Влияние мирового океана на климат. Мировой океан, морские течения и их роль в формировании климата

Важнейшая особенность морей и океанов - тесная связь тепловых явлений в воде и в воздухе.

Жители сел и городов, расположенных вдали от морского побережья, частенько забывают о море, забывают о том, чем они обязаны морю. Между тем роль морей и океанов в жизни каждого человека огромна.

Могучее влияние океанов ощущается не только на его берегу, но и в глубине материка, в тысячах километрах от побережья.

Климат Земли зависит от многих причин, но главные из них - действие солнца и океанов. От того, что суша и океаны распределены неравномерно, на земном шаре происходят мощные переносы воздушных масс, дуют устойчивые ветры. Вода - очень хороший хранитель солнечного тепла. Суша - правда, не вся одинаково - гораздо хуже сохраняет тепло. Она быстро теряет значительную часть благодатного солнечного тепла на отражение и обратное излучение и этим отличается от моря.

Море, наоборот, забирает почти всё тепло и прячет его в глубину. Та доля солнечного тепла, которая удержана сушей, сохраняется лишь в верхнем слое. Каждый может ощущать это тепло в погожий солнечный день, - достаточно прикоснуться к пышащему жаром, почти накалившемуся песку. Но стоит зайти солнцу - и суша быстро остывает. Вот тогда и становится заметным тепло, припрятанное морем. В ночные часы вода оказывается теплее воздуха. В зависимости от того, где холоднее, ветер дует либо с суши на море (ночью), либо с моря на сушу (днем). Вода волнуется и перемешивается. Нагревшиеся от солнца частицы заменяются холодными, те в свою очередь нагреваются и уступают место другим. В результате тепло распространяется на глубину нескольких десятков метров. Быстро исчезнуть с такой глубины при похолодании оно не может, ведь вода обладает малой теплопроводностью. Удельная теплоемкость воды примерно в два раза больше, чем суши, и почти в четыре раза больше, чем воздуха. Принимая во внимание, кроме того, малую плотность воздуха (почти в семьсот семьдесят раз меньше плотности воды), получаем, что каждый кубический сантиметр воды, охладившись на 1°, нагреет на эту же величину более 3 100 кубических сантиметров воздуха. Именно поэтому море медленно и равномерно обогревает сушу в период холодов.

Правда, летом дыхание моря кажется суровым и холодным. Тяжелые, напоенные влагой облака медленно поднимаются из- за горизонта. Они надвигаются на берег, закрывают яркое веселое небо и уходят за сотни и тысячи километров на сушу. Дожди, нередко с молнией и громом, проливаются не только над прибрежными районами, но и над иссохшими степями и пустынями. И каждый зеленый лист, пышно разрастающийся после благодатного душа, в сущности, говоря, свидетельствует о великой роли морей и океанов в развитии жизни на Земле. Зимой в Западной Сибири стоят трескучие морозы и дым ленивыми, серыми столбами висит над трубами домов, а торопливые прохожие пробегают по улицам, растирая носы и щеки. Но стоит подуть ветерку с запада, как всё меняется. Температура резко повышается, небо затягивается пеленой, из которой время от времени несутся миллионы снежинок. Еще день - и потепление может превратиться в оттепель. Можно играть в снежки. Всё это - результат работы воздушных масс, принесенных циклоном с запада и нагретых теплом Атлантического океана. В общем, моря и океаны «смягчают» климат земного шара, то есть делают колебания его менее резкими. Они увлажняют воздух, прекращают засухи, уменьшают морозы зимой и приносят прохладу в знойные дни. Моря и океаны регулируют климат. И в этом - их величайшее значение в явлениях, совершающихся на нашей планете.

Способность копить тепло и затем постепенно отдавать его воздуху - одна из интереснейших черт морей. Изучение этой особенности значительно подвинулось вперед в последние годы в результате исследований академика В. В. Шулейкина.

В то же время сами моря и океаны на своей поверхности и в глубинах быстро откликаются на явления, происходящие в атмосфере. Хочешь знать море, - узнай прежде то, что происходит над ним.

