Внутреннее строение Солнца и звезд главной последовательности. Эволюция звезд

Звезды - это огромные шары, состоящие из светящейся плазмы. В пределах нашей галактики насчитывается огромное их количество. Звезды играли важную роль в развитии науки. Также они отмечались в мифах многих народов, служили в качестве инструментов навигации. Когда были изобретены телескопы, а также открыты законы движения небесных тел и гравитация, ученые поняли: все звезды похожи на Солнце.

Определение

К звездам главной последовательности относят все те, внутри которых водород превращается в гелий. Так как этот процесс свойственен большей части звезд, к этой категории относится большинство наблюдаемых человеком светил. К примеру, Солнце также относится к данной группе. Альфа Ориона, или, к примеру, спутник Сириуса не принадлежат к звездам главной последовательности.

Группы звезд

Впервые вопросом сопоставления звезд с их спектральными классами занялись ученые Э. Герцшпрунг и Г. Рассел. Они создали диаграмму, на которой отображался спектр и светимость звезд. Впоследствии данная диаграмма была названа в их честь. Большая часть светил, расположенных на ней, называется небесными телами главной последовательности. В эту категорию входят звезды, начиная от голубых сверхгигантов, и заканчивая белыми карликами. Светимость Солнца на данной диаграмме принимается за единицу. В последовательность входят звезды различной массы. Ученые выделили следующие категории светил:

  • Сверхгиганты - I класс светимости.
  • Гиганты - II класс.
  • Звезды главной последовательности - V класс.
  • Субкарлики - VI класс.
  • Белые карлики - VII класс.

Процессы внутри светил

С точки зрения структуры Солнце может быть разделено на четыре условные зоны, в пределах которых происходят различные физические процессы. Энергия излучения звезды, а также внутренняя тепловая возникают глубоко внутри светила, передаваясь на внешние слои. Строение звезд главной последовательности схоже со структурой светила Солнечной системы. Центральной частью любого светила, относящейся на диаграмме Герцшпрунга-Рассела к данной категории, является ядро. Там постоянно происходят ядерные реакции, в процессе которых гелий превращается в водород. Для того чтобы ядра водорода смогли столкнуться друг с другом, их энергия должна быть выше энергии отталкивания. Поэтому такие реакции протекают только при очень высоких температурах. Внутри Солнца температура достигает 15 миллионов градусов по Цельсию. По мере удаления от ядра звезды она снижается. На внешней границе ядра температура составляет уже половину от значения в центральной части. Также снижается и плотность плазмы.

Ядерные реакции

Но не только по внутреннему строению звезды главной последовательности похожи на Солнце. Светила данной категории отличаются также и тем, что ядерные реакции внутри них происходят путем трехступенчатого процесса. Иначе он называется протон-протонным циклом. На первой фазе два протона сталкиваются между собой. В результате этого столкновения появляются новые частицы: дейтерий, позитрон и нейтрино. Далее протон сталкивается с частицей нейтрино, и возникает ядро изотопа гелия-3, а также квант гамма-излучения. На третьей ступени процесса два ядра гелия-3 сливаются между собой, и происходит образование обычного водорода.

В процессе этих столкновений во время ядерных реакций постоянно производятся элементарные частицы нейтрино. Они преодолевают нижние слои светила, и летят в межпланетное пространство. Нейтрино также регистрируются и на земле. Количество, которое регистрируется учеными при помощи приборов, несоизмеримо меньше, чем их должно быть по предположению ученых. Эта проблема является одной из крупнейших загадок в физике Солнца.

Лучистая зона

Следующим слоем в строении Солнца и звезд главной последовательности является лучистая зона. Ее границы простираются от ядра и до тонкого слоя, находящегося на границе конвективной зоны - тахоклина. Свое название лучистая зона получила от способа, при помощи которого энергия переносится от ядра к внешним слоям звезды - излучения. Фотоны, которые постоянно производятся в ядре, двигаются в этой зоне, сталкиваясь с ядрами плазмы. Известно, что скорость этих частиц равна скорости света. Но несмотря на это, фотонам требуется порядка миллиона лет, чтобы достичь границы конвективной и лучистой зон. Такая задержка происходит из-за постоянного столкновения фотонов с ядрами плазмы и их переизлучения.

