Виды диенов. Диеновые углеводороды (алкадиены)

Определение 1

Агрегатные состояния вещества (от лат. “aggrego” означает “присоединяю”, “связываю”) – это состояния одного и того же вещества в твердом, жидком и газообразном виде.

При переходе из одного состояния в другое наблюдается скачкообразное изменение энергии, энтропии, плотности и прочих свойств вещества.

Твердые и жидкие тела

Определение 2

Твердые тела – это тела, которые отличаются постоянством своей формы и объема.

В твердых телах межмолекулярные расстояния маленькие, а потенциальную энергию молекул можно сравнить с кинетической.

Твёрдые тела подразделяются на 2 вида:

  1. Кристаллические;
  2. Аморфные.

В состоянии термодинамического равновесия находятся только лишь кристаллические тела. Аморфные же тела по факту представляют собой метастабильные состояния, которые по строению схожи с неравновесными, медленно кристаллизующимися жидкостями. В аморфном теле происходит чересчур медленный процесс кристаллизации, процесс постепенного преобразования вещества в кристаллическую фазу. Разница кристалла от аморфного твердого тела состоит, в первую очередь, в анизотропии его свойств. Свойства кристаллического тела определяются в зависимости от направления в пространстве. Разнообразные процессы (например, теплопроводность, электропроводность, свет, звук) распространяются в разных направлениях твердого тела по-разному. А вот аморфные тела (например, стекло, смолы, пластмассы) изотропные, как и жидкости. Разница аморфных тел от жидкостей заключается лишь только в том, что последние текучие, в них не происходят статические деформации сдвига.

У кристаллических тел правильное молекулярное строение. Именно за счет правильного строения кристалл имеет анизотропные свойства. Правильное расположение атомов кристалла создает так называемую кристаллическую решетку. В разных направлениях месторасположение атомов в решетке различное, что и приводит к анизотропии. Атомы (ионы либо целые молекулы) в кристаллической решетке совершают беспорядочное колебательное движение возле средних положений, которые и рассматриваются в качестве узлов кристаллической решетки. Чем выше температура, тем выше энергия колебаний, а значит, и средняя амплитуда колебаний. В зависимости от амплитуды колебаний определяется размер кристалла. Увеличение амплитуды колебаний приводит к увеличению размеров тела. Таким образом, объясняется тепловое расширение твердых тел.

Определение 3

Жидкие тела – это тела, имеющие определенный объем, но не имеющие упругой формы.

Для вещества в жидком состоянии характерно сильное межмолекулярное взаимодействие и малая сжимаемость. Жидкость занимает промежуточное положение между твердым телом и газом. Жидкости, также как и газы, обладают изотpопными свойствами. Помимо этого, жидкость обладает свойством текучести. В ней, как и в газах, нет касательного напряжения (напряжения на сдвиг) тел. Жидкости тяжелые, то есть их удельные веса можно сравнить с удельными весами твердых тел. Вблизи температур кристаллизации их теплоемкости и прочие тепловые свойства близки к соответствующим свойствам твердых тел. В жидкостях наблюдается до заданной степени правильное расположение атомов, но только лишь в маленьких областях. Здесь атомы также проделывают колебательное движение около узлов квазикристаллической ячейки, однако в отличие от атомов твердого тела они периодически перескакивают от одного узла к другому. В итоге движение атомов будет весьма сложное: колебательное, но вместе с тем центр колебаний перемещается в пространстве.

Определение 4

Газ – это такое состояние вещества, при котором расстояния между молекулами огромны.

Силами взаимодействия между молекулами при небольших давлениях можно пренебречь. Частицы газа заполоняют весь объем, который предоставлен для газа. Газы рассматривают как сильно перегретые либо ненасыщенные пары. Особый вид газа – плазма (частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов почти одинаковые). То есть плазма – это газ из заряженных частиц, взаимодействующих между собой при помощи электрических сил на большом расстоянии, но не имеющих ближнего и дальнего расположения частиц.

Как известно, вещества способны переходить из одного агрегатного состояния в другое.

Определение 5

Испарение – это процесс изменения агрегатного состояния вещества, при котором с поверхности жидкости либо твердого тела вылетают молекулы, кинетическая энергия которых преобразовывает потенциальную энергию взаимодействия молекул.

Испарение является фазовым переходом. При испарении часть жидкости или твердого тела преобразуется в пар.

