Вопрос. Барометрическая формула

Барометрическая формула - зависимость давления или плотности газа от высоты в поле силы тяжести.

Для идеального газа, имеющего постоянную температуру и находящегося в однородном поле тяжести (во всех точках его объёма ускорение свободного падения одинаково), барометрическая формула имеет следующий вид:

где - давление газа в слое, расположенном на высоте , - давление на нулевом уровне (), - молярная масса газа, - универсальная газовая постоянная, - абсолютная температура. Из барометрической формулы следует, что концентрация молекул (или плотность газа) убывает с высотой по тому же закону:

где - масса молекулы газа, - постоянная Больцмана.

Барометрическая формула может быть получена из закона распределения молекул идеального газа по скоростям и координатам в потенциальном силовом поле (см. Статистика Максвелла - Больцмана). При этом должны выполняться два условия: постоянство температуры газа и однородность силового поля. Аналогичные условия могут выполняться и для мельчайших твёрдых частичек, взвешенных в жидкости или газе. Основываясь на этом, французский физик Ж. Перрен в 1908 году применил барометрическую формулу к распределению по высоте частичек эмульсии, что позволило ему непосредственно определить значение постоянной Больцмана.

Барометрическая формула показывает, что плотность газа уменьшается с высотой по экспоненциальному закону. Величина , определяющая быстроту спада плотности, представляет собой отношение потенциальной энергии частиц к их средней кинетической энергии, пропорциональной . Чем выше температура , тем медленнее убывает плотность с высотой. С другой стороны, возрастание силы тяжести (при неизменной температуре) приводит к значительно большему уплотнению нижних слоев и увеличению перепада (градиента) плотности. Действующая на частицы сила тяжести может изменяться за счёт двух величин: ускорения и массы частиц .

Следовательно, в смеси газов, находящейся в поле тяжести, молекулы различной массы по-разному распределяются по высоте.

Реальное распределение давления и плотности воздуха в земной атмосфере не следует барометрической формуле, так как в пределах атмосферы температура и ускорение свободного падения меняются с высотой и географической широтой. Кроме того, атмосферное давление увеличивается с концентрацией в атмосфере паров воды.

Барометрическая формула лежит в основе барометрического нивелирования - метода определения разности высот между двумя точками по измеряемому в этих точках давлению ( и ). Поскольку атмосферное давление зависит от погоды, интервал времени между измерениями должен быть возможно меньшим, а пункты измерения располагаться не слишком далеко друг от друга. Барометрическая формула записывается в этом случае в виде: (в м), где - средняя температура слоя воздуха между точками измерения, - температурный коэффициент объёмного расширения воздуха. Погрешность при расчётах по этой формуле не превышает 0,1-0,5 % от измеряемой высоты. Более точна формула Лапласа, учитывающая влияние влажности воздуха и изменение ускорения свободного падения.

Барометрическая формула. Рассмотрим газ, находящийся в равновесии в поле силы тяжести. В этом случае сумма действующих сил на каждый элемент объема газа равна нулю. Выделим малый объем газа на высоте h (рис.2.7) и рассмотрим действующие на него силы:

На выделенный объем действует сила давления газа снизу, сила давления газа сверху и сила тяжести. Тогда баланс сил запишется в виде

где dm – масса выделенного объема. Для этого объема можно записать уравнение Менделеева-Клапейрона

Выражая величину dm , можно получить уравнение

.

Разделяя переменные, получим

.

Проинтегрируем полученное уравнение, учтя, что температура постоянна,

.

Пусть давление на поверхности равно p 0 , тогда полученное уравнение легко преобразовать к виду

. (2.24)

Полученная формула называется барометрической и достаточно хорошо описывает распределение давления по высоте в атмосфере Земли и других планет. Важно помнить, что эта формула была выведена из предположения равновесия газа, при этом величины g и T считались постоянными, что, конечно, не всегда справедливо для реальной атмосферы.

Распределение Больцмана. Запишем барометрическую формулу (2.24) через концентрацию частиц, воспользовавшись тем, что p = nkT :

, (2.25)

где m 0 - масса молекулы газа.