Тахоклин

Солнце и звезды главной последовательности также имеют тонкую зону, по-видимому, играющую важную роль в формировании магнитного поля светил. Она называется тахоклин. Ученые предполагают, что именно здесь происходят процессы магнитного динамо. Он заключается в том, что потоки плазмы вытягивают магнитные силовые линии и увеличивают общую напряженность поля. Также есть предположения, что в зоне тахоклина происходит резкая смена химического состава плазмы.

Конвективная зона

Эта область представляет собой самый внешний слой. Его нижняя граница располагается на глубине 200 тыс. км., а верхняя достигает поверхности светила. В начале конвективной зоны температура еще достаточно высока, она достигает порядка 2 млн градусов. Однако этот показатель уже недостаточен для того, чтобы происходил процесс ионизации атомов углерода, азота, кислорода. Эта зона получила свое название из-за способа, с помощью которого происходит постоянный перенос вещества из глубоких слоев во внешние - конвекции, или перемешивания.

В презентации о звездах главной последовательности можно указать тот факт, что Солнце является рядовой звездой в нашей галактике. Поэтому ряд вопросов - например, об источниках его энергии, строении, а также образовании спектра - является общим как для Солнца, так и для других звезд. Наше светило является уникальным в отношении своего расположения - это самая близкая к нашей планете звезда. Поэтому ее поверхность и подвергается детальному изучению.

Фотосфера

Видимая оболочка Солнца называется фотосферой. Именно она излучает практически всю энергию, которая приходит на Землю. Состоит фотосфера из гранул, представляющих собой продолговатые облака из горячего газа. Здесь можно также наблюдать и небольшие пятнышки, которые называются факелами. Их температура приблизительно на 200 о С выше, чем окружающая масса, поэтому они отличаются по яркости. Факелы могут существовать до нескольких недель. Эта устойчивость возникает вследствие того, что магнитное поле звезды не дает вертикальным потокам ионизированных газов отклоняться в горизонтальном направлении.

Пятна

Также на поверхности фотосферы иногда появляются темные области - зародыши пятен. Нередко пятна могут разрастаться до диаметра, который превышает диаметр Земли. как правило, появляются группами, затем разрастаются. Постепенно они дробятся на более мелкие участки, пока не исчезают вовсе. Пятна появляются по обе стороны солнечного экватора. Каждые 11 лет их количество, а также занимаемая пятнами площадь, достигают максимума. По наблюдаемому перемещению пятен Галилей смог обнаружить вращение Солнца. В дальнейшем это вращение было уточнено при помощи спектрального анализа.

До сих пор ученые ломают голову над тем, почему период увеличения солнечных пятен составляет именно 11 лет. Несмотря на пробелы в знаниях, информация о солнечных пятнах и периодичности других аспектов деятельности звезды дают ученым возможность делать важные прогнозы. С помощью изучения этих данных можно делать предсказания о наступлении магнитных бурь, нарушений в сфере радиосвязи.

Отличия от других категорий

Называется количество энергии, которое испускается светилом в одну единицу времени. Эта величина может быть вычислена по количеству энергии, которая достигает поверхности нашей планеты, при условии, если известно расстояние звезды до Земли. Светимость звезд главной последовательности больше, чем у холодных звезд с малой массой, и меньше горячих звезд, масса которых составляет от 60 до 100 солнечных.

Холодные звезды находятся в нижнем правом углу относительно большинства светил, а горячие - в левом верхнем углу. При этом у большинства звезд, в отличие от красных гигантов и белых карликов, масса зависит от показателя светимости. Большую часть своей жизни каждая звезда проводит именно на главной последовательности. Ученые считают, что более массивные звезды живут гораздо меньше, чем те, что обладают малой массой. На первый взгляд, должно быть наоборот, ведь у них больше водорода для горения, и они должны его расходовать дольше. Однако звезды, относящиеся к массивным, расходуют свое топливо гораздо быстрее.