Образуется ли лед в море, усиливается ли испарение, перемешивается ли вода сверху донизу, волнуется ли море, возникают ли сильные течения, - всё это результат действия воздуха на воду.

Теплые течения - трубы водяного отопле­ния земного шара.

А. И. Воейков

Мировой океан, или гидросфера Земли, объединяет почти все океанические и морские воды, имеющие единую по­верхность. Он занимает почти три четверти поверхности земного шара - 361 млн. км 2 , в то время как суша - только 149 млн. (рис. 14).

Средняя глубина относительно невелика - 3,8 км. Столь тонкую гидросферу можно уподобить пленке тол­щиной в 1 мм на глобусе диаметром 3 м. Но она играет огромную роль в органической жизни и климатах Земли.

Океан - колыбель жизни. В далеком прошлом в теп­лых и тихих морских лагунах возникли и развивались первые живые клетки, а потом и простейшие организмы. Если бы жидкая пленка испарилась, то на обсохшей Земле не нашлось бы ни одного уголка для современного высокоразвитого органического мира. Да и тепловой режим стал бы иным - в январе на Северном по­люсе вместо современной средней температуры -30° стало бы -80°.

Океаническая поверхность из всех естественных поверхностей Земли является лучшим поглотителем солнечной радиации. Но та же поверхность в другом агре­гатном состоянии (лед и снег) является наиболее совер­шенным отражателем. Хотя температурная гамма по­верхности океана и приземного слоя атмосферы невелика, но вода в этом тесном диапазоне довольно часто и быстро меняет свое состояние. Такая изменчивость резко сказывается на климате.

Океан - огромный дистиллятор. Он ежегодно испа­ряет 448 000 км 3 воды, а континенты - только 71 000. Чем теплее океан, тем больше он испаряет влаги. Влаж­ный воздух, укрывая планету, понижает утечку тепла в космическое пространство, лучше орошает земли и облегчает земледельцу выращивание обильных урожаев. Океан - мощный терморегулятор планеты. Благо­даря большой массе воды и ее высокой теплоемкости (в 3200 раз большей, чем у воздуха) он летом аккумули­рует солнечное тепло и расходует его зимой на обогрев атмосферы, выравнивая межсезонную изменчивость кли­мата. В ряде случаев океан выравнивает и межгодовые колебания. Материки не способны аккумулировать тепло, поэтому континентальность климата, как правило, воз­растает с удалением от границ с океаном.

Воды океана находятся в беспрерывном движении. Они больше, чем суша, поглощают солнечное тепло и являются генеральным поставщиком энергии в глобаль­ные ветровые системы. Ураганы и штормовые ветры энер­гично перемешивают и перемещают водные массы. Так, течение Западных ветров в Южном полушарии ежегодно переносит вокруг Земли около 6 млн. км 3 воды, что равно двум объемам Средиземного моря. Особенно активен поверхностный 100-200-метровый слой. Но и подповерх­ностные и даже придонные слои океана находятся в вечном движении. Морские течения приносят большие массы тепла и холода. Частица воды может совершить в Мировом океане любые кругосветные путешествия, меняя свое состояние, нагреваясь под экватором и обращаясь в лед в полярных водах обоих полушарий.

Морские течения вместе с воздушными выравнивают температуру между полярными и тропическими широ­тами и полностью выполняют роль, отмеченную в эпи­графе словами А. И. Воейкова.

В табл. 4 приведены температуры по широтным поясам, вычисленные и наблюдаемые. Разность является резуль­татом теплообмена, определяемого циркуляционными про­цессами в атмосферной и гидросферной оболочках Земли. Легко видеть, как сильно сказывается межширотный теплообмен на температурное поле Земли. Если бы его не было, то в экваториальном поясе температура подня­лась бы на 13°, а в широтах от 60° северной широты до по­люса температура в среднем снизилась бы на 22°. На ши­ротах Москвы и Ленинграда господствовал бы климат современной Центральной Арктики, т. е. совершенно непригодный для растительного мира.

Количественное представление о межширотном пере­носе тепла морскими и воздушными циркуляционными процессами дает табл. 5.

