Введение, анизотропность - общие свойства кристаллов.

Анизотропия (от греч. ánisos - неравный и tróроs - направление), зависимость физических свойств вещества (механических, тепловых, электрических, магнитных, оптических) от направления (в противоположность изотропии - независимости свойств от направления). Примеры Анизотропия : пластинка слюды легко расщепляется на тонкие листочки только вдоль определённой плоскости (параллельно этой плоскости силы сцепления между частицами слюды наименьшие); мясо легче режется вдоль волокон, хлопчатобумажная ткань легко разрывается вдоль нитки (в этих направлениях прочность ткани наименьшая).

Естественная Анизотропия - наиболее характерная особенность кристаллов. Именно потому, что скорости роста кристаллов в разных направлениях различны, кристаллы вырастают в виде правильных многогранников: шестиугольные призмы кварца , кубики каменной соли, восьмиугольные кристаллы алмаза , разнообразные, но всегда шестиугольные звёздочки снежинок. Анизотропны, однако, не все свойства кристаллов. Плотность и удельная теплоёмкость у всех кристаллов не зависят от направления. Анизотропия остальных физических свойств кристаллов тесно связана с их симметрией и проявляется тем сильнее, чем ниже симметрия кристаллов .

При нагревании шара из изотропного вещества он расширяется во все стороны равномерно, т. е. остаётся шаром. Кристаллический шар при нагревании изменит свою форму, например превратится в эллипсоид (рис. 1 , а). Может случиться, что при нагревании шар будет расширяться в одном направлении и сжиматься в другом (поперечном к первому, рис. 1 , б). Температурные коэффициенты линейного расширения вдоль главной оси симметрии кристалла (a //) и перпендикулярно этой оси (a ^) различны по величине и знаку.

Таблица 1. - Температурные коэффициенты линейного расширения некоторых кристаллов вдоль главной оси симметрии кристалла и в перпендикулярном ей направлении

Аналогично различаются удельные электрические сопротивления кристаллов вдоль главной оси симметрии r // и перпендикулярно ей r ^ .

Таблица 2. - Удельное электрическое сопротивление некоторых кристаллов вдоль главной оси симметрии и перпендикулярно ей (1 ом·см = 0,01 ом·м )

При распространении света в прозрачных кристаллах (кроме кристаллов с кубической решёткой) свет испытывает двойное лучепреломление и поляризуется различно в разных направлениях (оптическая Анизотропия ). В кристаллах с гексагональной, тригональной и тетрагональной решётками (например, в кристаллах кварца , рубина и кальцита ) двойное лучепреломление максимально в направлении, перпендикулярном к главной оси симметрии, и отсутствует вдоль этой оси. Скорость распространения света в кристалле v или показатель преломления кристалла n различны в различных направлениях. Например, у кальцита показатели преломления видимого света вдоль оси симметрии n // и перпендикулярно ей n ^ равны: n // = 1,64 и n ^ = 1,58; у кварца: n // = 1,53, n ^ = 1,54.

Механическая Анизотропия состоит в различии механических свойств - прочности, твёрдости, вязкости, упругости - в разных направлениях. Количественно упругую Анизотропия оценивают по максимальному различию модулей упругости . Так, для поликристаллических металлов с кубической решёткой отношение модулей упругости вдоль ребра и вдоль диагонали куба для железа равно 2,5, для свинца 3,85, для бета-латуни 8,7. Кубические монокристаллы характеризуются тремя главными значениями модулей упругости (табл. 3).

Таблица 3. - Главные значения модулей упругости некоторых кубических кристаллов

Математически анизотропные свойства кристаллов характеризуются векторами и тензорами , в отличие от изотропных свойств (например, плотности), которые описываются скалярными величинами. Например, коэффициент пироэлектрического эффекта (см. Пироэлектричество ) является вектором. Электрическое сопротивление, диэлектрическая проницаемость , магнитная проницаемость и теплопроводность - тензоры второго ранга, коэффициент пьезоэлектрического эффекта (см. Пьезоэлектричество ) - тензор третьего ранга, упругость - тензор четвёртого ранга. Анизотропия графически изображают с помощью указательных поверхностей (индикатрисс): из одной точки во всех направлениях откладывают отрезки, соответствующие константе в этом направлении. Концы этих отрезков образуют указательную поверхность (рис. 2-5 ).