В задаче Звездное равновесие обсуждалось, что на диаграмме Герцшпрунга - Рассела (связывающей цвет и светимость звезд) большая часть звезд попадает в «полосу», которую принято называть главной последовательностью. Большую часть своей жизни звезды проводят именно там. Характерной особенностью звезд главной последовательности является то, что их основное энерговыделение обусловлено «горением» водорода в ядре, в отличие от звезд типа Т Тельца или, к примеру, гигантов, речь о которых пойдет в послесловии.

Также обсуждалось, что различные цвета («температура» поверхности) и светимости (энергия, излученная в единицу времени) соответствуют различным массам звезд главной последовательности. Диапазон масс начинается от десятых долей массы Солнца (у карликовых звезд) и простирается до сотен масс Солнца (у гигантов). Но за массивность приходится расплачиваться весьма короткой жизнью на главной последовательности: гиганты проводят на ней всего лишь миллионы лет (и даже меньше), тогда как карлики могут находиться на главной последовательности до десяти триллионов лет.

В этой задаче мы «из первых принципов», используя результаты предыдущих задач (Звездное равновесие и Блуждание фотона), поймем, почему главная последовательность - это именно почти прямая линия на диаграмме, и как связаны на ней светимость и масса звезд.

Пусть u - это энергия фотонов на единицу объема (плотность энергии). По определению, светимость L - это энергия, излученная с поверхности звезды за единицу времени. По порядку величины \(L\sim \frac{V u}{\tau} \), где V - объем звезды, τ - некое характерное время переноса этой энергии наружу (то самое время, за которое фотон покидает недра звезды). В качестве объема, опять же по порядку величины, можно взять R 3 , где R - радиус звезды. Время переноса энергии можно оценить как R 2 /lc , где l - длина свободного пробега, которую можно оценить как 1/ρκ (ρ - плотность вещества звезды, κ - коэффициент непрозрачности).

В равновесии плотность энергии фотонов выражается по закону Стефана - Больцмана : u = aT 4 , где a - некая константа, а T - характерная температура.

Таким образом, опустив все константы, получаем, что светимость L пропорциональна величине \(\frac{T^4 R}{\rho\kappa}. \)

Также имеем, что давление P должно быть сбалансировано гравитацией: \(P\sim \frac{M\rho}{r}.\)

Сжатие звезд при их формировании останавливается тогда, когда в самом центре начинается интенсивное горение водорода, которое производит достаточное давление. Это происходит при определенной температуре T , которая ни от чего не зависит. Поэтому по большому счету, характерная температура (фактически, это температура в центре звезды, не путать с температурой поверхности!) у звезд главной последовательности одинаковая.

Задача

1) У звезд средних масс (0,5 < M /M ☉ < 10) давление обусловлено давлением газа P = νRT ~ ρT , а непрозрачность (для фотонов) вызвана томсоновским рассеянием на свободных электронах, из-за чего коэффициент непрозрачности постоянен: κ = const . Найдите зависимость светимости таких звезд от их массы. Оцените светимость звезды, которая в 10 раз массивнее Солнца (относительно светимости Солнца).

2) У маломассивных звезд, давление все еще обусловлено давлением газа, а коэффициент непрозрачности определяется в основном другими рассеяниями и задается приближением Крамерса: κ ~ ρ/T 7/2 . Решите ту же задачу для маломассивных звезд, оценив светимость звезды, которая в 10 раз легче Солнца.

3) У массивных звезд с массой больше нескольких десятков масс Солнца коэффициент непрозрачности обусловлен только томсоновскими рассеяниями (κ = const ), тогда как давление обусловлено давлением фотонов, а не газа (P ~ T 4). Найдите зависимость светимости от массы для таких звезд, и оцените светимость звезды, которая в 100 раз массивнее Солнца (будьте осторожны, с Солнцем здесь сравнивать нельзя, нужно сделать промежуточный шаг).

