Виды вариационных рядов. V

Различные выборочные значения назовемвариантами ряда значений и обозначим: х 1 , х 2 , …. Прежде всего произведем ранжирование вариантов, т.е. расположение их в порядке возрастания или убывания. Для каждого варианта указывается свой вес, т.е. число, которое характеризует вклад данного варианта в общую совокупность. В качестве весов выступают частоты или частости.

Частотой n i варианта х i называется число, показывающее сколько раз встречается данный вариант в рассматриваемой выборочной совокупности.

Частостью или относительной частотой w i варианта х i называется число, равное отношению частоты варианта к сумме частот всех вариантов. Частость показывает, какая часть единиц выборочной совокупности имеет данный вариант.

Последовательность вариантов с соответствующими им весами (частотами или частостями), записанная в порядке возрастания (или убывания), называется вариационным рядом .

Вариационные ряды бывают дискретными и интервальными.

Для дискретного вариационного ряда задаются точечные значения признака, для интервального – значения признака задаются в виде интервалов. Вариационные ряды могут показывать распределение частот или относительных частот (частостей), в зависимости от того, какая величина указывается для каждого варианта – частота или частость.

Дискретный вариационный ряд распределения частот имеет вид:

Частости находятся по формуле , i = 1, 2, …, m .

w 1 + w 2 + … + w m = 1.

Пример 4.1. Для данной совокупности чисел

4, 6, 6, 3, 4, 9, 6, 4, 6, 6

построить дискретные вариационные ряды распределения частот и частостей.

Решение . Объем совокупности равен n = 10. Дискретный ряд распределения частот имеет вид

Аналогичную форму записи имеют интервальные ряды.

Интервальный вариационный ряд распределения частот записывается в виде:

Сумма всех частот равна общему числу наблюдений, т.е. объему совокупности: n = n 1 + n 2 + … + n m .

Интервальный вариационный ряд распределения относительных частот (частостей) имеет вид:

Частость находится по формуле , i = 1, 2, …, m .

Сумма всех частостей равна единице: w 1 + w 2 + … + w m = 1.

Наиболее часто на практике применяются интервальные ряды. Если статистических выборочных данных очень много и их значения отличаются друг от друга на сколь угодно малую величину, то дискретный ряд для этих данных будет достаточно громоздким и неудобным для дальнейшего исследования. В этом случае применяют группировку данных, т.е. промежуток, содержащий все значения признака, разбивают на несколько частичных интервалов и, подсчитав частоту для каждого интервала, получают интервальный ряд. Запишем более подробно схему построения интервального ряда, предположив, что длины частичных интервалов будут одинаковыми.

2.2 Построение интервального ряда

Для построения интервального ряда нужно:

Определить число интервалов;

Определить длину интервалов;

Определить расположение интервалов на оси.

Для определения числа интервалов k существует формула Стерджеса, по которой

,

где n - объем всей совокупности.

Например, если имеется 100 значений признака (вариант), то рекомендуется для построения интервального ряда взять число интервалов равным интервалам.

Однако очень часто на практике число интервалов выбирает сам исследователь, учитывая, что это число не должно быть очень большим, чтобы ряд не был громоздким, но и не очень маленьким, чтобы не потерять некоторых свойств распределения.

Длина интервала h определяется по следующей формуле:

,

где x max и x min - это соответственно самое большое и самое маленькое значения вариантов.

Величину называют размахом ряда.

Для построения самих интервалов поступают по-разному. Один из самых простых способов заключается в следующем. За начало первого интервала принимают величину
. Тогда остальные границы интервалов находятся по формуле . Очевидно, что конец последнего интервала a m+1 должен удовлетворять условию

После того как найдены все границы интервалов, определяют частоты (или частости) этих интервалов. Для решения этой задачи просматривают все варианты и определяют число вариант, попавших в тот или иной интервал. Полное построение интервального ряда рассмотрим на примере.

Пример 4.2. Для следующих статистических данных, записанных в порядке возрастания, построить интервальный ряд с числом интервалов, равным 5:

11, 12, 12, 14, 14, 15, 21, 21, 22, 23, 25, 38, 38, 39, 42, 42, 44, 45, 50, 50, 55, 56, 58, 60, 62, 63, 65, 68, 68, 68, 70, 75, 78, 78, 78, 78, 80, 80, 86, 88, 90, 91, 91, 91, 91, 91, 93, 93, 95, 96.

Решение. Всего n =50 значений вариантов.

Число интервалов задано в условии задачи, т.е. k =5.

Длина интервалов равна
.

Определим границы интервалов:

a 1 = 11 − 8,5 = 2,5; a 2 = 2,5 + 17 = 19,5; a 3 = 19,5 + 17 = 36,5;

a 4 = 36,5 + 17 = 53,5; a 5 = 53,5 + 17 = 70,5; a 6 = 70,5 + 17 = 87,5;

a 7 = 87,5 +17 = 104,5.