Поликристаллические материалы (металлы , сплавы ), состоящие из множества кристаллических зёрен (кристаллитов ), ориентированных произвольно, в целом изотропны или почти изотропны. Анизотропия свойств поликристаллического материала проявляется, если в результате обработки (отжига , прокатки и т. п.) в нём создана преимущественная ориентация отдельных кристаллитов в каком-либо направлении (текстура). Так, при прокатке листовой стали зёрна металла ориентируются в направлении прокатки, в результате чего возникает Анизотропия (главным образом механических свойств), например для прокатанных сталей предел текучести, вязкость, удлинение при разрыве, вдоль и поперёк направления проката различаются на 15-20% (до 65%).

Причиной естественной Анизотропия является упорядоченное расположение частиц в кристаллах, при котором расстояние между соседними частицами, а следовательно, и силы связи между ними различны в разных направлениях (см. Кристаллы ). Анизотропия может быть вызвана также асимметрией и определённой ориентацией самих молекул. Этим объясняется естественная Анизотропия некоторых жидкостей, особенно Анизотропия жидких кристаллов . В последних наблюдается двойное лучепреломление света, хотя большинство других их свойств изотропно, как у обычных жидкостей.

Анизотропия наблюдается также и в определённых некристаллических веществах, у которых существует естественная или искусственная текстура (древесина и т. п.). Например, фанера или прессованная древесина вследствие слоистости строения могут обладать пьезоэлектрическими свойствами, как кристаллы. Комбинируя стеклянное волокно с пластмассами, удаётся получить анизотропный листовой материал с прочностью на разрыв до 100 кгс/мм 2 . Искусственную Анизотропия можно также получить, создавая заданное распределение механических напряжений в первоначально изотропном материале. Например, при закалке стекла можно получить в нём Анизотропия , которая влечёт за собой упрочнение стекла.

Искусственная оптическая Анизотропия возникает в кристаллах и в изотропных средах под действием электрического поля (см. Электрооптический эффект в кристаллах, Керра явление в жидкостях), магнитного поля (см. Коттон-Мутона эффект ), механического воздействия (см. фотоупругость ).

М. П. Шаскольская.

Анизотропия широко распространена также в живой природе. Оптическая Анизотропия обнаруживается в некоторых животных тканях (мышечной, костной). Так, миофибриллы поперечно исчерченных мышечных волокон при микроскопии кажутся состоящими из светлых и тёмных участков. При исследовании в поляризованном свете эти тёмные диски, как и гладкие мышцы и некоторые структуры костной ткани, обнаруживают двойное лучепреломление, т. е. они анизотропны.

В ботанике Анизотропия называется способность разных органов одного и того же растения принимать различные положения при одинаковых воздействиях факторов внешней среды. Например, при одностороннем освещении верхушки побегов изгибаются к свету, а листовые пластинки располагаются перпендикулярно к направлению лучей.

Рис. 4. Сечения поверхности модуля кручений (а) и модуля Юнга (б) кристалла кварца; сечение поверхности пьезоэлектрического коэффициента в кварце (в).

Статья про слово "Анизотропия " в Большой Советской Энциклопедии была прочитана 21507 раз

Анизотропия (от др. uреч. ἄνισος — неравный и τρόπος — направление) - зависимость свойств материала (например, механических: предела прочности, относительного удлинения, твердости, износостойкости и др.) от направления внутри этого материала. Если материал изотропен, то его свойства одинаковы во всех направлениях.

Металлография тесно связана с вопросами анизотропии. По некоторым свойствам материал может быть изотропен, по другим — анизотропен. Материалы могут отличаться степенью анизотропии. Вопрос анизотропности материала связан с выбором направления внутри этого материала. В одном направлении материал может рассматриваться как анизотропный, в других - как изотропный. Анизотропия в металлографии может рассматриваться на разных масштабных уровнях. Например, на микроуровне (внутри зерна) материал может быть анизотропен, а на другом - изотропен (например в объеме образца).

Анизотропия может быть разделена на естественную и искусственную.