Подсказка 1

Приняв, что M ~ ρR 3 , воспользуйтесь приближенными выражениями для светимости и давления, а также выражением для плотности и коэффициента непрозрачности, чтобы избавиться от ρ. Характерная температура T везде одинаковая, как уже отмечалось выше, поэтому ее можно также везде опустить.

Подсказка 2

В последнем пункте для звезд солнечных масс одна зависимость, а для тяжелых — другая, поэтому сразу сравнивать с Солнцем нельзя. Вместо этого вначале посчитайте светимость для какой-нибудь промежуточной массы (например, 10 масс Солнца) по формуле для звезд средних масс, затем, используя формулу для массивных звезд, найдите светимость звезды в 100 раз тяжелее Солнца.

Решение

Для звезд, у которых давление, противодействующее гравитации, обеспечивается давлением идеального газа P ~ ρT , можно написать P ~ M ρ/R ~ ρ (приняв T за константу). Таким образом, для таких звезд получим, что M ~ R , чем мы и воспользуемся ниже.

Заметьте, что это выражение говорит о том, что звезда, которая в 10 раз массивнее Солнца, имеет примерно в 10 раз больший радиус.

1) Приняв κ и T за константы, а также положив ρ ~ M /R 3 и воспользовавшись полученным выше соотношением, получим для звезд средних масс L ~ M 3 . Это означает, что звезда в 10 раз массивнее Солнце будет излучать энергии в 1000 раз больше за единицу времени (при радиусе превосходящем солнечный всего в 10 раз).

2) С другой стороны, для маломассивных звезд, приняв κ ~ ρ/T 7/2 (T - все так же константа), имеем L ~ M 5 . То есть звезда, которая в 10 раз менее массивна чем Солнце, имеет светимость в 100 000 раз меньше солнечной (опять же, при радиусе меньше всего в 10 раз).

3) Для самых массивных звезд соотношение M ~ R уже не работает. Так как давление обеспечено давлением фотонов, P ~ M ρ/r ~ T 4 ~ const . Таким образом, M ~ R 2 , и L ~ M . С Солнцем сразу сравнивать нельзя, так как для звезд солнечных масс действует другая зависимость. Но мы уже выяснили, что звезда в 10 раз массивнее Солнца имеет светимость в 1000 раз больше. С такой звездой сравнить можно, это дает, что звезда в 100 раз массивнее Солнца, излучает примерно в 10 000 раз больше энергии за единицу времени. Все это и обуславливает форму кривой главной последовательности на диаграмме Герцшпрунга - Рассела (рис. 1).

Послесловие

В качестве упражнения давайте также оценим наклон кривой главной последовательности на диаграмме Герцшпрунга-Рассела. Для простоты рассмотрим случай L ~ M 4 - средний вариант между двумя, рассмотренными в решении.

По определению, эффективная температура («температура» поверхности) это

\[ \sigma T_{\mathrm eff}^4=\frac{L}{4\pi R^2}, \]

где σ - некоторая постоянная. Учитывая, что M ~ R (как мы находили выше), имеем для звезд главной последовательности (в среднем) \(L\sim T_{\rm eff}^8 \). То есть температура поверхности звезды, которая в 10 раз массивнее Солнца (и светит в 1000 раз интенсивнее), будет 15 000 К, а у звезды с массой в 10 раз меньше солнечной (которая светит в 100 000 раз менее интенсивно) - примерно 1500 К.

Подведем итог. В недрах звезд главной последовательности происходит «нагрев» с помощью термоядерного горения водорода. Такое горение является источником энергии, которой хватает на триллионы лет самым легким звездам, на миллиарды лет звездам солнечных масс и на миллионы лет самым тяжелым.

Эта энергия трансформируется в кинетическую энергию газа и энергию фотонов, которые, взаимодействуя друг с другом, переносят эту энергию на поверхность, а также обеспечивают достаточное давление для противодействия гравитационному сжатию звезды. (Но у самых легких звезд (M < 0,5M ☉) и тяжелых (M > 3M ☉) перенос также происходит с помощью конвекции.)