Такой же вывод можно провести для любой потенциальной силы (не обязательно для силы тяжести). Из формулы (2.25) видно, что в числителе экспоненты стоит потенциальная энергия одной молекулы в потенциальном поле. Тогда формулу (2.25) можно записать в виде

. (2.26)

В таком виде эта формула пригодна для нахождения концентрации молекул, находящихся в равновесии в поле любой потенциальной силы.

Найдем число частиц газа, координаты которых находятся в элементе объема dV = dxdydz

.

Полное число частиц в системе может быть записано в виде

.

Здесь интеграл формально записан по всему пространству, но надо иметь в виду, что объем системы конечен, что приведет к тому, что интегрирование будет вестись по всему объему системы. Тогда отношение

как раз и даст вероятность того, что частица попадет в элемент объема dV . Тогда для этой вероятности запишем

,

где величина потенциальной энергии молекулы будет, вообще говоря, зависеть от всех трех координат. Пользуясь определением функции распределения, можно записать функцию распределения молекул по координатам в следующем виде:

. (2.27)

Это и есть функция распределения Больцмана по координатам частиц (или по потенциальным энергиям, имея в виду, что потенциальная энергия зависит от координат). Легко показать, что полученная функция нормирована на единицу.


Связь распределений Максвелла и Больцмана. Распределения Максвелла и Больцмана являются составными частями распределения Гиббса. Температура определяется средней кинетической энергией. Поэтому возникает вопрос, почему в потенциальном поле температура постоянная, хотя по закону сохранения энергии при изменении потенциальной энергии частиц должна также изменяться их кинетическая энергия, а следовательно, как кажется на первый взгляд, и их температура. Другими словами, почему в поле тяжести при движении частиц вверх у всех них кинетическая энергия уменьшается, а температура остается постоянной, т.е. остается постоянной их средняя кинетическая энергия, а при движении частиц вниз энергия всех частиц увеличивается, а средняя энергия остается постоянной?

Это объясняется тем, что при подъеме из потока частиц выбывают наиболее медленные, т.е. «наиболее холодные». Поэтому расчет энергии ведется по меньшему числу частиц, которые на исходной высоте были в среднем «более горячими». Иначе говоря, если с нулевой высоты на высоту прибыло какое-то число частиц, то их средняя энергия на высоте равна средней энергии всех частиц на нулевой высоте, часть которых не смогла достигнуть высоты из-за малой кинетической энергии. Однако если на нулевой высоте рассчитать среднюю энергию частиц, достигших высоты , то она больше средней энергии всех частиц на нулевой высоте. Поэтому можно сказать, что средняя энергия частиц на высоте действительно уменьшилась и в этом смысле они «охладились» при подъеме. Однако средняя энергия всех частиц на нулевой высоте и высоте одинакова, т.е. и температура одинакова. С другой стороны, уменьшение плотности частиц с высотой также является следствием выбывания частиц из потока.

Поэтому закон сохранения энергии при подъеме частиц на высоту приводит к уменьшению их кинетических энергий и выбыванию частиц из потока. Благодаря этому, с одной стороны, плотность частиц с высотой уменьшается, а с другой стороны, их средняя кинетическая энергия сохраняется, несмотря на то, что кинетическая энергия каждой из частиц убывает. Это возможно подтвердить прямым расчетом, который рекомендуется проделать в качестве упражнения.

Атмосфера планет. Потенциальная энергия частицы массой в поле тяготения шарообразного небесного тела равна

, (2.28)

где – масса тела; – расстояние от центра тела до частицы; – гравитационная постоянная. Атмосфера планет, в том числе и Земли, не находится в равновесном состоянии. Например, вследствие того, что атмосфера Земли находится в неравновесном состоянии, ее температура не постоянна, как это должно было быть, а изменяется с высотой (уменьшается с увеличением высоты). Покажем, что равновесное состояние атмосферы планеты в принципе невозможно. Если бы оно было возможно, то плотность атмосферы должна была бы изменяться с высотой по формуле (2.26), которая принимает вид

(2.29)

где учтено выражение (2.28) для потенциальной энергии, – радиус планеты. Формула (2.29) показывает, что при плотность стремится к конечному пределу

(2.30)

Это означает, что если в атмосфере имеется конечное число молекул, то они должны быть распределены по всему бесконечному пространству, т.е. атмосфера рассеяна.