Примером естественной анизотропии на микроуровне является анизотропия элементарной кристаллической ячейки. Если рассматривать отдельные направления внутри элементарной ячейки, то проявляется анизотропия: различные направления имеют различные свойства на масштабном уровне, определяющемся размерами кристаллической решетки. В качестве примера можно привести монокристалл медного купороса (рис.1). Степень анизотропии кристаллов кубической сингонии гораздо выше. Если рассматривать направления осей x, у и z, то монокристалл поваренной соли изотропен (рис.1б). Овализованный кристалл поваренной соли имеет изотропную форму.

Рисунок 1. Гидратированные кристаллы медного купороса (а); естественный и овализованный кристаллы хлорида натрия (б).

Плотность и удельная теплоёмкость у всех кристаллов не зависят от направления. Анизотропия остальных физических свойств кристаллов тесно связана с их симметрией и проявляется тем сильнее, чем ниже симметрия. Например, усилие сдвига, скорость роста или растворения кристалла зависят от направления. Пример анизотропной структуры электролитического покрытия меди представлен на рис. 2. Кристаллиты покрытия растут на подложке в определенном направлении и все они ориентированы в пространстве одинаково. Скорость роста кристаллов максимальна в направлении, перпендикулярном подложке.

Рисунок 2. Структура электролитического покрытия меди.

Молекулярные кристаллы (белки или полимеры) также являются анизотропными объектами. Изделия, созданные на основе полимеров могут быть как анизотропными (например искусственные нити для производства тканей), так и изотропными (изделия, получаемые при горячем формообразовании полимерных порошков). Сам порошок (рис.3) можно считать изотропным.

Рисунок 3. Порошок политетрафторэтилена ; освещение по методу темного поля .

Помимо белков, естественная анизотропия свойственна другим материалам биологического происхождения. Например: слюда, костные и мышечные ткани человека и животных, древесина и листья, трава и т.д.
Анизотропия материалов связана либо с естественной анизотропией материала, либо создается искусственно для придания материалу определенных свойств. Поликристаллические материалы (металлы, сплавы) принято считать изотропными, поскольку кристаллиты, составляющие металл, ориентированы хаотично относительно внешних и внутренних направлений в материале. Анизотропия в металлических материалах создается искусственно. Это, например, специальные условия кристаллизации (рис.4) (направленный теплоотвод). На рис.4а показана структура литой меди; кристаллиты вытянуты в направлении теплоотвода. Структура на рис.4б не имеет направленности. Анизитропную структуру можно получить при деформации - прокаткой и волочением. Например, на рис.5а показана структура прокатанной стали. Видны полосы перлита (темные), вытянутые вдоль направления деформации. Структура, показанная на рис.5б тоже состоит из перлита и феррита, но такую структуру можно считать изотропной, потому что феррит и перлит равномерно распределены в объеме стали. Сам перлит анизотропен, потому что имеет пластинчатое строение (в противоположность зернистому перлиту , который является изотропным).

Анизотропия, созданная тпластической деформацией, сохраняется в изделии или материале после прекращения воздействия и определяет комплекс его физико-механических свойств. Например, после холодной прокатки на 90% и отжига при 800 0 С медь имеет различное относительное удлинение: вдоль направления деформации - 40%, под углом 45 0 к направлению деформации - 75%.

Рисунок 4. Макроструктура литья: а - анизотропия макроструктуры меди за счет направленного теплоотвода; б - изотропная структура меди , формирующаяся при равномерном теплоотводе.

Рисунок 5. Анизотропия структуры углеродистой стали, созданная холодной прокаткой (а), и однородная структура, полученная нормализацией (б).

Композиционные материалы представляют собой искусственные анизотропные материалы, созданные, как правило, из двух и более материалов, часто различной природы. Композиционный материал состоит из армирующего прочного материала (как правило анизотропного) и связующего изотропного вещества с более низкими свойствами. Часто в качестве армирующего элемента используются высокопрочные волокна - графитовое или борное волокно, стекловолокно и т.д. (рис.6 а). Понятно, что в продольном сечении материал можно рассматривать как анизотропный (рис. 6 б), в поперечном сечении - как изотропный, т.к. сечение волокна сферическое (рис. 6в). Из элементарных соображений понятно, что свойства композиционного материала вдоль волокна будут существенно отличаться от свойств в поперечном направлении. Этот случай анизотропии представляет собой частный случай анизотропии под названием ортотропи я (от др. греч. ὀρθός — прямой и τρόπος — направление) —различие свойств материала по взаимно перпендикулярным направлениям.