На каждой из диаграмм на рис. 3 изображены звезды из одного скопления, потому что звезды из одного и того же скопления предположительно были образованы в одно и то же время. На средней диаграмме показаны звезды скопления Плеяды. Как видно, скопление все еще очень молодое (его возраст оценивают в 75–150 млн нет), и основная часть звезд находится на главной последовательности.

На левой диаграмме изображено еще только сформировавшееся скопление (возрастом до 5 млн лет), в котором большинство звезд еще даже не «родилось» (если рождением считать вступление на главную последовательность). Эти звезды очень яркие, так как основная часть их энергии обусловлена не термоядерными реакциями, а гравитационным сжатием. Фактически, они все еще сжимаются, двигаясь постепенно вниз по диаграмме Герцшпрунга - Рассела (как показано стрелкой), пока температура в центре не вырастет достаточно, чтобы запустить эффективные термоядерные реакции. Тогда звезда окажется на главной последовательности (черная линия на диаграмме) и будет находиться там какое-то время. Стоит также отметить, что самые тяжелые звезды (M > 6M ☉) рождаются уже на главной последовательности, то есть когда они формируются температура, в центре уже достаточно высокая, чтобы инициировать термоядерное горение водорода. Из-за этого тяжелых протозвезд (слева) на диаграмме мы не видим.

На правой диаграмме показано старое скопление (возрастом 12,7 млрд лет). Видно, что большая часть звезд уже покинуло главную последовательность, двигаясь «вверх» по диаграмме и становясь красными гигантами. Более подробно про это, а также горизонтальную ветвь мы поговорим в другой раз. Однако здесь стоит отметить, что самые тяжелые звезды покидают главную последовательность раньше всех (мы уже отмечали, что за большую светимость приходится платить короткой жизнью), тогда как самые легкие звезды (справа от главной последовательности) продолжают находиться на ней. Таким образом, если для скопления известна «точка перегиба» - то место, где обрывается главная последовательность и начинается ветвь гигантов, можно достаточно точно оценить, сколько лет назад звезды сформировались, то есть найти возраст скопления. Поэтому диаграмма Герцшпрунга-Рассела приносит и пользу для идентификации очень молодых и очень старых скоплений звезд.

В 1910 г. двое астрономов — датчанин Эйнар Герцшпрунг и американец Генри Ресселл — независимо друг от друга решили выяснить, как зависит светимость звезды от ее спектрального класса или цвета. Для этого они нанесли на график данные обо всех известных в то время спектральных классах и светимостях звезд. В левой части диаграммы расположились горячие белые и голубые звезды, в правой — «холодные» красные, вверху — те, что излучают много энергии, внизу — те, которые «скупятся» на излучение. Если бы зависимость спектр- светимость была однозначной, на диаграмме образовалась бы прямая линия, если бы никакой зависимости вообще не существовало, точки расположились бы по всему полю диаграммы.

Получилось нечто совсем иное: точки, соответствующие тем или иным звездам, сгруппировались в различных областях. Больше всего их (около 90 %) разместилось на диагонали, проведенной из левого верхнего угла (звезды классов О и В, излучающие много энергии) к правому нижнему углу (слабые красные звезды). Эту диагональ астрономы назвали «главной последовательностью». Выше горизонтально протянулась последовательность звезд с наибольшей светимостью, которые назвали гигантами, так как для того, чтобы излучать столько энергии, звезда должна иметь очень большую поверхность. Еще выше, над последовательностью гигантов, расположились гипергиганты и сверхгиганты, а между гигантами и главной последовательностью — субгиганты.

Заполненной оказалась еще одна область — в левом нижнем углу разместились горячие звезды малой светимости, которые называют белыми карликами — ведь для того, чтобы излучать мало энергии, горячая звезда должна быть очень маленькой.