Определение 6

Вещество в газообразном состоянии, которое находится в динамическом равновесии с жидкостью, называется насыщенным паром . При этом изменение внутренней энергии тела равняется:

∆ U = ± m r (1) ,

где m – это масса тела, r – это удельная теплота парообразования (Д ж / к г) .

Определение 7

Конденсация представляет собой процесс, обратный парообразованию.

Изменение внутренней энергии рассчитывается по формуле (1) .

Определение 8

Плавление – это процесс преобразования вещества из твердого состояния в жидкое, процесс изменения агрегатного состояния вещества.

При нагревании вещества растет его внутренняя энергия, поэтому увеличивается скорость теплового движения молекул. При достижении веществом своей температуры плавления кристаллическая решетка твердого тела разрушается. Связи между частицами также разрушаются, растет энергия взаимодействия между частицами. Теплота, которая передается телу, идет на увеличение внутренней энергии данного тела, и часть энергии расходуется на совершение работы по изменению объема тела при его плавлении. У многих кристаллических тел объем увеличивается при плавлении, однако есть исключения (к примеру, лед, чугун). Аморфные тела не обладают определенной температурой плавления. Плавление представляет собой фазовый переход, который характеризуется скачкообразным изменением теплоемкости при температуре плавления. Температура плавления зависит от вещества и она остается неизменной в ходе процесса. Тогда изменение внутренней энергии тела равняется:

∆ U = ± m λ (2) ,

где λ – это удельная теплота плавления (Д ж / к г) .

Определение 9

Кристаллизация представляет собой процесс, обратный плавлению.

Изменение внутренней энергии рассчитывается по формуле (2) .

Изменение внутренней энергии каждого тела системы при нагревании или охлаждении вычисляется по формуле:

∆ U = m c ∆ T (3) ,

где c – это удельная теплоемкость вещества, Д ж к г К, △ T – это изменение температуры тела.

Определение 10

При рассматривании преобразований веществ из одних агрегатных состояний в другие нельзя обойтись без так называемого уравнения теплового баланса : суммарное количество теплоты, выделяемое в теплоизолированной системе, равняется количеству теплоты (суммарному), которое в данной системе поглощается.

Q 1 + Q 2 + Q 3 + . . . + Q n = Q " 1 + Q " 2 + Q " 3 + . . . + Q " k .

По сути, уравнение теплового баланса – это закон сохранения энергии для процессов теплообмена в термоизолированных системах.

Пример 1

В теплоизолированном сосуде находятся вода и лед с температурой t i = 0 ° C . Масса воды m υ и льда m i соответственно равняется 0 , 5 к г и 60 г. В воду впускают водяной пар массой m p = 10 г при температуре t p = 100 ° C . Какой будет температура воды в сосуде после того, как установится тепловое равновесие? При этом теплоемкость сосуда учитывать не нужно.

Рисунок 1

Решение

Определим, какие процессы осуществляются в системе, какие агрегатные состояния вещества мы наблюдали и какие получили.

Водяной пар конденсируется, отдавая при этом тепло.

Тепловая энергия идет на плавление льда и, может быть, нагревание имеющейся и полученной изо льда воды.

Прежде всего, проверим, сколько теплоты выделяется при конденсации имеющейся массы пара:

Q p = - r m p ; Q p = 2 , 26 · 10 6 · 10 - 2 = 2 , 26 · 10 4 (Д ж) ,

здесь из справочных материалов у нас есть r = 2 , 26 · 10 6 Д ж к г – удельная теплота парообразования (применяется и для конденсации).

Для плавления льда понадобится следующее количество тепла:

Q i = λ m i Q i = 6 · 10 - 2 · 3 , 3 · 10 5 ≈ 2 · 10 4 (Д ж) ,

здесь из справочных материалов у нас есть λ = 3 , 3 · 10 5 Д ж к г – удельная теплота плавления льда.

Выходит, что пар отдает тепла больше, чем необходимо, только для расплавления имеющегося льда, значит, уравнение теплового баланса запишем следующим образом:

r m p + c m p (T p - T) = λ m i + c (m υ + m i) (T - T i) .

Теплота выделяется при конденсации пара массой m p и остывании воды, образуемой из пара от температуры T p до искомой T . Теплота поглощается при плавлении льда массой m i и нагревании воды массой m υ + m i от температуры T i до T . Обозначим T - T i = ∆ T для разности T p - T получаем:

T p - T = T p - T i - ∆ T = 100 - ∆ T .