Как видно из таблицы, приход солнечной коротко­волновой радиации быстро уменьшается от экватора к полюсу, что находит объяснение в шарообразности Земли. Потери через длинноволновую радиацию, нао­борот, остаются почти неизменными во всех широтных поясах, так как шарообразная поверхность Земли здесь не имеет значения. Отсюда возникает относительный из­быток тепла в широтах ниже 40° и недостаток выше этой границы, что порождает контрасты температур, приве­денных в табл. 4. В реальных условиях, как мы видели, избыток и недостаток тепла уравновешиваются за счет межширотного теплообмена, осуществляемого через ме­ханизмы водо- и воздухообмена.

Практический интерес представляет вопрос - кому же принадлежит определяющая роль в транспортировке тепла от планетарного котла к планетарному холодиль­нику, т. е. от экваториальных и тропических широт к по­лярным? Морской или воздушной адвекции?

В разное время вклад каждой из этих адвекций раз­личен. В современных условиях и в более холодных в прошлом, когда Арктический бассейн в значительной своей части круглый год покрыт дрейфующими льдами, морская адвекция относительно невелика, но по мере того, как в Арктический бассейн нагоняются атланти­ческие воды, ее роль возрастает. Современное соотноше­ние морской и воздушной адвекций отдельными исследо­вателями определяется по-разному: от 1:2 в пользу возду­хообмена до 1:1,5 в пользу морской адвекции. Мы же в своих расчетах воздушную адвекцию в счет принимать не будем, так как ее относительная и абсолютная значи­мость в акриогенных условиях естественно падает. Тот относительно небольшой вклад тепла, который вносит воздушная адвекция, мы будем резервировать в «запас прочности».

А. И. Воейков, называя морские течения регулято­рами температуры, считал, что «воздушные течения далеко не в такой степени содействуют уравнению температур между экватором и полюсом, как морские течения, и по своему прямому влиянию в этом отношении не могут сравняться споследними. Но косвенное влияние их очень велико».

П. П. Лазарев в 1927 г. построил модель океанических и атмосферных циркуляции. Эта модель показала, что океанические течения, проходя через Северный полюс и принося в полярную область большое количество тепла, отепляют ее. Отдавая должное советскому эксперимен­татору, англичанин Брукс отмечал: «Когда модель отображала современное распределение суши и моря, возникавшие в бассейне течения до мелочей оказывались сходными с ныне существующими течениями … В мо­делях, воспроизводивших условия теплых периодов, океа­нические течения проходили через полюс, между тем как в моделях холодных периодов ни одно течение не пере­секало полюса».

Брукс отвергал: самодовлеющую роль атмосферной циркуляции и считал, что возможные ее изменения не спо­собны сами по себе, без привлечения других факторов, вызвать крупные климатические изменения. «Роль атмо­сферной циркуляции, - писал он, - следует рассмат­ривать как регулирующую, иногда, возможно, усиливаю­щую, но не порождающую крупнейшие климатические колебания». Если морские течения, по меткому опре­делению А. И. Воейкова, служат терморегуляторами климата, то этого нельзя сказать о макроциркуляциях атмосферы. Из всех климатообразующих факторов, как отмечал Б. Л. Дзердзеевский, они при своей динамич­ности являются наименее постоянным фактором.

Анализ донных отложений в Арктическом бассейне также подтвердил, что именно морские течения по сравне­нию с воздушными играют определяющую роль в форми­ровании климата. В тех случаях, когда теплые атланти­ческие воды слабо проникали в Арктический бассейн, температура в полярных широтах падала. Низкая темпе­ратура приводила не только к восстановлению ледяного покрова бассейна, но и к возрождению ледниковых щи­тов на континентах.

Придавая огромное значение направлениям морских течений в формировании климата, А. И. Воейков писал: «Не вправе ли мы сказать, взвесив главные условия, влия­ющие на климат: без всякого изменения массы нынешних течений, без изменений средней температуры воздуха на земном шаре опять возможна температура в Грен­ландии, подобная бывшей там в миоценовый период, и опять возможны ледники в Бразилии. Для этого требуются лишь известные изменения, направляющие течения иным образом, чем теперь». Много лет спустя академик Е. К. Федоров указал на необходимость тщательного изучения возможных изменений климата в связи с откло­нением некоторых морских течений, считая, что оно должно стать одним из важнейших направлений в наших исследованиях.