Рисунок 6. Анизотропия композиционных материалов: а - борное волокно ; б - волокно в составе композита, продольное сечение материала; в - поперечное сечение материала.

Дефекты кристаллического строения В реальных кристаллах всегда есть дефекты, которые оказывают влияние на свойства сплавов и их обработку. Дефекты – это отклонения от правильного идеального регулярного расположения атомов в решетке кристалла. Различают: точечные, линейные, поверхностные (двухмерные) и объемные (трехмерные). Точечные дефекты Точечные дефекты малы во всех трех измерениях (длина – несколько атомных диаметров). К точечным дефектам относятся вакансии, межузельные атомы, примесные атомы и их комплексы.

В кристаллах всегда есть атомы, кинетическая энергия которых выше средней. Такие атомы, особенно, если они находятся вблизи поверхности, могут выйти на поверхность кристалла, а их место займут атомы, находя

щиеся дальше от поверхности, а принадлежащие им узлы кристаллической решетки окажутся свободными. Так возникают тепловые вакансии, т. е. возникающие при нагреве.
Вакансии искажают кристаллическую решетку изменяя тем самым, например электропроводность, кроме того играют определенную роль в диффузионных процессах, протекающих в металлах.
При комнатной температуре концентрация вакансий невелика, но при повышении температуры, особенно вблизи температуры плавления резко возрастает, но все равно мала – до 2 % при температуре плавления.
Быстрым охлаждением вакансии можно зафиксировать (скорость охлаждения велика, и атомы не успевают вернуться в исходное положение). Такие вакансии называют закалочными.
Вакансии образуются не только в результате нагрева, но и при пластической деформации.
Перемещаясь по кристаллу одиночные вакансии могут встречаться. В этом случае они могут объединяться в пары, образуя дивакансии (бивакансии), т. к. при этом уменьшается их суммарная поверхность, устойчивость такой спаренной вакансии возрастает. Возможно также образование тривакансий и целых цепочек.

Точечные дефекты оказывают влияние на физические свойства металлов: электропроводность, магнитные свойства и т.д., а также на фазовые превращения в металлах и сплавах. На механические свойства влияют мало.

Ли Линейные дефекты имеют малые размеры в двух измерениях и большую протяженность в третьем. Особо важным видом линейных дефектов являются дислокации – локализованные искажения кристаллической решетки, вызванные наличием в них «лишней» атомной плоскости или экстраплоскости.

Кроме краевых дислокаций в кристаллах могут образовываться винтовые дислокации, которые получаются путем частичного сдвига и закручивания.

Дислокации образуются уже при кристаллизации металла, а также в процессе пластической деформации и фазовых превращениях.
Важной характеристикой дислокационной структуры является плотность дислокаций (). Плотность дислокаций – суммарная длина дислокаций, приходящаяся на единицу объема V кристалла. Для отожженнных металлов =10 6 – 10 8 см -2 . После холодной деформации увеличивается до 10 11 – 10 12 см -2 .

Вектор Бюргерса – это мера искаженности кристаллической решетки обусловленная присутствием в ней дислокации; он характеризует сумму всех упругих смещений решетки, накопившихся вокруг дислокации.

Дислокации оказывают влияние на механические свойства металлов.

Анизотропия кристаллов

Физические свойства твердого тела можно разделить на две категории: одна из них включает такие свойства, как плотность, удельная теплоемкость, которые не связаны с выбором какого-либо направления внутри твердого тела, свойства же другой категории (механические модули, термический коэффициент расширения, коэффициент теплопроводности, удельное сопротивление, показатель преломления и др.) бывают различными для разных направлений в твердом телœе.

Изотропностью принято называть независимость физических свойств тела от направления внутри него. В случае если такие физические свойства тела, как модуль упругости, коэффициент теплопроводности, показатель преломления и т. п., одинаковы по всœем направлениям, то такое тело будет изотропным.