Уравнение теплового баланса будет иметь вид:

r m p + c m p (100 - ∆ T) = λ m i + c (m υ + m i) ∆ T ; c (m υ + m i + m p) ∆ T = r m p + c m p 100 - λ m i ; ∆ T = r m p + c m p 100 - λ m i c m υ + m i + m p .

Сделаем вычисления с учетом того, что теплоемкость воды табличная

c = 4 , 2 · 10 3 Д ж к г К, T p = t p + 273 = 373 К, T i = t i + 273 = 273 К: ∆ T = 2 , 26 · 10 6 · 10 - 2 + 4 , 2 · 10 3 · 10 - 2 · 10 2 - 6 · 10 - 2 · 3 , 3 · 10 5 4 , 2 · 10 3 · 5 , 7 · 10 - 1 ≈ 3 (К) ,

тогда T = 273 + 3 = 276 К

Ответ: Температура воды в сосуде после установления теплового равновесия будет равняться 276 К.

Пример 2

На рисунке 2 изображен участок изотермы, который отвечает переходу вещества из кристаллического в жидкое состояние. Что соответствует данному участку на диаграмме p , T ?

Рисунок 2

Ответ: Вся совокупность состояний, которые изображены на диаграмме p , V горизонтальным отрезком прямой на диаграмме p , T показано одной точкой, которая определяет значения p и T , при которых происходит преобразование из одного агрегатного состояния в другое.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Общая характеристика алкадиенов

Алкадиены являются представителями ненасыщенных углеводородов, которые содержат в своем углеродном скелете две двойные связи, поэтому их еще называют диеновыми углеводородами.

А вот что собой представляет общая формула гомологического ряда алкадиенов:

СnН2n-2.

Но, эта формула также соответствует и гомологическому ряду алкинов, а также циклоалкенов.

О наличии двух двойных связей в молекуле нам говорит название класса, где «ди» обозначает два, а «ен» переводится, как связь, то есть двойная связь.

Классификация диенов

Также следует отметить, что в зависимости от взаимного расположения двойных связей, диены можно разделить на такие группы, как:

Первая группа

Кумулированные диены. Это такие соединения, молекулы которых имеют две двойные связи расположены у одного и того же атома углерода (1,2-диены)

Вторая группа

Сопряженные диены. К ним относятся алкадиены, в молекулах, которых имеются две двойные связи, разделенные одинарной или одной простой связью:

Вот какой вид иногда могут иметь алкадиены, которые имеют сопряженные связи:

СН2-СН-СН-СН2

Третья группа

Изолированные диены. К ним относятся такие соединения, у которых молекулы имеют две двойные связи и притом эти двойные связи разделены несколькими одинарными

CH2=CH-CH2-CH=CH2

Изомерия и номенклатура

Если рассматривать изометрию алкадиенов, то здесь следует сказать, что для них характерна, как структурная изометрия, так и пространственная.

На рисунке внизу мы видим примеры структурной и пространственной изометрии:



Что же касательно составления названий алкадиенов, то здесь существуют следующие правила:

Во-первых, основная цепь в обязательном порядке должна содержать две двойные связи;
Во-вторых, нумерацию, как правило начинают с того конца, с которого ближе расположена кратная связь;
В-третьих, дают названия заменителям и указывают атомы углерода, от которого они отходят;
В-четвертых, атомы углерода дают название алкадиена, как правило, от тех атомов, от которых была образована двойная связь.

Получение алкадиенов

Если рассматривать вопрос получения диенов, то, как правило, используют:

1. Метод С.В.Лебедева. С его помощью в промышленности было налажено производство бутадиена из этилового спирта. В основе этого метода, который разработал Лебедев, лежит реакция:

425 °С, Аl2O3, ZnO
2СН3-СН2-ОН -----------------> СН9=СН-СН=СН9 + 2Н2O + Н2


Сергей Васильевич Лебедев был известным химиком, который посвятил свои научные исследования полимеризации, изомеризации и гидрогенизации непредельных углеводородов. С помощью полимеризации 1,3-бутадиена под действием натрия, ему удалось получить синтетический каучук.

2. Способ дегидрирования. Одним из распространенных промышленных методов получения бутадиена-1,3 является каталитическое дегидрирование н -бутана, которые выделяют из частей нефтеперегонки:

СН3-СН2-СН2-СН3 -> CH2=CH-СН=СН2 + 2Н2

При рассмотрении этого процесса, на его первой стадии может образовываться как бутен-1, так и бутен-2.