Поэтому будет полезным напомнить краткие характе­ристики современных океанических течений (рис. 15).

Наиболее мощным теплым течением Мирового океана, оказывающим решающее воздействие на климат Северного полушария, является система течений Северной Атлан­тики под общим названием Гольфстрим. Система охва­тывает огромное пространство от Мексиканского залива до берегов Шпицбергена и Кольского полуострова. Собст­венно же Гольфстримом называется участок от места слияния Флоридского течения с Антильским (30° север­ной широты) до острова Ньюфаундленд. На широте 38° мощность достигает 82 млн. км 3 /сек, или 2585 тыс.км 3 /год.

В районе Новой Шотландии и южного края Ньюфаунд­лендской банки Гольфстрим соприкасается с холодными распресненными водами течения Кабота, а затем с водами холодного течения Лабрадор. Мощность Лабра­дора составляет примерно 4 млн. м 3 /сек. Оно вместе с холодными водами выносит в район Большой Банки морские льды и айсберги.

Льды морского происхождения обычно держатся над са­мой банкой и, попадая в воды Гольфстрима, быстро тают. Айсберги же имеют более продолжительную жизнь. Попав в воды Гольфстрима, они дрейфуют на северо-восток и даже снова на север, а нередко совершают длительное плавание по всей Северной Атлантике. В исключительных случаях они заносятся на юг, почти до 30° северной ши­роты, а на восток почти до Гибралтара.

Значительная часть айсбергов распространяется по ок­раинам Большой Банки, особенно по северным, где, садясь на мель, они остаются до тех пор, пока не растают на­столько, что их уменьшенная осадка позволяет им про­должать свой дрейф дальше.

Помимо морских льдов и айсбергов в районе Нью­фаундленда, как и у берегов Лабрадора, встречается и донный лед, по мере образования всплывающий на по­верхность и участвующий в общем дрейфе льда. Поскольку температурная разность контакта Гольфстрима и Лабра­дора очень велика, воды Гольфстрима сильно охлаждаются.

Пройдя Большую Ньюфаундлендскую банку, Гольф­стрим под названием Северо-Атлантического течения дви­жется на восток со средней скоростью 20-25 км/сутки и по мере продвижения к берегам Европы принимает северо-восточное направление. За банками Ньюфаунд­ленда оно отделяет ветви-рукава, теряющиеся в водо­воротах. Около 25° западной долготы от южного его края отходит большая ветвь Канарского течения к Пиреней­скому полуострову.

При подходе к Британским островам от Северо-Атлан­тического течения отделяется с левой стороны большая ветвь - течение Ирмингер, направляющееся на север в сторону Исландии; основная же масса, пересекая порог Уайвилла-Томсона, проходит в проливе между Шетланд­скими и Фарерскими островами и входит в Норвежское море.

Линия порогов Уайвилла-Томсона, а затем Гренландско-Исландский порог являются четкой границей между Атлантическим и Ледовитым океанами. На глубине 1000 м к югу от Фареро-Шетландского порога, имеющего глубину менее 500 м, температура воды почти на 8° выше, чем к се­веру. Соленость на той же глубине с южной стороны по­рога больше на 0,3 промилле. Объяснение этой исключительной контрастности кроется в отклонении к западу глубинных слоев теплых вод на южной стороне, в то время как на се­верной стороне порога холодные воды отклоняются им на восток. В результате на севере от порога вся глубоко­водная часть Гренландского и Норвежского морей запол­нена очень холодной и плотной водой. Эта система поро­гов также разграничивает области с преобладанием на по­верхности атлантических и арктических вод.

Северо-Атлантическое течение, минуя пролив между Фарерскими и Шетландскими островами, под названием Норвежского теплого течения проходит вдоль западного побережья Скандинавского полуострова. В районе пере­сечения Северного полярного круга, с левой стороны от него отходит ветвь самостоятельного потока теплых вод, имеющая во все сезоны года устойчивое направле­ние на север.