Для определения частоты интервалов посчитываем число вариантов, попавших в данный интервал. Например, в первый интервал от 2,5 до 19,5 попадают варианты 11, 12, 12, 14, 14, 15. Их число равно 6, следовательно, частота первого интервала равна n 1 =6. Частость первого интервала равна . Во второй интервал от 19,5 до 36,5 попадают варианты 21, 21, 22, 23, 25, число которых равно 5. Следовательно, частота второго интервала равна n 2 =5, а частость . Найдя аналогичным образом частоты и частости для всех интервалов, получим следующие интервальные ряды.

Интервальный ряд распределения частот имеет вид:

Сумма частот равна 6+5+9+11+8+11=50.

Интервальный ряд распределения частостей имеет вид:

Сумма частостей равна 0,12+0,1+0,18+0,22+0,16+0,22=1. ■

При построении интервальных рядов, в зависимости от конкретных условий рассматриваемой задачи, могут применяться и другие правила, а именно

1. Интервальные вариационные ряды могут состоять из частичных интервалов разной длины. Неравные длины интервалов позволяют выделить свойства статистической совокупности с неравномерным распределением признака. Например, если границы интервалов определяют численность жителей в городах, то целесообразно в данной задаче использовать неравные по длине интервалы. Очевидно, что для небольших городов имеет значение и небольшая разница в числе жителей, а для больших городов разница в десятки и сотни жителей не имеет существенного значения. Интервальные ряды с неравными длинами частичных интервалов исследуются, в основном, в общей теории статистики и их рассмотрение выходит за рамки данного пособия.

2. В математической статистике иногда рассматривают интервальные ряды, для которых левую границу первого интервала полагают равной –∞, а правую границу последнего интервала +∞. Это делается для того, чтобы приблизить статистическое распределение к теоретическому.

3. При построении интервальных рядов может оказаться, что значение какого-то варианта совпадает в точности с границей интервала. Лучше всего в этом случае поступить следующим образом. Если такое совпадение только одно, то считать, что рассматриваемый вариант со своей частотой попал в интервал, находящийся ближе к середине интервального ряда, если таких вариантов несколько, то либо все их отнести к правым от этих вариант интервалам, либо все – к левым.

4. После определения числа интервалов и их длины, расположение интервалов можно производить и по другому способу. Находят среднее арифметическое всех рассматриваемых значений вариантов х ср. и строят первый интервал таким образом, чтобы это среднее выборочное находилось бы внутри какого-то интервала. Таким образом, получаем интервал от х ср. – 0,5h до х ср.. + 0,5h . Затем влево и вправо, прибавляя длину интервала, строим остальные интервалы до тех пор, пока x min и x max не попадут соответственно в первый и последний интервалы.

5. Интервальные ряды при большом числе интервалов удобно записывать вертикально, т.е. интервалы записывать не в первой строке, а в первом столбце, а частоты (или частости) во втором столбце.

Выборочные данные могут рассматриваться как значения некоторой случайной величины Х . Случайная величина имеет свой закон распределения. Из теории вероятностей известно, что закон распределения дискретной случайной величины можно задать в виде ряда распределения, а непрерывной – с помощью функции плотности распределения. Однако существует универсальный закон распределения, который имеет место и для дискретной и для непрерывной случайных величин. Этот закон распределения задается в виде функции распределения F (x ) = P (X <x ). Для выборочных данных можно указать аналог функции распределения – эмпирическую функцию распределения.


Похожая информация.


Совокупность значений изученного в данном эксперименте или наблюдении параметра, проранжированных по величине (возрастания или убывания) называется вариационным рядом.

Предположим, что мы измерили артериальное давление у десяти пациентов с целью получить верхний порог АД: систолическое давление, т.е. только одно число.

Представим, что серия наблюдений (статистическая совокупность) артериального систолического давления в 10-ти наблюдениях имеет следующий вид (табл. 1):

Таблица 1

Составляющие вариационного ряда называются вариантами. Варианты представляют собой числовое значение изучаемого признака.

Построение из статистической совокупности наблюдений вариационного ряда - только первый шаг к осмыслению особенностей всей совокупности. Далее необходимо определить средний уровень изучаемого количественного признака (средний уровень белка крови, средний вес пациентов, среднее время наступления наркоза и т.д.)

Средний уровень измеряют с помощью критериев, которые носят название средних величин. Средняя величина - обобщающая числовая характеристика качественно однородных величин, характеризующая одним числом всю статистическую совокупность по одному признаку. Средняя величина выражает то общее, что характерно для признака в данной совокупности наблюдений.

Общеупотребительными являются три вида средних величин: мода (), медиана () и среднеарифметическая величина ().

Для определения любой средней величины необходимо использовать результаты индивидуальных наблюдений, записав их в виде вариационного ряда (табл. 2).

Мода - значение, наиболее часто встречающееся в серии наблюдений. В нашем примере мода = 120. Если в вариационном ряду нет повторяющихся значений, то говорят, что мода отсутствует. Если несколько значений повторяются одинаковое количество раз, то в качестве моды берут наименьшее из них.