Под анизотропией принято понимать зависимость свойств макроскопически однородного тела от направления. Изотропными являются аморфные тела, жидкости и газы. Анизотропия же является характерной особенностью кристаллов. Но обнаружить анизотропность можно не у всяких кристаллических тел, а только у монокристаллов. Большинство окружающих нас кристаллических тел, к примеру, металлы, являются поликристаллическими, т. е. они состоят из очень большого числа сросшихся друг с другом мелких кристаллических зерен, ориентированных различным образом. В случае если в ориентации этих мелких кристалликов нет какого-либо определœенного порядка, то данное поликристаллическое тело будет изотропно. В случае если же в ориентации кристаллических зерен наблюдается упорядоченность (а она может возникнуть при таких методах обработки металлов, как прокатка, протяжка, волочение), то материал принято называть текстурированным и обнаруживает некоторую анизотропность.

В обычных поликристаллических металлах кристаллические зерна настолько малы, что, как правило, различимы лишь при наблюдении в микроскоп. Но при медленном охлаждении расплава металла можно получить крупнозернистый слиток, в котором кристаллические зерна легко рассмотреть невооруженным глазом. В случае если же применить особую методику охлаждения расплава металла, то можно получить такие образцы, в которых будет находиться всœего одно кристаллическое зерно – один кристалл. Такие однокристальные образцы называются монокристаллами.

В природе встречаются довольно большие монокристаллы минœералов, а иногда и металлов (самородки золота). Можно получить монокристаллы многих веществ (в том числе и металлов) искусственно. Для этого приходится соблюдать иногда очень тонкую и достаточно сложную технологию.

Наглядным примером анизотропии механической прочности кристалла является способность кристаллов слюды легко расщепляться на тонкие листочки по определœенному направлению и обладать достаточной прочностью в перпендикулярном направлении. Монокристаллы некоторых металлов (цинка, висмута͵ сурьмы) тоже довольно легко скалываются по определœенным плоскостям. Плоскость скола при этом представляет собой хорошее зеркало.

Исследования показали, что кристаллы могут обладать анизотропией теплопроводности, электропроводности, магнитных свойств и пр.

Анизотропия проявляется и в поверхностных свойствах кристаллов. К примеру, коэффициент поверхностного натяжения для разнородных граней кристалла имеет различную величину. При росте кристалла из расплава или раствора это является причиной различия скоростей роста разных граней.

Анизотропия скоростей роста обусловливает правильную форму растущего кристалла. Анизотропия поверхностных свойств проявляется в различии скоростей растворения разных граней кристалла, адсорбционной способности, химической активности разных граней одного и того же кристалла.

Причина анизотропии состоит в том, что кристаллы имеют строго упорядоченное строение. Важнейшим следствием упорядоченной структуры является анизотропия физических свойств кристалла.

Поясним сказанное. На рисунке 2.9 изображена схема расположения атомов в кристалле. Плоскость рисунка совпадает с одной из плоскостей, проходящей через узлы кристаллической решетки. Можно сказать, что кристалл представляет собой пачку таких плоскостей, лежащих как листы бумаги в книге.


В случае если произвести сечение такого кристалла плоскостями, перпендикулярными плоскости чертежа, то исходя из ориентации плоскостей сечения густота расположения атомов на них будет различной. На рисунке 2.9 направления секущих плоскостей изображены сплошными линиями. Из рисунка хорошо видно, что плотность ʼʼнаселœенияʼʼ плоскостей атомами различна; если расположить эти плоскости в порядке убывания поверхностной плотности атомов, то получится следующий ряд:

(010) (100) (110) (120) (320).

Вместе с тем, видно, что расстояния между смежными секущими плоскостями тем больше, чем плотнее ʼʼнаселœенностьʼʼ их атомами. Легко представить себе, что в наиболее плотно заполненных плоскостях атомы прочнее связаны друг с другом, так как расстояния между ними меньше.

С другой стороны, наиболее плотно заполненные плоскости, будучи удаленными друг от друга на относительно большие расстояния, чем мало заселœенные плоскости, будут слабее связаны друг с другом. Следовательно, наш условный кристалл обладает анизотропией механической прочности: легче всœего его расколоть по плоскости (010).

На основании изложенного можно сделать обобщение, что и другие физические свойства кристалла (тепловые, электрические, магнитные, оптические) бывают различными по разным направлениям.