Западнее мыса Нордкап, от Норвежского течения с правой стороны отходит на восток в Баренцево море Нордкапское течение. Восточнее 35 меридиана оно хотя и разбивается на мелкие струи, но играет заметную роль в термине Баренцева моря. Так, малая по мощности Мурманская ветвь делает Мурманский порт открытым круглый год для свободного плавания судов любого типа.

Вследствие большей плотности атлантические воды на значительной части акватории Баренцева моря погружаются под легкие слои местной воды. Часть атлан­тических вод проникает в Карское море. Вместе с тем теп­лая атлантическая вода под слоем местной полярной воды заходит в Баренцево море также и с севера, со стороны Арктического бассейна по глубоким желобам западнее и восточнее Земли Франца-Иосифа, куда она попадает как ответвление от уже глубинного Шпицбергенского течения.

Левая ветвь Норвежского течения после отхода от него Нордкапской ветви идет на север под названием Шпиц­бергенского. Основной поток его при входе в пролив Шпицберген-Гренландия теряет часть своей кинетической и тепловой энергии за счет того, что пролив отражает часть водных масс и за счет бокового смешивания с во­дами встречного холодного Восточно-Гренландского те­чения. Отраженные водные массы движутся вначале в за­падном, а затем в южном направлении, вклиниваются в холодные струи Восточно-Гренландского течения и, смешиваясь с ними, образуют круговые течения в районе нулевого меридиана и 74-78° северной широты.

Шпицбергенское течение проходит вдоль Западных берегов Шпицбергена со скоростью около 6 км в сутки, со средней температурой воды 1,9° и соленостью 35 промилле. Севернее Шпицбергена вследствие разности плотностей оно опускается под арктические воды и продолжает свой путь в Центральной Арктике уже в виде глубинного теплого течения. Но это не единственное место, где шпиц­бергенские теплые воды погружаются под холодные аркти­ческие. На Гренландском восточном мелководье всюду на глубинах более 200 м господствуют их высокие поло­жительные температуры. Эти теплые воды могут прони­кать глубоко в заливы и фиорды. Разумеется, такое глу­бокое проникновение под встречные, быстро продвигаю­щиеся на юг распресненные воды, несущие с собой не только паковые льды с глубокой осадкой, но и айсберги, не может происходить без большой потери кинетической энергии и тепла. Работами станции «Северный полюс-1» установлена весьма активная роль атлантических вод в отеплении верхнего холодного слоя. Даже зимой, не­смотря на низкие зимние температуры воздуха, атланти­ческие воды, действуя на льды снизу, все время их ослаб­ляют. Это относится и к местным льдам, и к льдам, выно­симым из Центральной Арктики в Гренландское море.

Пробег вод Гольфстрима от Флоридского пролива до порога Томсона занимает 11 месяцев, а от порога Томсона до Шпицбергена около 13 месяцев.

Течение Ирмингера, отделившись при подходе к северным берегам Британских островов от Северного Атлан­тического течения, приобретает направление на север в сторону Исландии. Примерно на 63° северной широты течение раздваивается. Правая его часть уходит в Датский пролив и своими теплыми водами омывает не только за­падные берега Исландии, но и северные. В этом районе оно входит в соприкосновение с исландской ветвью Вос­точно-Гренландского течения и, смешиваясь с ее водами, охлаждается и движется на юго-восток. Левая, более мощная часть Ирмингерапосле разветвления повора­чивает на юго-запад, а затем на юг, под косым сечением встречается с потоком вод и льдов Восточно-Гренланд­ского течения. На стыке вод температура на расстоянии от 20 до 36 км понижается с 10 до 3°.

В районе южной оконечности Гренландии течения Ирмингер и Восточно-Гренландское концентрически огибают мыс Фарвель и всю юго-западную часть острова и под названием Западно-Гренландского течения проходят через пролив Девиса в Баффинов залив.

