Выставка по сигналам MEMS акселерометра.

Матрица поворот применяется для вращения системы координат или объекта, сцены.

Матрицы поворота вокруг основных осей.

Матрица поворота вокруг произвольной оси.

Обобщённая матрица поворота.

Хочется задавать положение объекта в пространстве однозначно. Достаточно очевидно что любое положение однозначно определяется 3 поворотами вокруг разных осей. Но встаёт вопрос в каком порядке вращать и как выбрать оси?

Обобщённую матрица поворота можно задать по разному. С одной стороны мы можем вращать объект вокруг неподвижных осей. С другой вокруг осей связанных с объектом ещё их называют локальными. Стоит вспомнить что операции умножения матриц не коммутативна поэтому для однозначного определения положения нужно знать не только 3 угла, но и схему умножения матриц.

Можно выделить 2 популярные схемы.
1) Матрица поворота через углы Эйлера.
2) Матрица поворота через углы летательного аппарата (ЛА): рыскание, тангаж и крен(yaw, pitch и roll).
В виду того что первая требует большого числа вычислений, то на практике обычно применяют вторую.

Матрица поворота через углы Эйлера.

Углы Эйлера - три угла однозначно определяющие ориентацию твёрдого тела, определяющие переход от неподвижной системы координат к подвижной.
Подвижная система координат это система координат привязанная к телу. Иногда говорят в мороженная в тело. Прежде чем дать определения углов нам понадобиться ещё одно. Линия узлов ON - линия пересечение плоскости OXY и Oxy

α (или φ) это угол между осью Оx и осью ON. Диапазон значений ={ a 3 y } т [x 1 ] , или , (3.2)

где - матрица, транспонированная к матрице , описывающей поворот системы CXYZ вокруг третьей координатной оси СZ на угол дифферента y,

; (3.3)

2) от системы к системе (рис. 3.4)

x 1 = x 2 + 0 + 0 ,

y 1 = 0 + y 2 - z 2 , (3.4)

z 1 = 0 + y 2 + z 2 ,

или в матричной форме

[x 1 ] = [x 2 ] , или , (3.5)

где – матрица, транспонированная к матрице , задающей преобразование поворота от осей системы к осям системы вокруг первой из координатных осей на угол крена , при этом = ,

; (3.6)

3) от системы координат к системе Cxyz (рис. 3.5)

x 2 = x cos j + 0 + z sin j,

y 2 = 0 + y + 0 , (3.7)

z 2 = -x sin j + 0 + z cos j,

или в матричной форме [x 2 ]= [x ], или

. (3.8)

Причем поворотная матрица {a 2 j } т – это матрица, транспонированная к матрице { a 2 j }, задающей преобразование поворота от осей системы к осям системы Cxyz на угол рысканияjвокруг второй из координатных осей = , имеет вид

. (3.9)

Для любой точки М тела с координатами x , y , z в подвижной системе координат, жестко связанной с ним, и с ее же координатами X , Y , Z – в неподвижной системе координат можно установить взаимосвязь проекций вектора точки на оси двух систем координат,

, (3.10)

или в матричном виде

или , (3.11)

где углы Крылова являются некоторыми функциями времени: угол дифферента ,угол крена ,угол рыскания .

Матрица транспонирована к матрице направляющих косинусов , задающей преобразование поворота от осей неподвижной системы CXYZ к осям подвижной системы Cxyz , неизменно связанной с кораблем. Очевидно, что при движении тела координаты x , y , z остаются постоянными в отличие от координат X , Y , Z.

Подставляя в (3.2) соотношения (3.5) и (3.8), получаем:

Сравнивая (3.11) и (3.12), находим, что искомая матрица является произведением трех поворотных матриц

=

=

.(3.13)

Подставляя в (3.2) соотношение (3.5), получаем промежуточное соотношение, которое может понадобиться в дальнейшем, [X ] = [x 2 ]. Промежуточная поворотная матрица = находится как произведение двух матриц поворота:

=

= (3.13a )

Углы Эйлера

В тех случаях, когда угловая скорость вращения в одном направлении значительно больше, чем в двух других (генераторы, моторы, турбины, гироскопы), для определения положения тела в качестве трех независимых параметров выбирают три угла Эйлера: угол прецессии y (t ),угол нутацииq (t ) иугол ротации (собственного вращения) j (t ). Их названия заимствованы из астрономии.

Чтобы задать эти углы, рассмотрим вращение твердого тела вокруг неподвижной точки О . Пусть даны некоторая система отсчета и связанная с ней неподвижная система координат ОXYZ , относительно которой движется твердое тело, и связанная с твердым телом система координат Оxyz , которая движется относительно первой (рис. 3.6 … 3.8). Это означает, что первая и вторая системы координат имеют общее начало O , а углы, образуемые осями Оxyz с осями ОXYZ , изменяются, т.е. система Оxyz
поворачивается вместе с твердым телом вокруг неподвижной точки О (рис. 3.5 … 3.8).


Рис. 3.6