Поскольку, в конечном счете, все системы стремятся к равновесному состоянию, то атмосфера планет постепенно рассеивается. У некоторых из небесных тел, например у Луны, атмосфера полностью исчезла, другие, например Марс, имеют очень разряженную атмосферу. Таким образом, атмосфера Луны достигла равновесного состояния, а атмосфера Марса уже находится близко к достижению равновесного состояния. У Венеры атмосфера очень плотная и, следовательно, находится в начале пути к равновесному состоянию.

Для количественного рассмотрения вопроса о потере атмосферы планетами необходимо принять во внимание распределение молекул по скоростям. Силу земного притяжения могут преодолеть лишь молекулы, скорость которых превосходит вторую космическую. Эти молекулы находятся в «хвосте» распределения Максвелла и их относительное число незначительно. Тем не менее за значительные промежутки времени потеря молекул является чувствительной. Поскольку вторая космическая скорость у тяжелых планет больше, чем у легких, интенсивность потери атмосферы у массивных небесных тел меньше, чем у легких, т.е. легкие планеты теряют атмосферу быстрее, чем тяжелые. Время потери атмосферы зависит также от радиуса планеты, состава атмосферы и т.д. Полный количественный анализ этого вопроса является сложной задачей.

Экспериментальная проверка распределения Больцмана. При выводе распределения Больцмана не налагалось никаких ограничений на массу частиц. Поэтому в принципе оно применимо и для тяжелых частиц. Возьмем в качестве этих частиц, например, песчинки. Ясно, что они расположатся в некотором слое у сосуда. Строго говоря, это является следствием распределения Больцмана. При больших массах частиц показатель экспоненты столь быстро изменяется с высотой, что равен нулю везде за пределами слоя песка. Что касается пространства внутри слоя, то там надо принять во внимание объем песчинок. Это сведется к чисто механической задаче на минимум потенциальной энергии при заданных связях. Задачи такого типа рассматриваются не в статистической физике, а в механике.

Для того чтобы тяжелые частицы не «осели на дно», распределились в достаточно большом слое на высоте, необходимо чтобы их потенциальная энергия была достаточно малой. Этого можно достигнуть, помещая частицы в жидкость, плотность которой лишь на немного меньше плотности материала частиц. Обозначив плотность и объем частиц и , а плотность жидкости – , видим, что сила, действующая на частицу, равна . Следовательно, потенциальная энергия такой частицы на высоте от дна сосуда равна

(2.31)

Поэтому распределение концентраций этих частиц по высоте дается формулой

Чтобы эффект был достаточно хорошо заметен, частицы должны быть достаточно малыми. Число таких частиц на разных высотах в сосуде считают с помощью микроскопа. Эксперименты такого рода впервые были выполнены начиная с 1906 г. Ж.Б. Перреном (1870-1942).

Проделав измерения, можно прежде всего убедиться, действительно ли концентрация частиц изменяется по экспоненциальном закону. Перрен доказал, что это действительно так, и, следовательно, распределение Больцмана справедливо. Далее, исходя из справедливости распределения и измерив независимыми способами объемы и плотности частиц, можно по результатам эксперимента найти значение постоянной Больцмана , поскольку все остальные величины в (2.32) являются известными.

Таким путем Перрен измерил и получил результат, весьма близкий к современному. Другим независимым способом значение было получено Перреном из опытов с броуновским движением.

В последующем были проведены также эксперименты другого типа, полностью подтвердившие распределение Больцмана. Из экспериментов другого типа можно указать, например, на проверку зависимости поляризации полярных диэлектриков от температуры, рассмотренную выше.

Пример 2.2. Перрен использовал распределение гуммигутовых зерен в воде для измерения постоянной Авогадро. Плотность частиц гуммигута составляла r = 1,21×10 3 кг/м 3 , их объем t = 1,03×10 -19 м 3 . Температура, при которой проводился эксперимент, была равна . Найти высоту , на которой плотность распределения гуммигутовых зерен уменьшилась в два раза.

Принимая во внимание, что, по условию задачи, t(r - r 0) = 0,22×10 -16 кг, получаем на основе формулы (2.32) h = kT ln2/ = 12,3×10 -6 м.