Восточно-Гренландское холодное течение, служащее основным трактом для стока вод и выноса льда из Аркти­ческого бассейна, получает свое начало на материковой отмели Азии. При постепенном перемещении от материка на север течение в районе Полюса раздваивается: одна ветвь направляется в американский сектор Арктики, дру­гая - в сторону Гренландского моря. У северо-восточного побережья Гренландии в Восточно-Гренландское течение вливаются воды холодного течения, идущего с запада вдоль северного побережья Гренландии. Ширина Восточно-Гренландского течения у 75-76° северной широты- 175- 220 км, скорость возрастает от двух миль в сутки под ши­ротой 80° до 8 миль под 75°, до 9 миль под 70° и до 16- 18 миль под 65-66° северной широты; температура воды всюду ниже 0°. Пройдя Датский залив, оно соприка­сается с теплым Ирмингероми вместе с ним огибает мыс Фарвель. В этом районе морские льды и айсберги, попадая в струи теплых вод, быстро тают. У мыса Фарвель ширина пояса плавучих льдов в отдельные месяцы достигает 250- 300 км, но благодаря теплым водам Ирмингера, севернее мыса Дезолейшн (62° северной широты), льды никогда не образуют здесь сомкнутого покрова, а ширина их по­яса не превышает нескольких десятков километров.

Лабрадорское течение является продолжением хо­лодного течения Баффиновой Земли, берущего начало у пролива Смита. Оно проходит вдоль берегов полуострова Лабрадор и далее на юг вдоль восточного берега Нью­фаундленда; мощность его примерно 130 000 км 3 /год. Оно несет морские льды и айсберги и, как уже отмечалось, сильно охлаждает воды Гольфстрима. Воды Лабрадора остаются холодными весь год, охлаждая и все омываемое им побережье. Тундровая растительность на Ньюфаунд­ленде обязана своим существованием холодным водам Лабрадора. Примечательно, что почти на той же широте, но по другую сторону Атлантики, во Франции, произ­растают лучшие сорта винограда.

Рассматривая трассы течений Северной Атлантики, мы убеждаемся, насколько прав был А. И. Воейков, когда говорил, что направление морских течений играет огромную роль в формировании климата. На одном и том же меридиане расположен далеко за полярным кру­гом незамерзающий порт Мурманск, а лежащие на 2500 км южнее азовские порты ежегодно замерзают на несколько месяцев. И, наконец, север Атлантического бассейна можно уподобить ванне, в которую через два крана вли­вается холодная вода (Лабрадор и Восточно-Гренланд­ское течения) и через один - теплая вода Гольфстрима. Регулируя краны, мы можем менять термину Атлантики, а с ней и климат окружающих континентов. Признание большой роли морских течений в формировании климата определило с конца прошлого века пути региональных улучшений климатического режима, изменяя направления теплых и холодных течений. Наряду с этим развивались проекты крупных гидротехнических мероприятий по регу­лированию и переброске речного стока. Остановимся на главных гидротехнических проектах по мелиорации при­родных условий.

Климат - это статистический ансамбль состояний, которые проходит система океан - суша - атмосфера в течение нескольких десятилетий. Статистическим ансамблем называется и определяется множество, состоящее из известных элементов, с указанием, как часто встречается каждый из них. В этом случае для любой количественной характеристики элементов можно найти среднее значение всего множества.

В рассматриваемой глобальной системе океан - суша - атмосфера и космос климатообразующие факторы можно определить как астрономические, геофизические и метеорологические.

Первая группа - внешние, или астрономические климатообразующие факторы - это светимость Солнца, положение и движение Земли в Солнечной системе, наклон её оси вращения к плоскости орбиты и скорость вращения. Эти факторы определяют воздействия на Землю со стороны других тел Солнечной системы, прежде всего её инсоляцию и гравитационные воздействия внешних тел и, кроме того, колебания в распределении инсоляции по внешней границе атмосферы.

Вторая группа климатообразующих факторов включает в себя так называемые геофизические факторы. Они связаны со свойствами Земли как планеты. Некоторые из них воздействуют на климатическую систему в целом (в каждой её точке), другие определяют условия (потоки свойств и субстанций) на нижней границе. К этим факторам относятся размеры и масса планеты, скорость вращения вокруг оси, собственное гравитационное и магнитное поле, внутренние источники тепла, свойства поверхности планеты, которые определяют её взаимодействие с атмосферой.