Изопрен (2-метилбутадиен-1,3) получают методом дегидрирования 2-метилбутана.

3. Способ дегидрогалогенирования. Для получения алкадиенов можно применять стандартный лабораторный, которым является способ реакции отщепления.

При воздействии спиртового раствора щелочи на дибромалканы, мы можем наблюдать процесс отщепления двух молекул галогеноводорода и образование двух двойных связей:


Физические свойства

Что касается физических свойств алкадиенов, то при изолированной двойной связи, они имеют такие же свойства, как и обычные алкены.

При обычных условиях, бутадиен-1,3 представляет собой легко сжижающийся газ, который имеет довольно неприятный запах. А изопрен и другие низшие диены, являются бесцветными легкокипящими жидкостями. Что касается высших диенов, то они представлены в виде твердых веществ.

Химические свойства

Как вам уже известно, химические и физические свойства алкадиенов имеют много общего с алкенами, хотя алкадиены с сопряженными связями имеют свои нюансы и являются более активными.

1. Для алкадиенов свойственна реакции присоединения, и они способны присоединять, как водород, так и галогены, и галогеноводороды.

Главной особенность диенов является то, что они обладают способностью присоединения не только молекулы 1,2, но и продукт присоединения 1,4:


Предпочтительное протекание реакции, как правило, зависимо от условий и способа проведения.

2. Следующим химическим свойством диенов является реакции полимеризации. Она может происходить под воздействием катионов или свободных радикалов. Как правило, такая полимеризация этих соединений приводит к образованию полимеров, которые обладают свойствами, напоминающими природный каучук. Поэтому можно сказать, что основной областью применения бутадиена и изопрена, является получение синтетического каучука.

Натуральный и синтетический каучуки. Резина

Пока человек не научился производить синтетический каучук, до тех пор в промышленности использовали натуральный каучук. Получали такой каучук с помощью каучуконосных растений, методом выделения млечного сока, то есть так называемого латекса. Наиболее ценным растением по выделению природного каучука считалась произрастающая в Латинской Америке гевея.

В этой области было проведено огромное количество исследований, которые выявили, что натуральный каучук имеет в своем составе цис-полиизопрен, то есть, это такой полимер, который по своему строению соответствует изопрену (2-метилбутадиену-1,3).

Но благодаря проведению различных опытов и исследований, американский изобретатель Чарльз Нельсон Гудьир сумел провести вулканизацию каучука. Им было обнаружено, что что при нагревании каучука с серой в итоге получается довольно таки эластичный материал, который даже по техническим характеристикам превосходит каучук. Вот таким методом Гудьиру удалось получить резину.

Чарльз Нельсон проведя вулканизацию, заметил, что за счет сульфидных мостиков происходит сшивание полимерных цепей и в итоге увеличивается прочность и устойчивость к различным органическим веществам и растворителям.


А так как в двадцатом веке начался стремительный рост промышленности, то и потребность в каучуке также возросла. Но использование в промышленных масштабах природного каучука было не рентабельно и довольно таки дорого, то ученым пришлось искать пути получения синтетического каучука.

Но, первоначально не все так просто складывалось в этой области, и первый полученный каучук отдаленно напоминал смолу, которая к тому же, при ее вулканизации имела очень плохое качество.

Как вам уже известно, из сегодняшнего урока, синтетический каучук был получен по методу химика С.В.Лебедева только в 1932 году, тогда же его производство и приобрело промышленные масштабы.

В основе такого технологически удобного способа получения каучука, лежала полимеризация бутадиена-1,3 с использованием такого катализатора, как металлический натрий.

Благодаря этой технологии удалось получить полибутадиен, который обладал довольно неплохими технологическими свойствами. Но и здесь не все было так гладко, как хотелось, потому что, полученный полимер был нестерео-регулярным и соответственно, произведенная на его основе резина не отличалась особой эластичностью и уступала качеству резины, полученной из природного каучука.

А вот изопреновые и стерео-регулярные полимеры ученым удалось получить только в пятидесятых годах двадцатого века.

Конечно же, в настоящее время, современные технологии в химической промышленности позволяют производить не один, а несколько видов синтетического каучука. Широкое использование в качестве мономеров получили такие типы синтетических каучуков, как изопреновый, бутадиеновый, хлоропреновый, стирольный и т.д.