Пример 2.3. В воздухе при температуре и давлении Па взвешены шарообразные частицы радиусом 10 -7 м. Найти массу взвешенной частицы.

По формуле (2.32) находим t(r - r 0) = kT ln2/gh = 1,06×10 -23 кг.

Учитывая, что t = 4,19×10 -21 м 3 , находим (r - r 0) = 2,53×10 -3 кг/м 3 . Поскольку r 0 = 1,293 кг/м 3 , получаем r = 1,296 кг/м 3 и, следовательно, масса частицы

Распределение Больцмана

Статистика Максвелла - Больцмана - статистический метод описания физических систем, содержащих большое число невзаимодействующих частиц, движущихся по законам классической механики (то есть классического идеального газа); предложена в 1871 г. австрийским физиком Л. Больцманом .

Вывод распределения

Из общего распределения Гиббса. Рассмотрим систему частиц, находящуюся в однородном поле. В таком поле каждая молекула идеального газа обладает полной энергией

Где

Кинетическая энергия её поступательного движения, а - потенциальная энергия во внешнем поле, которая зависит от её положения.

Подставим это выражение для энергии в распределение Гиббса для молекулы идеального газа (где - вероятность того, что частица находится в состоянии со значениями координат и импульсов , в интервале )

,

где интеграл состояний равен:

интегрирование ведется по всем возможным значениям переменных. Далее интеграл состояний можно написать в виде:

,

мы находим, что нормированное на единицу распределение Гиббса для молекулы газа при наличии внешнего поля имеет вид:

.

Полученное распределение вероятностей, характеризующее вероятность того, что молекула имеет данный импульс и находится в данном элементе объема, носит название распределение Максвелла - Больцмана .

Некоторые свойства

При рассмотрении распределения Максвелла - Больцмана, бросается в глаза важное свойство - его можно представить как произведение двух множетелей:

.

Первый множитель есть ничто иное как распределение Максвелла, оно характеризует распределение вероятностей по импульсам. Второй множитель зависит только лишь от координат частиц и определяется видом её потенциальной энергии. Он характеризует вероятность обнаружения частицы в объеме dV.

Согласно теории вероятности , распределение Максвелла - Больцмана можно рассматривать как произведение вероятностей двух независимых событий - вероятность данного значения импульса и данного положения молекулы. Первая из них:

представляет распределение Максвелла; вторая вероятность:

Распределение Больцмана. Очевидно, что каждое из них нормировано на единицу.

Независимость вероятностей дает важный результат: вероятность данного значения импульса совершенно не зависит от положения молекулы и, наоборот, вероятность положения молекулы не зависит от её импульса. Это значит что распределение частиц по импульсам (скоростям) не зависит от поля, другими словами остается тем же самым от точки к точке пространства, в котором заключен газ. Меняется лишь вероятность обнаружения частицы или, что то же самое, число частиц.

См.также

Wikimedia Foundation . 2010 .

Смотреть что такое "Распределение Больцмана" в других словарях:

    распределение Больцмана - Bolcmano skirstinys statusas T sritis fizika atitikmenys: angl. Boltzmann distribution; Boltzmann distribution law vok. Boltzmannsche Verteilung, f; Boltzmannsches Verteilungsgesetz, n; Boltzmann Verteilung, f rus. больцмановское распределение,… … Fizikos terminų žodynas

    Статистич. метод описания физ. св в систем, содержащих большое число невзаимодействующих ч ц, движущихся по законам классич. механики (т. е. св в классич. идеального газа). Создана австр. физиком Л. Больцманом в 1868 71. В Б. с. рассматривается… … Физическая энциклопедия

    Распределение Гиббса распределение, определяющее количества частиц в различных квантовых состояниях. Основывается на постулатах статистики: Все доступные микросостояния системы равновероятны. Равновесию соответствует наиболее вероятное… … Википедия

    Физическая статистика для систем из большого числа невзаимодействующих частиц. Строго Б.с. подчиняются атомные и молекулярные идеальные газы, т. е. газы, у которых потенциальная энергия взаимодействия молекул считается равной нулю.… … Большая советская энциклопедия