Медиана - значение, делящее распределение на две равные части, центральное или срединное значение серии наблюдений, упорядоченных по возрастанию или убыванию. Так, если в вариационном ряду 5 значений, то его медиана равна третьему члену вариационного ряда, если в ряду четное количество членов, то медиана представляет собой среднее арифметическое двух его центральных наблюдений, т.е. если в ряду 10 наблюдений, то медиана равна среднему арифметическому 5 и 6 наблюдения. В нашем примере.

Заметим важную особенность моды и медианы: на их величины не оказывают влияние числовые значения крайних вариант.

Средняя арифметическая величина рассчитывается по формуле:

где - наблюденная величина в -том наблюдении, а - число наблюдений. Для нашего случая.

Средняя арифметическая величина обладает тремя свойствами:

Средняя занимает серединное положение в вариационном ряду. В строго симметричном ряду.

Средняя является обобщающей величиной и за средней не видны случайные колебания, различия в индивидуальных данных. Она отражает то типичное, что характерно для всей совокупности.

Сумма отклонений всех вариант от средней равна нулю: . Отклонение вариант от средней обозначается.

Вариационный ряд состоит из вариант и соответствующих им частот. Из десяти полученных значений цифра 120 встретилась 6 раз, 115 - 3 раза, 125 - 1 раз. Частота () - абсолютная численность отдельных вариант в совокупности, указывающая, сколько раз встречается данная варианта в вариационном ряду.

Вариационный ряд может быть простым (частоты = 1) или сгруппированным укороченным, по 3-5 вариант. Простой ряд используется при малом числе наблюдений (), сгруппированный - при большом числе наблюдений ().

​ Вариационный ряд – ряд, в котором сопоставлены (по степени возрастания или убывания) варианты и соответствующие им частоты

​Варианты – отдельные количественные выражения признака. Обозначаются латинской буквой V . Классическое понимание термина "варианта" предполагает, что вариантой называется каждое уникальное значение признака, без учета количества повторов.

Например, в вариационном ряду показателей систолического артериального давления, измеренного у десяти пациентов:

110, 120, 120, 130, 130, 130, 140, 140, 160, 170;

вариантами являются только 6 значений:

110, 120, 130, 140, 160, 170.

​Частота – число, показывающее, сколько раз повторяется варианта. Обозначается латинской буквой P . Сумма всех частот (которая, разумеется, равна числу всех исследуемых) обозначается как n .

    В нашем примере частоты будут принимать следующие значения:
  • для варианты 110 частота Р = 1 (значение 110 встречается у одного пациента),
  • для варианты 120 частота Р = 2 (значение 120 встречается у двух пациентов),
  • для варианты 130 частота Р = 3 (значение 130 встречается у трех пациентов),
  • для варианты 140 частота Р = 2 (значение 140 встречается у двух пациентов),
  • для варианты 160 частота Р = 1 (значение 160 встречается у одного пациента),
  • для варианты 170 частота Р = 1 (значение 170 встречается у одного пациента),

Виды вариационных рядов:

  1. простой - это ряд, в котором каждая варианта встречается только по одному разу (все частоты при этом равны 1);
  2. взвешенный - ряд, в котором одна или несколько вариант встречаются неоднократно.

Вариационный ряд служит для описания больших массивов чисел, именно в этой форме изначально представляются собранные данные большинства медицинских исследований. Для того, чтобы охарактеризовать вариационный ряд, рассчитываются специальные показатели, в том числе средние величины, показатели вариабельности (так называемой, дисперсии), показатели репрезентативности выборочных данных.

Показатели вариационного ряда

1) Средняя арифметическая - это обобщающий показатель, характеризующий размер изучаемого признака. Средняя арифметическая обозначается как M , представляет собой самый распространенный вид средней. Средняя арифметическая рассчитывается как отношение суммы значений показателей всех единиц наблюдения к числу всех исследуемых. Методика расчета средней арифметической различается для простого и взвешенного вариационного ряда.

Формула для расчета простой средней арифметической:

Формула для расчета взвешенной средней арифметической:

M = Σ(V * P)/ n

​ 2) Мода – еще одна средняя величина вариационного ряда, соответствующая наиболее часто повторяющейся варианте. Или, если выразиться по другому, это варианта, которой соответствует наибольшая частота. Обозначается как Мо . Мода рассчитывается только для взвешенных рядов, так как в простых рядах ни одна из вариант не повторяется и все частоты равны единице.

Например, в вариационном ряду значений частоты сердечных сокращений:

80, 84, 84, 86, 86, 86, 90, 94;

значение моды составляет 86, так как данная варианта встречается 3 раза, следовательно ее частота - наибольшая.