Также, большой популярностью пользуется резина, которая произведена на основе сополимеров алкадиенов, сочлененными двойными связями, а также производные алкенов.

Для таких видов резины характерны: хорошая эластичность, прочность и морозоустойчивость. Кроме того, эти виды резины обладают пониженной газопроницаемостью, а также устойчивы к действию ультрафиолета и различных окислителей.

Домашнее задание

Ответьте на поставленные вопросы и решите данные задания.



В зависимости от количества кратных связей между атомами углерода выделяют несколько классов углеводородов. Остановимся подробнее на диеновых соединениях, особенностях их строения, физических и химических свойствах.

Строение

Что собой представляют алкадиены? Физические свойства представителей этого класса органических соединений сходны с таковыми у алканов и алкенов. Диены имеют общую формулу СпН2п-2, сложные связи, поэтому относятся к непредельным углеводородам.

Эти связи могут располагаться в разных положениях, образуя разные варианты диенов:

  • кумулированные, в которых кратные связи находятся с двух сторон от одного атома углерода;
  • в которых между двойными связями располагается одна одинарная;
  • изолированные, в которых между двойными связями располагается несколько одинарных видов.

В таких веществах все углероды, стоящие при двойной связи, находятся в sp2-гибридном состоянии. Какие характеристики имеют алкадиены? Физические свойства таких соединений определяются именно особенностями их строения.

Номенклатура

Согласно диеновые углеводороды называют по тому же принципу, по которому дают название этиленовым соединениям. Есть некоторые отличительные характеристики, которые легко объяснить присутствием в их молекулах двух двойных связей.

Сначала необходимо выявить в углеродном скелете самую длинную углеродную цепочку, в составе которой есть две двойные связи. По числу углеродных атомов выбирается основа для названия, затем к нему добавляется суффикс -диен. Цифрами указывается положение каждой связи, начиная с наименьшего.

Например, по систематической номенклатуре вещество пентадиен-1, 3 имеет следующую структуру:

Н 2 С=СН—СН=СН—СН 3.

В систематической номенклатуре есть некоторые сохранившиеся названия: аллен, дивинил, изопрен.

Виды изомерии

Алкадиены, физические свойства которых зависят от количества углеродных атомов в молекуле, имеют несколько видов изомерии:

  • положения кратных связей;
  • углеродного скелета;
  • межклассового вида.

Остановимся теперь на вопросах, касающихся определения количества изомеров у диеновых углеводородов.

Задания на изомеры

"Определите количество изомерных соединений и назовите физические свойства алкадиенов" - в 10 классе по школьной программе на уроках органической химии учащимся предлагается много вопросов подобного характера. Кроме того, можно встретить задания, связанные с непредельными углеводородами, в едином государственном экзамене по химии.

Например, необходимо указать все изомеры состава С 4 Н 6 , а также дать им название по систематической номенклатуре. В первую очередь можно составить все алкадиены, физические свойства которых аналогичны этиленовым соединениям:

Н 2 С=СН—СН=СН 2.

Данное соединение является газообразным веществом, которое нерастворимо в воде. По систематической номенклатуре оно будет иметь название бутадиен -1,3.

При перемещении кратной связи по структуре можно получить изомер следующего вида:

Н 3 С-СН=СН=СН 2

Он имеет следующее название: бутадиен -1,2

Помимо изомеров положения кратной связи, для состава С 4 Н 6 можно также рассматривать межклассовую изомерию, а именно представителей класса алкинов.

Особенности получения диеновых соединений

Как получают алкадиены? Физические и химические свойства представителей данного класса можно изучать в полной мере только при условии существования рациональных способов их лабораторного и промышленного получения.

Учитывая тот факт, что самыми востребованными в современном производстве являются дивинил и изопрен, рассмотрим варианты получения данных диеновых углеводородов.

В промышленности эти представители ненасыщенных соединений получают в процессе дегидрирования соответствующих алканов или алкенов над катализатором, в качестве которого выступает оксид хрома (3).

Сырье для данного процесса выделяют при переработке попутного газа или из продуктов нефтяной переработки.

Бутадиен-1,3 был синтезирован из этилового спирта в процессе дегидрирования и дегидратации академиком Лебедевым. Именно этот способ, предполагающий применением в качестве катализатора оксидов цинка или алюминия и протекающий при температуре 450 градусов по Цельсию, был взят в основу промышленного синтеза дивинила. Уравнение данного процесса имеет такой вид:

2C 2 H5OH ——————Н 2 С=СН—СН=СН 2 + 2Н 2 O + Н 2 .