Численные значения некоторых физических свойств кристаллов для разных направлений могут иногда различаться на несколько порядков. У кристаллов графита͵ к примеру, удельное электрическое сопротивление по направлению почти в сто раз больше, чем по перпендикулярному направлению.

Один и тот же кристалл должна быть изотропным в отношении одного свойства и анизотропным в отношении другого. К примеру, кристалл поваренной соли изотропен относительно диэлектрической проницаемости, коэффициента теплового расширения, показателя преломления, но анизотропен в отношении механических свойств и в отношении скоростей роста и растворения граней.

Анизотропия физических свойств кристаллов используется в технике, базирующейся на применении монокристаллов (полупроводниковая электроника, электро- и радиотехника, кристаллооптика и др.). Монокристаллические элементы полупроводниковых приборов, стабилизаторов частоты, пьезодатчиков, оптических приборов изготовляются со строгим учетом кристаллографического направления. Для этих целœей нужно изготовить монокристаллический образец не только определœенной чистоты, формы и размеров, но и с нужной ориентацией кристаллографических осœей.

Анизотропия кристаллов - понятие и виды. Классификация и особенности категории "Анизотропия кристаллов" 2017, 2018.

АНИЗОТРОПИЯ (от греческого ανισος - неравный и...тропия), зависимость физических свойств вещества (механических, электрических, магнитных, оптических) от направления (смотри Магнитная анизотропия, Оптическая анизотропия, а также Анизотропная среда).

Анизотропия — наиболее характерная особенность кристаллов, связанная с их симметрией и проявляющаяся тем сильнее, чем ниже симметрия кристаллов. При нагревании шара из изотропного вещества происходит его равномерное расширение по всем направлениям, то есть он остаётся шаром. Шар из кристаллического вещества при нагревании изменяет свою форму (рисунок). Не все свойства кристаллов анизотропны; например, их плотность и удельная теплоёмкость не зависят от направления (то есть изотропны).

Изменение формы шара из кристаллического вещества (изображён пунктиром) при нагревании: а - шар расширяется в одном направлении и сжимается в другом, перпендикулярном ему; 6 - шар неравномерно расширяется в обоих направлениях.

Анизотропия механических свойств кристаллов состоит в различии твёрдости, вязкости, упругости в разных направлениях. Анизотропию упругих свойств оценивают по главным значениям модулей упругости. Кубические монокристаллы характеризуются тремя главными значениями модулей упругости (вдоль трёх осей куба). Для кристаллов более низкой симметрии необходимо знание большего числа компонент модулей упругости. Анизотропию многих свойств кристалла, в том числе коэффициентов линейного теплового расширения и электрического сопротивления, характеризуют значениями соответствующих констант вдоль главной оси симметрии и перпендикулярно ей.

Анизотропные свойства кристаллов математически описываются векторами и тензорами, в отличие от изотропных свойств, описываемых скалярными величинами. Для задания векторной величины, например, средней намагниченности кристалла, необходимо знание трёх проекций вектора на оси координат. Электрическая проводимость, теплопроводность, диэлектрическая и магнитная проницаемости описываются симметричными тензорами 2-го ранга (необходимо знание 6 компонент).

Причиной анизотропии кристаллов является упорядоченное расположение частиц в них, при котором расстояние между соседними частицами, а, следовательно, и силы связи между ними различны в разных направлениях. Анизотропия жидких кристаллов связана с асимметрией и определённой ориентацией самих молекул. Поликристаллические материалы, состоящие из большого числа случайно ориентированных мелких монокристаллов, изотропны. Анизотропия свойств в них может быть искусственно вызвана внешним воздействием, например, отжигом, прокаткой и т.п. (смотри Текстура).

Анизотропия широко распространена в природе. Например, анизотропия является диагностическим признаком ряда минералов, многие из которых имеют различную твёрдость по разным направлениям (кианит, алмаз), обладают плеохроизмом (кордиерит, турмалин), спайностью (слюды), двойным лучепреломлением (исландский шпат) и др. С анизотропией связана возможность обработки алмаза алмазным инструментом и т.п.

Смотри также статью Минерал.

Лит.: Современная кристаллография. М., 1981. Т. 1: Симметрия кристаллов.