3) Медиана – значение варианты, делящей вариационный ряд пополам: по обе стороны от нее находится равное число вариант. Медиана также, как и средняя арифметическая и мода, относится к средним величинам. Обозначается как Me

4) Среднее квадратическое отклонение (синонимы: стандартное отклонение, сигмальное отклонение, сигма) - мера вариабельности вариационного ряда. Является интегральным показателем, объединяющим все случаи отклонения вариант от средней. Фактически, отвечает на вопрос: насколько далеко и как часто варианты распространяются от средней арифметической. Обозначается греческой буквой σ ("сигма") .

При численности совокупности более 30 единиц, стандартное отклонение рассчитывается по следующей формуле:

Для малых совокупностей - 30 единиц наблюдения и менее - стандартное отклонение рассчитывается по другой формуле:

В результате освоения дайной главы студент должен: знать

  • показатели вариации и их взаимосвязь;
  • основные законы распределения признаков;
  • сущность критериев согласия; уметь
  • рассчитывать показатели вариации и критерии согласия;
  • определять характеристики распределений;
  • оценивать основные числовые характеристики статистических рядов распределения;

владеть

  • методами статистического анализа рядов распределения;
  • основами дисперсионного анализа;
  • приемами проверки статистических рядов распределения на соответствие основным законам распределения.

Показатели вариации

При статистическом исследовании признаков различных статистических совокупностей большой интерес представляет изучение вариации признака отдельных статистических единиц совокупности, а также характера распределения единиц по данному признаку. Вариация - это различия индивидуальных значений признака у единиц изучаемой совокупности. Исследование вариации имеет большое практическое значение. По степени вариации можно судить о границах вариации признака, однородности совокупности по данному признаку, типичности средней, взаимосвязи факторов, определяющих вариацию. Показатели вариации используются для характеристики и упорядочения статистических совокупностей.

Результаты сводки и группировки материалов статистического наблюдения, оформленные в виде статистических рядов распределения, представляют собой упорядоченное распределение единиц изучаемой совокупности на группы по группировочному (варьирующему) признаку. Если за основу группировки взят качественный признак, то такой ряд распределения называют атрибутивным (распределение по профессии, по полу, по цвету и т.д.). Если ряд распределения построен по количественному признаку, то такой ряд называют вариационным (распределение по росту, весу, по размеру заработной платы и т.д.). Построить вариационный ряд - значит упорядочить количественное распределение единиц совокупности по значениям признака, подсчитать число единиц совокупности с этими значениями (частоту), результаты оформить в таблицу.

Вместо частоты варианта возможно применение ее отношения к общему объему наблюдений, которое называется частостью (относительной частотой).

Выделяют два вида вариационного ряда: дискретный и интервальный. Дискретный ряд - это такой вариационный ряд, в основу построения которого положены признаки с прерывным изменением (дискретные признаки). К последним можно отнести число работников на предприятии, тарифный разряд, количество детей в семье и т.д. Дискретный вариационный ряд представляет таблицу, которая состоит из двух граф. В первой графе указывается конкретное значение признака, а во второй - число единиц совокупности с определенным значением признака. Если признак имеет непрерывное изменение (размер дохода, стаж работы, стоимость основных фондов предприятия и т.д., которые в определенных границах могут принимать любые значения), то для этого признака возможно построение интервального вариационного ряда. Таблица при построении интервального вариационного ряда также имеет две графы. В первой указывается значение признака в интервале «от - до» (варианты), во второй - число единиц, входящих в интервал (частота). Частота (частота повторения) - число повторений отдельного варианта значений признака. Интервалы могут быть закрытые и открытые. Закрытые интервалы ограничены с обеих сторон, т.е. имеют границу как нижнюю («от»), так и верхнюю («до»). Открытые интервалы имеют какую-либо одну границу: либо верхнюю, либо нижнюю. Если варианты расположены по возрастанию или убыванию, то ряды называются ранжированными.

Для вариационных рядов существует два типа вариантов частотных характеристик: накопленная частота и накопленная частость. Накопленная частота показывает, в скольких наблюдениях величина признака приняла значения меньше заданного. Накопленная частота определяется путем суммирования значений частоты признака по данной группе со всеми частотами предшествующих групп. Накопленная частость характеризует удельный вес единиц наблюдения, у которых значения признака не превосходят верхнюю границу дайной группы. Таким образом, накопленная частость показывает удельный вес вариант в совокупности, имеющих значение не больше данного. Частота, частость, абсолютная и относительная плотности, накопленные частота и частость являются характеристиками величины варианта.

Вариации признака статистических единиц совокупности, а также характер распределения изучаются с помощью показателей и характеристик вариационного ряда, к числу которых относятся средний уровень ряда, среднее линейное отклонение, среднее квадратическое отклонение, дисперсия, коэффициенты осцилляции, вариации, асимметрии, эксцесса и др.

Для характеристики центра распределения применяются средние величины. Средняя представляет собой обобщающую статистическую характеристику, в которой получает количественное выражение типичный уровень признака, которым обладают члены изучаемой совокупности. Однако возможны случаи совпадения средних арифметических при разном характере распределения, поэтому в качестве статистических характеристик вариационных рядов рассчитываются так называемые структурные средние - мода, медиана, а также квантили, которые делят ряд распределения на равные части (квартили, децили, перцентили и т.д.).