Кроме того, можно выделить изопрен и дивил в незначительных количествах путем пиролиза нефти.

Особенности физических характеристик

В каком агрегатном состоянии находятся алкадиены? Физические свойства, таблица которых содержит информацию о температурах плавления, кипения, свидетельствует о том, что низшие представители этого класса являются газообразными состояниями, имеющими невысокие температуры кипения и плавления.

С увеличением относительной молекулярной массы наблюдается тенденция возрастания этих показателей, переход с жидкому агрегатному состоянию.

Поможет вам детально изучить физические свойства алкадиенов таблица. Фото с изображением продуктов, получаемых из этих соединений, представлены выше.

Химические свойства

Если рассматривать изолированные (несопряженные) двойные связи, они обладают такими же возможностями, как типичные этиленовые углеводороды.

Мы проанализировали физические свойства алкадиенов, примеры их возможных химических взаимодействий рассмотрим на бутадиене -1,3.

Соединения, имеющие сопряженные двойные связи, имеют более высокую реакционную способность в сравнении с иными видами диенов.

Реакции присоединения

Для всех видов диенов характерны Среди них отметим галогенирование. Эта реакция приводит к превращению диена в соответствующий алкен. Если водород берется в избыточном количестве, можно получить предельный углеводород. Представим процесс в виде уравнения:

Н 3 С-СН=СН=СН 2 + 2Н 2 = Н 3 С-СН 2 -СН 2 -СН 3.

Галогенирование предполагает взаимодействие диенового соединения с двухатомной молекулой хлора, йода, брома.

Реакция гидратации (присоединения молекул воды) и гидрогалогенирования (для диеновых соединений, имеющих двойную связь в первом положении) протекает по Суть его состоит в том, что при разрыве связи атомы водорода будут присоединяться к тем углеродным атомам, которые имеют меньшее количество водородов, а атомы гидроксильной группы либо галогена будут прикрепляться к тем атомам С, при которых располагается меньшее количество водорода.

При диеновом синтезе происходит прикрепление молекулы этиленового соединения или алкина к диену, имеющему сопряженные двойные связи.

Эти взаимодействия применяют в производстве различных циклических соединений органического вида.

Полимеризация у представителей диеновых соединений имеет особое значение. Физические свойства алкадиенов и их применение связаны именно с этим процессом. При их полимеризации образуются каучукоподобные высокомолекулярные соединения. Например, из бутадиена-1,3 можно получить бутадиеновый каучук, имеющий широкое промышленное применение.

Характеристика отдельных диеновых соединений

Какие имеют алкадиены физические свойства? Кратко проанализируем особенности изопрена и дивинила.

Бутадиен -1,3 является газообразным газом, имеющим специфический резкий запах. Именно это соединение является исходных мономеров для производства латексов, синтетических каучуков, пластмасс, а также множества органических соединений.

2-метилбутадиен-1,3 (изопрен) - это бесцветная жидкость, являющаяся структурным компонентом природного каучука.

2-хлорбутадиен-1,3 (хлоропрен) представляет собой токсичную жидкость, являющуюся основой для изготовления винилацетилена, промышленного производства синтетического хлоропренового каучука.

Резины и каучуки

Резины и каучуки являются эластомерами. Существует подразделение всех каучуков на синтетические и природные.

Натуральный каучук является высокоэластичной массой, которую получают из млечного сока. Латекс - это взвесь мелких частичек каучука в воде, которая существует в таких тропических деревьях как гевея бразильская, а также в некоторых растениях.

Этот непредельный полимер имеет состав (С 5 Н 8)п, у которого средняя молекулярная масса колеблется в диапазоне от 15000 до 500000.

В ходе исследований было установлено, что структурная единица натурального каучука имеет вид -СН2-С=СН-СН2-.

В качестве основных отличительных его характеристик можно отметить прекрасную эластичность, способность выдерживать существенные механические деформации, сохранять форму после растяжения. Натуральный каучук способен растворяться в некоторых углеводородах, образуя при этом вязкие растворы.

Аналогично диеновым соединениям, он способен вступать в реакции присоединения. В качестве разновидности изопренового полимера выступает гуттаперча. У этого соединения нет повышенной эластичности, так как у него есть отличия в строении макромолекул.