Ученым поначалу казалось, что на протяжении своей жизни звезды проходят путь вдоль главной последовательности — постепенно теряя энергию и остывая. Однако в действительности все выглядит сложнее. «Новорожденная» звезда почти сразу «садится» на главную последовательность, а ее место в ней зависит прежде всего от массы — чем больше масса, тем более высокое место она занимает. Там звезда и проводит большую часть своей жизни. Потому-то на главной последовательности и «собралось» наибольшее количество звезд.

Но когда водородное «горючее» подходит к концу, звезда начинает менять свой облик. Ее оболочка начинает разбухать, звезда стремительно увеличивается и переходит в класс красных гигантов, меняя место на диаграмме. Затем остывающая оболочка сбрасывается — и остается только раскаленное ядро звезды. На свет появляется новый белый карлик.

Так живут звезды главной последовательности, в том числе и наше Солнце. У других типов звезд «биография» и сложнее, и богаче событиями.

С помощью диаграммы Герцшпрунга-Ресселла нередко удается определять и возраст удаленных звездных скоплений. Если все звезды скопления лежат на главной последовательности — скопление молодое, если часть звезд уже покинула главную последовательность — его возраст на порядок больше.

Ранние спектральные классы) в правый нижний угол (низкие светимости, поздние спектральные классы) диаграммы. Звёзды главной последовательности имеют одинаковый источник энергии («горение» водорода, в первую очередь, CNO-цикл), в связи с чем их светимость и температура (спектральный класс) определяются их массой :

L = M 3,9 ,

где светимость L и масса M измеряются в единицах солнечной светимости и массы, соответственно. Поэтому начало левой части главной последовательности представлено голубыми звёздами с массами ~50 солнечных , а конец правой - красными карликами с массами ~0,0767 солнечных.

Существование главной последовательности связано с тем, что стадия горения водорода составляет ~90 % времени эволюции большинства звёзд: выгорание водорода в центральных областях звезды приводит к образованию изотермического гелиевого ядра, переходу к стадии красного гиганта и уходу звезды с главной последовательности. Относительно краткая эволюция красных гигантов приводит, в зависимости от их массы, к образованию белых карликов , нейтронных звёзд или чёрных дыр .

Участок главной последовательности звёздных скоплений является индикатором их возраста: так как темпы эволюции звёзд пропорциональны их массе, то для скоплений существует «левая» точка обрыва главной последовательности в области высоких светимостей и ранних спектральных классов, зависящая от возраста скопления, поскольку звёзды с массой, превышающий некий предел, заданный возрастом скопления, ушли с главной последовательности (см. рис., чётко видна точка ухода с главной последовательности на ветвь красных гигантов). Время жизни звезды на главной последовательности \tau_{\rm MS} в зависимости от начальной массы звезды M по отношению к современной массе Солнца \begin{smallmatrix}M_{\bigodot}\end{smallmatrix} можно оценить по эмпирической формуле:

\begin{smallmatrix} \tau_{\rm MS}\ \approx \ 6\cdot\ 10^{9} \text{лет} \cdot \left[ \frac{M_{\bigodot}}{M} + \ 0.14 \right]^{4} \end{smallmatrix}

Напишите отзыв о статье "Главная последовательность"

Примечания

См. также

Литература

Отрывок, характеризующий Главная последовательность

«Однако, кажется, никто не заметил», думал про себя Ростов. И действительно, никто ничего не заметил, потому что каждому было знакомо то чувство, которое испытал в первый раз необстреленный юнкер.
– Вот вам реляция и будет, – сказал Жерков, – глядишь, и меня в подпоручики произведут.
– Доложите князу, что я мост зажигал, – сказал полковник торжественно и весело.
– А коли про потерю спросят?
– Пустячок! – пробасил полковник, – два гусара ранено, и один наповал, – сказал он с видимою радостью, не в силах удержаться от счастливой улыбки, звучно отрубая красивое слово наповал.