Мода - это значение признака, которое встречается в ряду распределения чаще, чем другие его значения. Для дискретных рядов - это варианта, имеющая наибольшую частоту. В интервальных вариационных рядах с целью определения моды необходимо определить прежде всего интервал, в котором она находится, так называемый модальный интервал. В вариационном ряду с равными интервалами модальный интервал определяется по наибольшей частоте, в рядах с неравными интервалами - но наибольшей плотности распределения. Затем для определения моды в рядах с равными интервалами применяют формулу

где Мо - значение моды; х Мо - нижняя граница модального интервала; h - ширина модального интервала; / Мо - частота модального интервала; / Mo j - частота домодального интер- вала; / Мо+1 - частота послемодального интервала, а для ряда с неравными интервалами в данной формуле расчета вместо частот / Мо, / Мо, / Мо следует использовать плотности распределения Ум 0 _| , Ум 0> УМо+"

Если имеется единственная мода, то распределение вероятностей случайной величины называется унимодальным; если имеется более чем одна мода, оно называется многомодальным (полимодальным, мультимодальным), в случае двух мод - бимодальным. Как правило, многомодальность указывает, что исследуемое распределение не подчиняется закону нормального распределения. Для однородных совокупностей, как правило, характерны одновершинные распределения. Многовершинность свидетельствует также о неоднородности изучаемой совокупности. Появление двух и более вершин делает необходимой перегруппировку данных с целью выделения более однородных групп.

В интервальном вариационном ряду моду можно определить графически с помощью гистограммы. Для этого из верхних точек самого высокого столбца гистограммы до верхних точек двух смежных столбцов проводят две пересекающиеся линии. Затем из точки их пересечения опускают перпендикуляр на ось абсцисс. Значение признака на оси абсцисс, соответствующее перпендикуляру, является модой. Во многих случаях при характеристике совокупности в качестве обобщенного показателя отдается предпочтение моде, а не средней арифметической.

Медиана - это центральное значение признака, им обладает центральный член ранжированного ряда распределения. В дискретных рядах, чтобы найти значение медианы, сначала определяется ее порядковый номер. Для этого при нечетном числе единиц к сумме всех частот прибавляется единица, число делится на два. При четном числе единиц в ряду будет две медианные единицы, поэтому в этом случае медиана определяется как средняя из значений двух медианных единиц. Таким образом, медианой в дискретном вариационном ряду является значение, которое делит ряд на две части, содержащие одинаковое число вариантов.

В интервальных рядах после определения порядкового номера медианы отыскивается медиальный интервал по накопленным частотам (частостям), а затем при помощи формулы расчета медианы определяется значение самой медианы:

где Me - значение медианы; х Ме - нижняя граница медианного интервала; h - ширина медианного интервала; - сумма частот ряда распределения; /Д - накопленная частота домедианного интервала; / Ме - частота медианного интервала.

Медиану можно отыскать графически с помощью куму- ляты. Для этого на шкале накопленных частот (частостей) кумуляты из точки, соответствующей порядковому номеру медианы, проводится прямая, параллельная оси абсцисс, до пересечения с кумулятой. Далее из точки пересечения указанной прямой с кумулятой опускается перпендикуляр на ось абсцисс. Значение признака на оси абсцисс, соответствующее проведенной ординате (перпендикуляру), является медианой.

Медиана характеризуется следующими свойствами.

  • 1. Она не зависит от тех значений признака, которые расположены по обе стороны от нее.
  • 2. Она имеет свойство минимальности, которое заключается в том, что сумма абсолютных отклонений значений признака от медианы представляет собой минимальную величину по сравнению с отклонением значений признака от любой другой величины.
  • 3. При объединении двух распределений с известными медианами невозможно заранее предсказать величину медианы нового распределения.

Эти свойства медианы широко используются при проектировании расположения пунктов массового обслуживания - школ, поликлиник, автозаправочных станций, водозаборных колонок и т.д. Например, если в определенном квартале города предполагается построить поликлинику, то расположить ее целесообразнее в такой точке квартала, которая делит пополам не длину квартала, а число жителей.

Соотношение моды, медианы и средней арифметической указывает на характер распределения признака в совокупности, позволяет оценить симметричность распределения. Если х Me то имеет место правосторонняя асимметрия ряда. При нормальном распределении х - Me - Мо.

К. Пирсон на основе выравнивания различных типов кривых определил, что для умеренно асимметричных распределений справедливы такие приближенные соотношения между средней арифметической, медианой и модой:

где Me - значение медианы; Мо - значение моды; х арифм - значение средней арифметической.

Если возникает необходимость изучить структуру вариационного ряда более подробно, то вычисляют значения признака, аналогичные медиане. Такие значения признака делят все единицы распределения на равные численности, их называют квантилями или градиентами. Квантили подразделяются на квартили, децили, перцентили и т.п.