Существенным климатообразующим фактором этой группы является скорость вращения Земли вокруг оси, оказывающая решающее влияние на характер всей атмосферной циркуляции. Вследствие вращения Земли многие метеорологические элементы испытывают суточные колебания благодаря изменению притока солнечного тепла. Если бы скорость собственного вращения Земли была очень малой или сравнимой с периодом обращения Земли вокруг Солнца, то основные термические контрасты, которые создают циркуляцию атмосферы, возникали бы между нагретым дневным и охлаждённым ночным полушариями. Когда скорость вращения увеличивается, преобладающими становятся различия между полярными и экваториальными районами.

Большая часть тепловой энергии, которую получает атмосфера, поступает от подстилающей поверхности, тепловое состояние которой зависит от таких физических её свойств, как отражательная способность, или альбедо, излучательная способность, теплоёмкость и теплопроводность, а также подвижность.

Важную роль в формировании климата играют так называемые термодинамические активные примеси, т.е. переменные компоненты атмосферы. К ним относятся водяной пар, углекислый газ, аэрозоль и др. Главным источником водяного пара в атмосфере являются океаны. Содержание в атмосфере зависит от площади поверхности океанов и от температуры. При постоянстве этих факторов большое значение имеет распределение океанов и материков по широтным зонам. В то же время океан служит в основном стоком для аэрозолей, главным источником которых являются материки.

Углекислый газ поступает в атмосферу при извержении вулканов, разложении органического вещества в верхнем слое почвы (так называемое дыхание почвы) и при дыхании растений суши. В XX в. стал особенно заметен приток углекислого газа в атмосферу в результате антропогенной деятельности. Единственным потребителем углекислого газа на суше является растительность, которая ассимилирует его в основном путём фотосинтеза. Между океаном и атмосферой постоянно происходит интенсивный обмен углекислым газом. Его растворимость существенно зависит от температуры океана и значительно ухудшается с повышением последней. Поэтому холодный океан может быть стоком для углекислого газа, а тёплый, наоборот, его источником.

Различия в свойствах поверхности океанов и суши приводят к такому явлению, как циркумконтинентальность, т.е. изменение климатических характеристик в направлении, поперечном границам материков. Особенно ярко это проявляется над массивными и изолированными блоками суши. С удалением вглубь материка усиливается континентальность климата, т.е. увеличиваются годовые и суточные амплитуды температуры воздуха, уменьшаются относительная влажность и облачность летом и днём, а также количество осадков, и их выпадение становится нерегулярным и т.п.

В некоторых районах возникают так называемые муссонные эффекты, заключающиеся в резкой сезонной смене атмосферной циркуляции и связанной с ней погоды. Обычно это наблюдается при формировании над сушей термического антициклона зимой и циклона летом.

Во многих случаях муссонные эффекты усиливаются сезонными миграциями планетарных фронтальных зон. Большинство из них приурочено к пограничным зонам суши и океана.

Главными метеорологическими климатообразующими факторами являются масса и химический состав атмосферы.

Масса атмосферы равна 5,3-1021 г. Она определяет её механическую и тепловую инерцию, её возможности как теплоносителя, способного передавать тепло от нагретых областей к охлаждённым.

Атмосферный воздух представляет собой смесь газов, одни из которых имеют почти постоянную концентрацию, другие - переменную. Кроме того, в атмосфере содержатся различные жидкие и твёрдые аэрозоли, которые также оказывают существенное влияние и имеют важное значение в формировании климата.

Океан, являющийся неотъемлемой частью климатической системы, играет в ней исключительно важную роль. Первичным свойством океана является его масса. Однако для климата существенно и то, на какой части поверхности Земли эта масса размещается.

Среднее атмосферное давление на уровне моря принимается равным 1013,25 мбар (гПа). Температура атмосферы довольно низкая. Приведённая к уровню моря средняя климатическая температура воздуха у поверхности Земли в северном полушарии в среднем за год составляет 15,2°С, в южном -- 13,3 °С. Разность температур между экватором и Северным полюсом в январе равна 59,7 °С, в июле - 28,2 °С. Между экватором и Южным полюсом, соответственно, в январе 40,2 °С и в июле 74,2 °С.

