем уделялось большое внимание в 1960-1970-х годах. Тогда казалось, что их возможности по воспроизводству в ближайшее время необходимы для производства топлива для быстро развивающейся атомной промышленности. Когда в 1980-е годы стало ясно, что это ожидание нереалистично, энтузиазм угас. Однако в США, России, Франции, Великобритании, Японии и Германии построен ряд реакторов этого типа. Большинство из них работает на диоксиде урана или его смеси с диоксидом плутония. В Соединенных Штатах, однако, наибольший успех был достигнут с металлическими топливом.

CANDU

Канада сосредоточила свои усилия на реакторах, в которых используется природный уран. Это избавляет от необходимости для его обогащения прибегать к услугам других стран. Результатом такой политики стал дейтерий-урановый реактор (CANDU). Контроль и охлаждение в нем производится тяжелой водой. Устройство и принцип работы ядерного реактора состоит в использовании резервуара с холодной D 2 O при атмосферном давлении. Активная зона пронизана трубами из циркониевого сплава с топливом из природного урана, через которые циркулирует охлаждающая его тяжелая вода. Электроэнергия производится за счет передачи теплоты деления в тяжелой воде охлаждающей жидкости, которая циркулирует через парогенератор. Пар во вторичном контуре затем проходит через обычный турбинный цикл.

Исследовательские установки

Для проведения научных исследований чаще всего используется ядерный реактор, принцип работы которого состоит в применении водяного охлаждения и пластинчатых урановых топливных элементов в виде сборок. Способен функционировать в широком диапазоне уровней мощности, от нескольких киловатт до сотен мегаватт. Поскольку производство электроэнергии не является основной задачей исследовательских реакторов, они характеризуются вырабатываемой тепловой энергией, плотностью и номинальной энергией нейтронов активной зоны. Именно эти параметры помогают количественно оценить способность исследовательского реактора проводить конкретные изыскания. Маломощные системы, как правило, функционируют в университетах и ​​используются для обучения, а высокая мощность необходима в научно-исследовательских лабораториях для тестирования материалов и характеристик, а также для общих исследований.

Наиболее распространен исследовательский ядерный реактор, строение и принцип работы которого следующие. Его активная зона расположена в нижней части большого глубокого бассейна с водой. Это упрощает наблюдение и размещение каналов, по которым могут быть направлены пучки нейтронов. При низких уровнях мощности нет необходимости прокачивать охлаждающую жидкость, так как для поддержания безопасного рабочего состояния естественная конвекция теплоносителя обеспечивает достаточный отвод тепла. Теплообменник, как правило, находится на поверхности или в верхней части бассейна, где скапливается горячая вода.

Корабельные установки

Первоначальным и основным применением ядерных реакторов является их использование в подводных лодках. Главным их преимуществом является то, что, в отличие от систем сжигания ископаемого топлива, для выработки электроэнергии им не требуется воздух. Следовательно, атомная субмарина может оставаться в погруженном состоянии в течение длительного времени, а обычная дизель-электрическая подлодка должна периодически подниматься на поверхность, чтобы запускать свои двигатели в воздухе. дает стратегическое преимущество кораблям ВМС. Благодаря ей отпадает необходимость заправляться в иностранных портах или от легко уязвимых танкеров.

Принцип работы ядерного реактора на подводной лодке засекречен. Однако известно, что в США в нем используется высокообогащенный уран, а замедление и охлаждение производится легкой водой. Конструкция первого реактора атомной субмарины USS Nautilus находилась под сильным влиянием мощных исследовательских установок. Его уникальными особенностями является очень большой запас реактивности, обеспечивающей длительный период работы без дозаправки и возможность перезапуска после остановки. Электростанция в подлодках должна быть очень тихой, чтобы избежать обнаружения. Для удовлетворения конкретных потребностей различных классов субмарин были созданы разные модели силовых установок.

На авианосцах ВМС США используется ядерный реактор, принцип работы которого, как полагают, заимствован у крупнейших подлодок. Подробные сведения их конструкции также не были опубликованы.

Кроме США, атомные подводные лодки имеются у Великобритании, Франции, России, Китая и Индии. В каждом случае конструкция не разглашалась, но считается, что все они весьма схожи - это является следствием одинаковых требований к их техническим характеристикам. Россия также обладает небольшим флотом на которых устанавливались такие же реакторы, как и на советских субмаринах.

Промышленные установки

Для целей производства используется ядерный реактор, принцип работы которого состоит в высокой производительности при низком уровне производства энергии. Это обусловлено тем, что длительное пребывание плутония в активной зоне приводит к накоплению нежелательного 240 Pu.

Производство трития

В настоящее время основным материалом, получаемым с помощью таких систем, является тритий (3 H или T) - заряд для Плутоний-239 имеет длительный период полураспада, равный 24100 годам, поэтому страны с арсеналами ядерного оружия, использующими этот элемент, как правило, имеют его больше, чем необходимо. В отличие от 239 Pu, период полураспада трития составляет примерно 12 лет. Таким образом, чтобы поддерживать необходимые запасы, этот радиоактивный изотоп водорода должен производиться непрерывно. В США в Саванна-Ривер (штат Южная Каролина), например, работает несколько реакторов на тяжелой воде, которые производят тритий.

Плавучие энергоблоки

Созданы ядерные реакторы, способные обеспечить электроэнергией и паровым отоплением удаленные изолированные районы. В России, например, нашли применение небольшие энергетические установки, специально предназначенные для обслуживания арктических населенных пунктов. В Китае 10-МВт установка HTR-10 снабжает теплом и электроэнергией исследовательский институт, в котором она находится. Разработки небольших автоматически управляемых реакторов с аналогичными возможностями ведутся в Швеции и Канаде. В период с 1960 по 1972 год армия США использовала компактные водяные реакторы для обеспечения удаленных баз в Гренландии и Антарктике. Они были заменены мазутными электростанциями.

Покорение космоса

Кроме того, были разработаны реакторы для энергоснабжения и передвижения в космическом пространстве. В период с 1967 по 1988 год Советский Союз устанавливал небольшие ядерные установки на спутники серии «Космос» для питания оборудования и телеметрии, но эта политика стала мишенью для критики. По крайней мере один из таких спутников вошел в атмосферу Земли, в результате чего радиоактивному загрязнению подверглись отдаленные районы Канады. Соединенные Штаты запустили только один спутник с ядерным реактором в 1965 году. Однако проекты по их применению в дальних космических полетах, пилотируемых исследованиях других планет или на постоянной лунной базе продолжают разрабатываться. Это обязательно будет газоохлаждаемый или жидкометаллический ядерный реактор, физические принципы работы которого обеспечат максимально высокую температуру, необходимую для минимизации размера радиатора. Кроме того, реактор для космической техники должен быть максимально компактным, чтобы свести к минимуму количество материала, используемого для экранирования, и для уменьшения веса во время старта и космического полета. Запас топлива обеспечит работу реактора на весь период космического полета.