Изделия, изготовленные из каучука, обладают определенными недостатками. Например, в случае повышения температуры они становятся липкими, изменяют свою форму, при понижении температуры у них появляется чрезмерная хрупкость.

Для того чтобы избавиться от подобных недостатков, в промышленности прибегают к Суть данного процесса заключается в придании ему термостойкости, эластичности при обработке серой.

Процесс проходит при температурах в диапазоне 140-180° С в специальных аппаратах. В итоге образуется резина, содержание серы в которой достигает 5 %. Она «сшивает» макромолекулы каучука, формируя сетчатую структуру. Помимо серы в составе резины есть также дополнительные наполнители: красители, пластификаторы, антиоксиданты.

В связи с высоким спросом в промышленности на изделия из каучука, основное его количество производится синтетическим способом.

ОПРЕДЕЛЕНИЕ

Алкадиены – ненасыщенные углеводороды, содержащие две двойные связи.

Общая формула алкадиенов C n H 2 n -2

По взаимному расположению двойных связей все алкадиены подразделяют на: кумулированные (связи находятся в положениях 1 и 2) (1), сопряженные (двойные связи расположены через одну одинарную связь) (2) и изолированные (две двойные связи разделяет больше, чем одна одинарная связь –С-С-) (3):

CH 2 = C = CH 2 пропадиен -1,2 (1);

СН 3 -СН = СН-СН = СН 2 пентадиен – 1,3 (2);

СН 2 = СН-СН 2 -СН 2 -СН = СН-СН 3 гептадиен -1,5 (3).

В молекулах алкадиенов атомы углерода находятся в sp 2 гибридизации. Атом углерода, связанный двойными связями с двух сторон, имеющийся в составе кумулированных алкадиенов, находится в sp-гибридизации.

Для всех алкадиенов, начиная с пентадиена, характерна изомерия углеродного скелета (1) и изомерия положения двойных связей (2); для алкадиенов, начиная с пентадиена — 1,3, характерная цис-транс изомерия. Поскольку общая формула алкадиенов совпадает с фомудой для алкинов, следовательно, между этими классами соединений возможна межклассовая изомерия (3).

CH 2 = C = C(СН 3)-СН 3 3-метилбутадиен – 1,2 (1).

CH 2 = C = CH-CH 2 -CH 3 пентадиен – 1,2 ;

СН 3 -СН = СН-СН = СН 2 пентадиен – 1,3 (2).

CH 2 = C = CH 2 пропадиен -1,2 ;

СН≡С-СН 3 пропин (3).

Химические свойства алкадиенов

Для алкадиенов характерны реакции, протекающие по механизмам электрофильного и радикального присоединения, причем, наиболее реакционноспособными являются сопряженные алкадиены.

Галогенирование. При присоединении к алкадиенам хлора или брома образуются тетрагалогеноалканы, причем, возможно образование продуктов как 1,2-, так и 1,4- присоединения. Соотношение продуктов зависит от условий проведения реакции: типа растворителя и температуры.

CH 2 = CH-CH = CH 2 + Br 2 (гексан) → CH 2 (Br)-CH(Br)-CH = CH 2 + CH 2 (Br)-CH = CH-CH 2 -Br

При температуре -80С соотношение продуктов 1,2 – и 1,4 – присоединения – 80/20%; -15С – 54/46%; +40С – 20/80%; +60С – 10/90%.

Присоединение галогенов возможно и по радикальному механизму – под действием УФ-излучения. В этом случае также происходит образование смеси продуктов 1,2 – и 1,4 – присоединения.

Гидрогалогенирование протекает подобно галогенированию, т.е. с образованием смеси продуктов 1,2 – и 1,4 – присоединения. Соотношение продуктов в основном зависит от температуры, так, при высоких температурах преобладают продукты 1,2 – присоединения, а при низких — 1,4 – присоединения.

CH 2 = CH-CH = CH 2 +HBr → CH 3 -CH(Br)-CH = CH 2 + CH 3 -CH = CH-CH 2 -Br

Реакция гидрогалогенирования может протекать в водной или спиртовой среде, в присутствии хлорида лития или в среде CHal 4 , где Hal – галоген.

(диеновый синтез). В таких реакциях участвуют два компонента – диен и ненасыщенное соединение – диенофил. При этом образуется замещенный шестичленный цикл. Классический пример реакции диенового синтеза – реакция взаимодействия бутадиена – 1,3 с малеиновым ангидридом:


Гидрирование алкадиенов происходит в условиях жидкого аммиака и приводит к образованию смеси продуктов 1,2 – и 1,4 – присоединения:

CH 2 = CH-CH = CH 2 + H 2 → CH 3 -CH 2 -CH = CH 2 + CH 3 -CH = CH-CH 3 .