    Как функция от ε/μ, построенная для 4 различных температур. С ростом температуры ступенька размывается Статистика Ферми Дирака в статистической физике квантовая статистика, применяемая к системам тождественных фермионов (как правило, частиц с… … Википедия

    Статистически равновесная ф ция распределения по импульсам р и координатам r ч ц идеального газа, молекулы к рого движутся по законам классич. механики, во внеш. потенц. поле: f(p, r) = Aехр{ (р2/2m+U(r))/kT}. (1) Здесь p2/2m кинетич. энергия… … Физическая энциклопедия

    - (Максвелла Больцмана распределение) равновесное распределение частиц идеального газа по энергиям (E) во внешнем силовом поле (напр., в поле тяготения); определяется функцией распределения f e E/kT, где E сумма кинетической и потенциальной энергий … Большой Энциклопедический словарь

    - (Максвелла Больцмана распределение), равновесное распределение частиц идеального газа по энергиям во внешнем силовом поле (например, в поле тяготения); определяется функцией распределения f ≈ e E/kT, где Е сумма кинетической и потенциальной… … Энциклопедический словарь

    Функция плотности распределения Распределение Максвелла распределение вероятности, встречающееся в физике и химии. Оно лежит в основании кинетической теории газов, которая объясняет многие фундаментальные свойства газов, включая давление и… … Википедия

Рассмотрим систему, состоящую из одинаковых частиц и находящуюся в термодинамическом равновесии. Вследствие теплового движения и межмолекулярных взаимодействий энергия каждой из частиц (при неизменной общей энергии системы) с течением времени меняется, отдельные же акты изменения энергии молекул - случайные события. Для описания свойств системы предполагается, что энергия каждой из частиц через случайные взаимодействия может изменяться от до

Для описания распределения частиц по энергиям рассмотрим ось координат, на которой будем откладывать значения энергии частиц, и разобьем ее на интервалы (рис. 3.7). Точки этой оси соответствуют различным возможным значениям энергии молекул. В пределах каждого интервала энергия меняется от до Мысленно зафиксируем для данного момента времени распределение всех частиц по энергиям. Фиксированное состояние системы будет характеризоваться определенным расположением точек на оси энергий. Пусть эти точки чем-либо выделяются, например свечением. Тогда совокупностью темных точек, а их будет большинство, на оси энергии определятся только возможные, но не реализовавшиеся энергетические состояния молекул. Вслед за фиксированным моментом времени энергия молекул из-за случайных взаимодействий будет меняться: число изображающих точек останется то же, но их положения на оси изменятся. В таком мысленном эксперименте изображающие точки скачками и очень часто будут менять свое

место на оси энергии. Фиксируя их через определенные промежутки времени, наблюдатель пришел бы к следующему заключению: при термодинамическом равновесии число изображающих точек на каждом из выделенных участков энергии остается с достаточной точностью одинаковым. Числа же заполнений энергетических интервалов зависят от их положения на выбранной оси.

Пусть все выделенные энергетические интервалы пронумерованы. Тогда на интервал с энергией от до придется среднее число частиц Число частиц системы и их общая (внутренняя) энергия определяются суммированием по всем энергетическим интервалам:

Отношение есть вероятностная характеристика интервала энергии. Естественно предположить, что при данной температуре вероятность есть функция энергии молекул (зависит от положения интервала на оси энергии). В общем случае указанная вероятность зависит также от температуры. Отыскание зависимости является одной из основных задач статистической физики.

Функция называется функцией распределения частиц по энергиям. Методами статистической физики с введением определенных предположений найдено:

где А - постоянная величина, постоянная Больцмана универсальная газовая постоянная, число Авогадро),

Согласно (29.2) для любой системы, находящейся в равновесии и подчиняющейся законам классической статистики, число молекул, обладающих энергией пропорционально экспоненциальному множителю

Просуммировав правую и левую части равенства (29.2) по всем энергетическим интервалам, найдем: что позволяет переписать выражение (29.2) в ином виде:

Величина называется статистической суммой. Как (29.2), так и (29.3) имеют фундаментальное значение для решения ряда физических задач методами статистической физики. Если выражением (29.2) определяются заполнения молекулами энергетических интервалов в условиях термодинамического равновесия системы при данной температуре, то (29.3) дает нам сведения о вероятности таких заполнений. Оба соотношения носят название формул Больцмана.