Квартили делят совокупность на четыре равные части. Первую квартиль вычисляют аналогично медиане по формуле расчета первой квартили, предварительно определив первый квартальный интервал:

где Qi - значение первой квартили; x Q ^ - нижняя граница первого квартильного интервала; h - ширина первого квартального интервала; /, - частоты интервального ряда;

Накопленная частота в интервале, предшествующем первому квартильиому интервалу; Jq { - частота первого квартильного интервала.

Первая квартиль показывает, что 25% единиц совокупности меньше ее значения, а 75% - больше. Вторая квартиль равна медиане, т.е. Q 2 = Me.

По аналогии рассчитывают третью квартиль, предварительно отыскав третий квартальный интервал:

где - нижняя граница третьего квартильного интервала; h - ширина третьего квартильного интервала; /, - частоты интервального ряда; /X" - накопленная частота в интервале, предшествующем

г

третьему квартильиому интервалу; Jq - частота третьего квартильного интервала.

Третья квартиль показывает, что 75% единиц совокупности меньше ее значения, а 25% - больше.

Разность между третьей и первой квартилями представляет собой межквартильный интервал:

где Aq - значение межквартильного интервала; Q 3 - значение третьей квартили; Q, - значение первой квартили.

Децили делят совокупность на 10 равных частей. Дециль - это такое значение признака в ряду распределения, которому соответствуют десятые доли численности совокупности. По аналогии с квартилями первый дециль показывает, что 10% единиц совокупности меньше его значения, а 90% - больше, а девятый дециль выявляет, что 90% единиц совокупности меньше его значения, а 10% - больше. Соотношение девятого и первого децилей, т.е. децильный коэффициент, широко применяется при изучении дифференциации доходов для измерения соотношения уровней доходов 10% наиболее обеспеченного и 10% наименее обеспеченного населения. Перцентили делят ранжированную совокупность на 100 равных частей. Расчет, значение и применение перцентилей аналогичны децилям.

Квартили, децили и другие структурные характеристики можно определить графически по аналогии с медианой с помощью кумуляты.

Для измерения размера вариации используются следующие показатели: размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, дисперсия. Величина размаха вариации целиком зависит от случайности распределения крайних членов ряда. Этот показатель представляет интерес в тех случаях, когда важно знать, какова амплитуда колебаний значений признака:

где R - значение размаха вариации; х тах - максимальное значение признака; х тт - минимальное значение признака.

При расчете размаха вариации значение подавляющего большинства членов ряда не учитывается, в то время как вариация связана с каждым значением члена ряда. Этого недостатка лишены показатели, представляющие собой средние, полученные из отклонений индивидуальных значений признака от их средней величины: среднее линейное отклонение и среднее квадратическое отклонение. Между индивидуальными отклонениями от средней и колеблемостью конкретного признака существует прямая зависимость. Чем сильнее колеблемость, тем больше абсолютные размеры отклонений от средней.

Среднее линейное отклонение представляет собой среднюю арифметическую из абсолютных величин отклонений отдельных вариантов от их средней величины.

Среднее линейное отклонение для несгруппированных данных

где / пр - значение среднего линейного отклонения; х,- - значение признака; х - п - число единиц совокупности.

Среднее линейное отклонение сгруппированного ряда

где / вз - значение среднего линейного отклонения; х, - значение признака; х - среднее значение признака для изучаемой совокупности; / - число единиц совокупности в отдельной группе.

Знаки отклонений в данном случае игнорируются, в противном случае сумма всех отклонений будет равна нулю. Среднее линейное отклонение в зависимости от группировки анализируемых данных рассчитывается по различным формулам: для сгруппированных и несгруниированных данных. Среднее линейное отклонение в силу его условности отдельно от других показателей вариации применяется на практике сравнительно редко (в частности, для характеристики выполнения договорных обязательств по равномерности поставки; в анализе оборота внешней торговли, состава работающих, ритмичности производства, качества продукции с учетом технологических особенностей производства и т.п.).

Среднее квадратическое отклонение характеризует, на сколько в среднем отклоняются индивидуальные значения изучаемого признака от среднего значения по совокупности, и выражается в единицах измерения изучаемого признака. Среднее квадратическое отклонение, являясь одной из основных мер вариации, широко используется при оценке границ вариации признака в однородной совокупности, при определении значений ординат кривой нормального распределения, а также в расчетах, связанных с организацией выборочного наблюдения и установлением точности выборочных характеристик. Среднее квадратическое отклонение но несгруипированным данным исчисляется по следующему алгоритму: каждое отклонение от средней возводится в квадрат, все квадраты суммируются, после чего сумма квадратов делится на число членов ряда и из частного извлекается квадратный корень:

где a Iip - значение среднего квадратического отклонения; Xj - значение признака; х - среднее значение признака для изучаемой совокупности; п - число единиц совокупности.