Температурное поле Мирового океана таково, что средняя температура его поверхности равна 17,82 °С. Средняя температура всей толщи вод, без Арктического бассейна, равна 5,7 °С.

Средняя солёность всей толщи вод Мирового океана (без Арктического бассейна) равна 34,71 %0.

Таким образом, обладая разными свойствами и характеристиками в своих геосферах океаны, атмосфера и материки формируют климат Земли и Мирового океана.

Особое значение для формирования и изменения климата имеет взаимодействие между океаном и атмосферой, проявляющееся в обмене теплом, влагой и количеством движения. Океан находится в непрерывном взаимодействии с атмосферой и земной корой. Он представляет собой огромный аккумулятор солнечного тепла и влаги, сглаживает резкие колебания температуры и увлажняет отдаленные районы суши (посредством воздушных течений).

Обратное воздействие атмосферы на океан проявляется главным образом через циркуляцию вод, путем ослабления или усиления поверхностных (а косвенно и глубинных) течений через ветровой режим. Неравномерное поступление солнечного тепла на поверхность океана и изменчивость атмосферных процессов оказывают непосредственное влияние на температуру, соленость и другие характеристики Мирового океана.

Особый интерес представляет пояс Мирового океана, где поглощается огромное количество солнечной радиации (зона между 30° с.ш. и 30° ю.ш.). Накопившееся там тепло переносится в более высокие широты, становясь важным фактором смягчения климата умеренных и полярных широт в холодную половину года. В результате испарения и турбулентного теплообмена с акватории океана атмосфере за год передается примерно в 2 раза больше тепла, чем с поверхности суши. Отсюда следует, что Мировой океан является одним из главных факторов формирования климата и погоды на Земле.

Климатически значимыми параметрами Мирового океана являются следующие: температура поверхности океана, соленость и характеристики толщи воды, теплосодержание деятельного слоя океана, морские течения и льды.

Существенное влияние на климат оказывают морские (океанические) течения, которые представляют собой поступательное движение водных масс в морях и океанах, на поверхности которых они распространяются широкой полосой, захватывая слой воды различной глубины. Морские течения вызываются действием силы трения между водой и воздухом, движущимся над поверхностью моря, градиентами давления, возникающими в воде, а также приливообразующими силами Луны и Солнца. На направление течений большое влияние оказывает сила вращения Земли, под влиянием которой потоки вод отклоняются в Северном полушарии вправо, а в Южном – влево.

Морские (океанические) течения играют важную роль в процессе межширотного переноса тепла. Установлено, что около половины адвективного переноса тепла из низких широт в высокие осуществляется с морскими течениями, а остальная половина – через атмосферную циркуляцию. Соответственно, в обратном направлении с холодными течениями совершается адвекция холода. Поэтому морские течения оказывают влияние в первую очередь на температуру воздуха и ее распределение.

Устойчивость течений приводит к тому, что их влияние на атмосферу имеет климатическое значение. Гребень изотерм на картах средней температуры четко показывает отепляющее влияние Гольфстрима на климат восточной части северной Атлантики и Западной Европы.

Воды системы Гольфстрим проникают на 10 тыс. км – от Флориды до Шпицбергена и Новой Земли. Это течение транспортирует огромные массы воды различной солености и плотности. Имея наибольшую ширину потока до 120 км и толщину 2 км, Гольфстрим переносит воды в 22 раза больше, чем все реки земного шара. Пересекая Атлантический океан, Гольфстрим направляется на северо-восток (в своей дельте он разделяется на несколько потоков). Здесь его правильнее называть Северо-Атлантическим течением; оно значительно расширяется и скорость его уменьшается до 0,26– 0,32 м/с. Гольфстрим приносит огромное количество тепла к берегам Западной Европы, где он имеет температуру летом 13–15 °С, а зимой 8 °С. Омывая берега Норвегии, Северо-Атлантическое течение проникает далее в Баренцево море до Шпицбергена и частично даже в Карское море, значительно утепляя климат западного сектора Арктики. Восточнее из-за большой плотности воды это течение опускается в более глубокие слои океана.