Разделим (29.3) на

Если есть выбранный интервал энергии, то - интервал энергии в единицах т. е. безразмерный интервал энергии. Как указывалось выше, есть вероятность, величину же следует трактовать как плотность вероятности - вероятность попадания молекул в единичный безразмерный энергетический интервал Перейдя к пределу (при Т = const), получим:

Интеграл, входящий в последнее выражение, равен единице, поэтому

где обозначение плотности вероятности

В общем случае энергия частицы может иметь ряд слагаемых, при слагаемых Соответственно (29.5) принимает вид

Таким образом, вероятность распределения частиц по их полной энергии определяется произведением величин каждое из которых согласно закону умножения вероятностей следует трактовать как вероятность распределения по одной из слагаемых энергии Вывод можно сформулировать так: при термодинамическом равновесии распределения частиц по слагаемым энергии являются статистически независимыми и выражаются формулами Больцмана.

На основе сделанного вывода можно расчленить сложную картину движения и взаимодействия молекул и рассматривать ее по частям, выделяя отдельные составляющие энергии. Так, при наличии гравитационного поля можно рассматривать распределение частиц в этом поле независимо от их распределения по кинетической энергии. Точно так же можно независимо исследовать вращательное движение сложных молекул и колебательное движение их атомов.

Формула Больцмана (29.2) является основой так называемой классической статистической физики, в которой считается, что энергия частиц может принимать непрерывный ряд значений. Оказывается, что поступательное движение молекул газов и жидкостей, за исключением молекул жидкого гелия, достаточно точно описывается классической статистикой вплоть до температур, близких к 1 К. Некоторые свойства твердых тел при достаточно высоких температурах также поддаются анализу с помощью формул Больцмана. Классические распределения являются частными случаями более общих квантовых статистических закономерностей. Применимость формул Больцмана в такой же мере ограничена квантовыми явлениями, как и применимость классической механики к явлениям микромира.

В основе больцмановской статистики лежит предположение о том, что изменение энергии молекулы является случайным событием и что попадание молекулы в тот или иной энергетический интервал не зависит от заполнения интервала другими частицами. Соответственно формулы Больцмана можно применять только к решению таких задач, для которых выполняется указанное условие.

В заключение используем выражение (29.5) для определения числа молекул, которые могут обладать энергией, равной или большей Для этого необходимо определить интеграл:

Интегрирование приводит к соотношению

Таким образом, по плотности вероятности можно определить число молекул с энергиями что важно для ряда приложений.

Из-за хаотического движения изменения в положении каждой частицы (молекулы, атома и т.д.) физической системы (макроскопического тела) носят характер случайного процесса. Поэтому можно говорить о вероятности обнаружить частицу в той или иной области пространства.

Из кинематики известно, что положение частицы в пространстве характеризуется ее радиусом-вектором или координатами.

Рассмотрим вероятность dW() обнаружить частицу в области пространства определяемой малым интервалом значений радиуса-вектора , если физическая система находится в состоянии термодинамического равновесия.

Векторный интервал будем измерять объемом dV=dxdydz.

Плотность вероятности (функция вероятности распределения значений радиуса-вектора )

.

(2.10)

Частица в данный момент времени реально где-то находится в указанном пространстве, значит должно выполняться условие нормировки:

Найдем функцию вероятности распределения частиц f() классического идеального газа. Газ занимает весь объем V и находится в состоянии термодинамического равновесия с температурой Т.

При отсутствии внешнего силового поля все положения каждой частицы равновероятны, т.е. газ занимает весь объем с одинаковой плотностью. Поэтому f() = c onst.

Используя условие нормировки найдем, что

,

т. е . f(r)=1/V .

Если число частиц газа N, то концентрация n = N/V .

Следовательно, f(r ) =n/N .

Вывод : в отсутствие внешнего силового поля вероятность dW() обнаружить частицу идеального газа в объеме dV не зависит от положения этого объема в пространстве, т.е. .

Поместим идеальный газ во внешнее силовое поле.