Для сгруппированных анализируемых данных среднее квадратическое отклонение данных рассчитывается по взвешенной формуле

где - значение среднего квадратического отклонения; Xj - значение признака; х - среднее значение признака для изучаемой совокупности; f x - число единиц совокупности в отдельной группе.

Выражение под корнем в обоих случаях носит название дисперсии. Таким образом, дисперсия вычисляется как средний квадрат отклонений значений признака от их средней величины. Для невзвешенных (простых) значений признака дисперсия определяется следующим образом:

Для взвешенных значений признака

Существует также специальный упрощенный способ расчета дисперсии: в общем виде

для невзвешенных (простых) значений признака для взвешенных значений признака
с использованием метода отсчета от условного нуля

где а 2 - значение дисперсии; х,- - значение признака; х - среднее значение признака, h - величина группового интервала, т 1 - веса (А =

Дисперсия имеет самостоятельное выражение в статистике и относится к числу важнейших показателей вариации. Она измеряется в единицах, соответствующих квадрату единиц измерения изучаемого признака.

Дисперсия имеет следующие свойства.

  • 1. Дисперсия постоянной величины равна нулю.
  • 2. Уменьшение всех значений признака на одну и ту же величину Л не меняет величины дисперсии. Это означает, что средний квадрат отклонений можно вычислить не по заданным значениям признака, а по отклонениям их от какого-то постоянного числа.
  • 3. Уменьшение веех значений признака в k раз уменьшает дисперсию в k 2 раз, а среднее квадратическое отклонение - в k раз, т.е. все значения признака можно разделить на какое-то постоянное число (скажем, на величину интервала ряда), исчислить среднее квадратическое отклонение, а затем умножить его на постоянное число.
  • 4. Если исчислить средний квадрат отклонений от любой величины А у в той или иной степени отличающейся от средней арифметической, то он всегда будет больше среднего квадрата отклонений, исчисленного от средней арифметической. Средний квадрат отклонений при этом будет больше на вполне определенную величину - на квадрат разности средней и этой условно взятой величины.

Вариация альтернативного признака заключается в наличии или отсутствии изучаемого свойства у единиц совокупности. Количественно вариация альтернативного признака выражается двумя значениями: наличие у единицы изучаемого свойства обозначается единицей (1), а его отсутствие - нулем (0). Долю единиц, обладающих изучаемым свойством, обозначают через Р, а долю единиц, не обладающих этим свойством, - через G. Таким образом, дисперсия альтернативного признака равна произведению доли единиц, обладающих данным свойством (Р), на долю единиц, данным свойством не обладающих (G). Наибольшая вариация совокупности достигается в случаях, когда часть совокупности, составляющая 50% от всего объема совокупности, обладает признаком, а другая часть совокупности, также равная 50%, не обладает данным признаком, при этом дисперсия достигает максимального значения, равного 0,25, т.е. Р = 0,5, G = 1 - Р = 1 - 0,5 = 0,5 и о 2 = 0,5 0,5 = 0,25. Нижняя граница этого показателя равна нулю, что соответствует ситуации, при которой в совокупности отсутствует вариация. Практическое применение дисперсии альтернативного признака состоит в построении доверительных интервалов при проведении выборочного наблюдения.

Чем меньше значение дисперсии и среднего квадратического отклонения, тем однороднее совокупность и тем более типичной будет средняя величина. В практике статистики часто возникает необходимость сравнения вариаций различных признаков. Например, интересным является сравнение вариаций возраста рабочих и их квалификации, стажа работы и размера заработной платы, себестоимости и прибыли, стажа работы и производительности труда и т.д. Для таких сопоставлений показатели абсолютной колеблемости признаков непригодны: нельзя сравнивать колеблемость стажа работы, выраженного в годах, с вариацией заработной платы, выраженной в рублях. Для осуществления таких сравнений, а также сравнений колеблемости одного и того же признака в нескольких совокупностях с разными средними арифметическими используются показатели вариации - коэффициент осцилляции, линейный коэффициент вариации и коэффициент вариации, которые показывают меру колебаний крайних значений вокруг средней.

Коэффициент осцилляции :

где V R - значение коэффициента осцилляции; R - значение размаха вариации; х -

Линейный коэффициент вариации".

где Vj - значение линейного коэффициента вариации; I - значение среднего линейного отклонения; х - среднее значение признака для изучаемой совокупности.

Коэффициент вариации :

где V a - значение коэффициента вариации; а - значение среднего квадратического отклонения; х - среднее значение признака для изучаемой совокупности.

Коэффициент осцилляции - это процентное отношение размаха вариации к среднему значению изучаемого признака, а линейный коэффициент вариации - это отношение среднего линейного отклонения к среднему значению изучаемого признака, выраженное в процентах. Коэффициент вариации представляет собой процентное отношение среднего квадратического отклонения к среднему значению изучаемого признака. Как величина относительная, выраженная в процентах, коэффициент вариации применяется для сравнения степени вариации различных признаков. С помощью коэффициента вариации оценивается однородность статистической совокупности. Если коэффициент вариации меньше 33%, то исследуемая совокупность является однородной, а вариация слабой. Если коэффициент вариации больше 33%, то исследуемая совокупность является неоднородной, вариация сильной, а средняя величина - нетипичной и ее нельзя использовать как обобщающий показатель этой совокупности. Кроме того, коэффициенты вариации используются для сравнения колеблемости одного признака в различных совокупностях. Например, для оценки вариации стажа работы работников на двух предприятиях. Чем больше значение коэффициента, тем вариация признака существеннее.