Преследуемая стотысячною французскою армией под начальством Бонапарта, встречаемая враждебно расположенными жителями, не доверяя более своим союзникам, испытывая недостаток продовольствия и принужденная действовать вне всех предвидимых условий войны, русская тридцатипятитысячная армия, под начальством Кутузова, поспешно отступала вниз по Дунаю, останавливаясь там, где она бывала настигнута неприятелем, и отбиваясь ариергардными делами, лишь насколько это было нужно для того, чтоб отступать, не теряя тяжестей. Были дела при Ламбахе, Амштетене и Мельке; но, несмотря на храбрость и стойкость, признаваемую самим неприятелем, с которою дрались русские, последствием этих дел было только еще быстрейшее отступление. Австрийские войска, избежавшие плена под Ульмом и присоединившиеся к Кутузову у Браунау, отделились теперь от русской армии, и Кутузов был предоставлен только своим слабым, истощенным силам. Защищать более Вену нельзя было и думать. Вместо наступательной, глубоко обдуманной, по законам новой науки – стратегии, войны, план которой был передан Кутузову в его бытность в Вене австрийским гофкригсратом, единственная, почти недостижимая цель, представлявшаяся теперь Кутузову, состояла в том, чтобы, не погубив армии подобно Маку под Ульмом, соединиться с войсками, шедшими из России.
28 го октября Кутузов с армией перешел на левый берег Дуная и в первый раз остановился, положив Дунай между собой и главными силами французов. 30 го он атаковал находившуюся на левом берегу Дуная дивизию Мортье и разбил ее. В этом деле в первый раз взяты трофеи: знамя, орудия и два неприятельские генерала. В первый раз после двухнедельного отступления русские войска остановились и после борьбы не только удержали поле сражения, но прогнали французов. Несмотря на то, что войска были раздеты, изнурены, на одну треть ослаблены отсталыми, ранеными, убитыми и больными; несмотря на то, что на той стороне Дуная были оставлены больные и раненые с письмом Кутузова, поручавшим их человеколюбию неприятеля; несмотря на то, что большие госпитали и дома в Кремсе, обращенные в лазареты, не могли уже вмещать в себе всех больных и раненых, – несмотря на всё это, остановка при Кремсе и победа над Мортье значительно подняли дух войска. Во всей армии и в главной квартире ходили самые радостные, хотя и несправедливые слухи о мнимом приближении колонн из России, о какой то победе, одержанной австрийцами, и об отступлении испуганного Бонапарта.
Князь Андрей находился во время сражения при убитом в этом деле австрийском генерале Шмите. Под ним была ранена лошадь, и сам он был слегка оцарапан в руку пулей. В знак особой милости главнокомандующего он был послан с известием об этой победе к австрийскому двору, находившемуся уже не в Вене, которой угрожали французские войска, а в Брюнне. В ночь сражения, взволнованный, но не усталый(несмотря на свое несильное на вид сложение, князь Андрей мог переносить физическую усталость гораздо лучше самых сильных людей), верхом приехав с донесением от Дохтурова в Кремс к Кутузову, князь Андрей был в ту же ночь отправлен курьером в Брюнн. Отправление курьером, кроме наград, означало важный шаг к повышению.

Звезды главной последовательности

Единицы измерения

Большинство звёздных характеристик как правило выражается в СИ, но также используется и СГС (к примеру, светимость выражается в эргах в секунду). Масса, светимость и радиус обычно даются в соотношении с нашим Солнцем:

Для обозначения расстояния до звёзд приняты такие единицы как световой год и парсек

Большие расстояния, такие как радиус гигантских звёзд или большая полуось двойных звёздных систем часто выражаются с использованием

астрономической единицы (а. е.) - среднее расстояние между Землёй и Солнцем (150 млн км).


Рис.1 – Диаграмма Герцшпрунга-Рассела

Виды звёзд

Классификации звёзд начали строить сразу после того, как начали получать их спектры. В первом приближении спектр звезды можно описать как спектр чёрного тела, но с наложенными на него линиями поглощения или излучения. По составу и силе этих линий звезде присваивался тот или иной определённый класс. Так поступают и сейчас, однако, нынешнее делœение звёзд гораздо более сложное: дополнительно оно включает абсолютную звёздную величину, наличие или отсутствие переменности блеска и размеров, а основные спектральные классы разбиваются на подклассы.