В результате пространственного перераспределения частиц газа плотность вероятности f() ¹ c onst.

Концентрация частиц газа n и давление его Р будут различными, т.е. в пределе где D N - среднее число частиц в объеме D V и давление в пределе , где D F- абсолютное значение средней силы, действующей нормально на площадку D S.

Если силы внешнего поля являются потенциальными и действуют в одном направлении (например, сила тяжести Земли направлена вдоль оси z), то силы давления, действующие на верхнее dS 2 и нижнее dS 1 основания объема dV, не будут равны друг другу (рис. 2.2).

Рис. 2.2

В этом случае разность сил давления dF на основания dS 1 и dS 2 должна быть скомпенсирована действием сил внешнего поля .

Суммарная разность сил давления dF = nGdV,

где G - сила, действующая на одну частицу со стороны внешнего поля.

Разность сил давления (по определению давления) dF = dPdxdy. Следовательно, dP = nGdz.

Из механики известно, что потенциальная энергия частицы во внешнем силовом поле связана с силой этого поля соотношением .

Тогда разность давлений на верхнее и нижнее основания выделенного объема dP = - n dW p .

В состоянии термодинамического равновесия физической системы ее температура Т в пределах объема dV везде одинакова. Поэтому используем уравнение состояния идеального газа для давления dP = kTdn.

Решив совместно последние два равенства получим, что

- ndW p = kTdn или .

После преобразований найдем, что

или

,

где ℓ n n o - постоянная интегрирования (n o - концентрации частиц в том месте пространства, где W p =0).

После потенцирования, получим

Вероятность обнаружить частицу идеального газа в объеме dV, расположенного у точки, определяемой радиусом-вектором , представим в виде

где Р о = n o kT.

Применим распределение Больцмана к атмосферному воздуху, находящему в поле тяготения Земли.

В состав атмосферы Земли входят газы: азот - 78,1 %; кислород - 21 %; аргон-0,9 %. Масса атмосферы -5,15 × 10 18 кг. На высоте 20-25 км - слой озона.

Вблизи земной поверхности потенциальная энергия частиц воздуха на высоте h W p = m o gh , где m o - масса частицы.

Потенциальная энергия на уровне Земли (h=0) равна нулю (W p =0).

Если в состоянии термодинамического равновесия частицы земной атмосферы имеют температуру Т, то изменение давления атмосферного воздуха с высотой происходит по закону

.

(2.15)

Формула (2.15) называется барометрической формулой ; применима для разреженных смесей газов.

Заключение : для земной атмосферы чем тяжелее газ, тем быстрее падает его давление в зависимости от высоты, т.е. по мере увеличения высоты атмосфера должна все более обогащаться легкими газами. Из-за изменения температуры атмосфера не находится в равновесном состоянии. Следовательно, барометрическую формулу можно применять к малым участкам, в пределах которых изменения температуры не происходит. Кроме того, на неравновесность земной атмосферы влияет гравитационное поле Земли, которое не может удержать ее вблизи поверхности планеты. Происходит рассеивание атмосферы и тем быстрее, чем слабее гравитационное поле. Например, земная атмосфера рассеивается достаточно медленно. За время существования Земли (~ 4-5 млрд. лет) она потеряла малую часть своей атмосферы (в основном легких газов: водорода, гелия и др.).

Гравитационное поле Луны слабее земного, поэтому она практически полностью потеряла свою атмосферу.

Неравновесность земной атмосферы можно доказать следующим образом. Допустим, что атмосфера Земли пришла в состояние термодинамического равновесия и в любой точке ее пространства она имеет постоянную температуру. Применим формулу Больцмана (2.11), в которой роль потенциальной энергии выполняет потенциальная энергия гравитационного поля Земли, т.е.

где g - гравитационная постоянная; М з - масса Земли; m o - масса частицы воздуха; r - расстояние частицы от центра Земли. = R з , где R з - радиус Земли, то

.

(2.17)

Это означает, что n ¥ ¹ 0. Но число частиц в атмосфере Земли - конечно. Поэтому такое число частиц не может быть распространено по бесконечному объему.

Следовательно, действительно земная атмосфера не может находиться в равновесном состоянии.