На основе рассчитанных квартилей имеется возможность рассчитать также относительный показатель квартальной вариации по формуле

где Q2 и

Межквартильный размах определяется по формуле

Квартильное отклонение применяется вместо размаха вариации, чтобы избежать недостатков, связанных с использованием крайних значений:

Для неравноинтервальпых вариационных рядов рассчитывается также плотность распределения. Она определяется как частное от деления соответствующей частоты или частости на величину интервала. В неравноинтервальных рядах используются абсолютная и относительная плотности распределения. Абсолютная плотность распределения - это частота, приходящаяся на единицу длины интервала. Относительная плотность распределения - частость, приходящаяся на единицу длины интервала.

Все вышеотмеченное справедливо для рядов распределения, закон распределения которых хорошо описывается нормальным законом распределения или близок к нему.

Метод группировок позволяет также измерить вариацию (изменчивость, колеблемость) признаков. При относительно малом числе единиц совокупности вариация измеряется на основе ранжированного ряда единиц, образующих совокупность. Ряд называется ранжированным, если единицы расположены по возрастанию (убыванию) признака.

Однако ранжированные ряды довольно малопоказательны тогда, когда необходима сравнительная характеристика вариации. Кроме того, во многих случаях приходится иметь дело со статистическими совокупностями, состоящими из большого числа единиц, которые практически трудно представить в виде конкретного ряда. В связи с этим для первоначального общего ознакомления со статистическими данными и особенно для облегчения изучения вариации признаков исследуемые явления и процессы обычно объединяют в группы, а результаты группировки оформляют в виде групповых таблиц.

Если в групповой таблице имеется всего две графы - группы по выделенному признаку (варианты) и численности групп (частоты или частости), она называется рядом распределения.

Ряд распределения - простейшая разновидность структурной группировки по одному признаку, отображенная в групповой таблице с двумя графами, в которых содержатся варианты и частоты признака. Во многих случаях с такой структурной группировки, т.е. с составления рядов распределения, начинается изучение исходного статистического материала.

Структурная группировка в виде ряда распределения может быть превращена в подлинную структурную группировку, если выделенные группы будут охарактеризованы не только частотами, но и другими статистическими показателями. Главное предназначение рядов распределения - изучение вариации признаков. Теорию рядов распределения подробно разрабатывает математическая статистика.

Ряды распределения делят на атрибутивные (группировка по атрибутивным признакам, например деление населения по полу, национальности, семейному положению и т.д.) и вариационные (группировка по количественным признакам).

Вариационный ряд представляет собой групповую таблицу, которая содержит две графы: группировку единиц по одному количественному признаку и численность единиц в каждой группе. Интервалы в вариационном ряду образуются обычно равные и закрытые. Вариационным рядом является следующая группировка населения России по величине среднедушевых денежных доходов (табл. 3.10).

Таблица 3.10

Распределение численности населения России по величине среднедушевых доходов в 2004-2009 гг.

Группы населения по величине среднедушевых денежных доходов, руб./мес

Численность населения в группе, в % к итогу

8 000,1-10 000,0

10 000,1-15 000,0

15 000,1-25 000,0

Свыше 25 000,0

Все население

Вариационные ряды в свою очередь подразделяются на дискретные и интервальные. Дискретные вариационные ряды объединяют варианты дискретных признаков, изменяющихся в узких пределах. Примером дискретного вариационного ряда может служить распределение российских семей по числу имеющихся детей.

Интервальные вариационные ряды объединяют варианты либо непрерывных признаков, либо изменяющихся в широких пределах дискретных признаков. Интервальным является вариационный ряд распределения населения России по величине среднедушевых денежных доходов.

Дискретные вариационные ряды на практике применяются не слишком часто. Между тем составление их несложно, поскольку состав групп определяется конкретными вариантами, которыми реально обладают изучаемые группировочные признаки.

Более широко распространены интервальные вариационные ряды. При их составлении возникает сложный вопрос о количестве групп, а также о величине интервалов, которые должны быть установлены.

Принципы решения этого вопроса изложены в главе о методологии построения статистических группировок (см. параграф 3.3).

Вариационные ряды представляют собой средство свертывания или сжатия многообразной информации в компактную форму, по ним можно составить достаточно ясное суждение о характере вариации, изучить различия признаков явлений, входящих в исследуемую совокупность. Но важнейшее значение вариационных рядов состоит в том, что на их основе исчисляются особые обобщающие характеристики вариации (см. главу 7).