В начале XX века, Герцшпрунг и Рассел нанесли на диаграмму ʼʼАбсолютная звёздная величинаʼʼ - ʼʼспектральный классʼʼ различные звёзды, и оказалось, что большая их часть сгруппирована вдоль узкой кривой. Позже эта диаграмма (ныне носящая название Диаграмма Герцшпрунга-Рассела ) оказалось ключом к пониманию и исследованиям процессов, происходящих внутри звезды.

Теперь, когда есть теория внутреннего строения звезд и теория их эволюции, стало возможным и объяснение существования классов звезд. Оказалось, что всё многообразие видов звёзд - это не более чем отражение количественных характеристик звёзд (такие как масса и химический состав) и эволюционного этапа, на котором в данный момент находится звезда.

В каталогах и на письме класс звёзд пишется в одно слово, при этом сначала идет буквенное обозначение основного спектрального класса (если класс точно не определён, пишется буквенный диапазон, к примеру, O-B), далее арабскими цифрами уточняется спектральный подкласс, потом римскими цифрами идет класс светимости (номер области на диаграмме Герцшпрунга-Рассела), а затем идет дополнительная информация. К примеру, Солнце имеет класс G2V.

Наиболее многочисленный класс звёзд составляют звёзды главной последовательности, к такому типу звёзд принадлежит и наше Солнце. С эволюционной точки зрения главная последовательность - это то место диаграммы Герцшпрунга-Рассела, на котором звезда находится большую часть своей жизни. В это время потери энергии на излучения компенсируются за счёт энергии, выделяющейся в ходе ядерных реакции. Время жизни на главной последовательности определяется массой и долей элементов тяжелœее гелия (металличностью).

Современная (гарвардская) спектральная классификация звёзд, разработана в Гарвардской обсерватории в 1890 - 1924 годах.

Основная (гарвардская) спектральная классификация звёзд
Класс Температура, K Истинный цвет Видимый цвет Основные признаки
O 30 000-60 000 голубой голубой Слабые линии нейтрального водорода, гелия, ионизованного гелия, многократно ионизованных Si, C, N.
B 10 000-30 000 бело-голубой бело-голубой и белый Линии поглощения гелия и водорода. Слабые линии H и К Ca II.
A 7500-10 000 белый белый Сильная бальмеровская серия, линии H и К Ca II усиливаются к классу F. Также ближе к классу F начинают появляться линии металлов
F 6000-7500 жёлто-белый белый Сильны Линии H и К Ca II, линии металлов. Линии водорода начинают ослабевать. Появляется линия Ca I. Появляется и усиливается полоса G, образованная линиями Fe, Ca и Ti.
G 5000-6000 жёлтый жёлтый Линии H и К Ca II интенсивны. Линия Ca I и многочисленные линии металлов. Линии водорода продолжают слабеть, Появляются полосы молекул CH и CN.
K 3500-5000 оранжевый желтовато-оранжевый Линии металлов и полоса G интенсивны. Линии водорода почти не заметно. Появляется полосы поглощения TiO.
M 2000-3500 красный оранжево-красный Интенсивны полосы TiO и других молекул. Полоса G слабеет. Все ещё заметны линии металлов.

Коричневые карлики

Коричневые карлики - это тип звёзд, в которых ядерные реакции никогда не могли компенсировать потери энергии на излучение. Долгое время коричневые карлики были гипотетическими объектами. Их существование предсказали в серединœе XX в., основываясь на представлениях о процессах, происходящих во время формирования звезд. При этом в 2004 году впервые был обнаружен коричневый карлик. На сегодняшний день открыто достаточно много звёзд подобного типа. Их спектральный класс М - T. В теории выделяется ещё один класс - обозначаемый Y.

Звезды главной последовательности - понятие и виды. Классификация и особенности категории "Звезды главной последовательности" 2017, 2018.