Кумулированные алкадиены способны вступать в реакции гидратации в кислой среде, т.е. присоединяют молекулы воды. При этом происходит образование неустойчивых соединений – енолов (непредельные спирты), для которых характерно явление кето-енольной таутомерии, т.е. енолы практически сразу же переходят в форму кетонов и обратно:

CH 2 = C = CH 2 + H 2 O → CH 2 = C(OH)-CH 3 (пропенол) ↔ СH 3 -C(CH 3) = O (ацетон).

Реакции изомеризации алкадиенов протекают в щелочной среде при нагревании и в присутствии катализатора – оксида алюминия:

R-CH = C = C-CH-R → RC≡C-CH 2 -R.

Полимеризация алкадиенов может протекать как 1,2 – или 1,4 – присоединение:

nCH 2 = CH-CH = CH 2 → (-CH 2 -CH = CH-CH 2 -) n .

Физические свойства алкадиенов

Низшие диены - бесцветные легкокипящие жидкости. 1,3-Бутадиен и аллен (1,2 — пропадиен) - легко сжижающиеся газы, обладающие неприятным запахом. Высшие диены представляют собой твердые вещества.

Получение алкадиенов

Основные способы получения алкадиенов – дегидрирование алканов (1), реакция Лебедева (2), дегидратация гликолей (3), дегалагенирование дигалогенпроизводных (4) алкенов и реакции перегруппировки (5):

CH 3 -CH 2 -CH 2 -CH 3 → CH 2 = CH-CH = CH 2 (1);

2C 2 H 5 OH → CH 2 = CH-CH = CH 2 + 2H 2 O + H 2 (2);

CH 3 -CH(OH)-CH 2 -CH 2 -OH → CH 2 = CH-CH = CH 2 + 2H 2 O (3);

СH 2 = C(Br)-CH 2 -Br + Zn → CH 2 = C = CH 2 + ZnBr 2 (4);

HC≡C-CH(CH 3)-CH 3 + NaOH → CH 2 = C = CH(CH 3)-CH 3 (5).

Основная сфера использования диенов и их производных – это производство каучука.

Примеры решения задач

ПРИМЕР 1

Задание Какой объем водорода потребуется для каталитического гидрирования одной двойной связи диенового углеводорода (C n H 2 n -2) массой 5,4 г, если на бромирование такого же количества углеводорода до тетрабромида (C n H 2 n -2 Br 4) пошло 32 г брома. Каков состав углеводорода? Напишите все возможные изомеры.
Решение Запишем уравнения реакций каталитического гидрирования и бромирования алкадиена в общем виде:

C n H 2 n -2 + H 2 → C n H 2 n (1)

C n H 2 n -2 + 2Br 2 → C n H 2 n -2 Br 4 (2)

Молярная масса брома (молекулярная масса одного моль брома), вычисленная по таблице химических элементов Д.И. Менделеева:

M(Br 2) = 160 г/моль.

Тогда, зная массу брома (32 г по условию задачи), можно вычислить количество вещщества брома:

v(Br 2) = m(Br 2)/M(Br 2),

v(Br 2) = 32/160 = 0,2 моль.

По уравнению 2, 5,4 Г углеводорода – это 0,1 моль, а на гидрирование одной двойной связи его необходимо 0,1 моль водорода или 0,1×22,4 = 2,24 л водорода.

Молярная масса углеводорода:

M(C n H 2 n -2) = m(C n H 2 n -2)/v(C n H 2 n -2),

M(C n H 2 n -2) = 5,4/0,1 = 54 г/моль.

Значит, искомый углеводород – это бутадиен.

Для бутадиена характерны следующие изомеры:

CH 2 = C = CH-CH 3 бутадиен-1,2

СH 2 = CH-CH = CH 2 бутадиен-1,3

СH≡C-CH 2 -CH 3 бутин-1

СН 3 -С≡C-СН 3 бутин-2

Ответ Объем водорода – 2,24 л. Бутадиен.

Определение, гомологический ряд, номенклатура алкадиенов.

Алкадиены – органические соединения, углеводороды алифатического (ациклического) непредельного характера, в молекуле которых между атомами углерода – две двойные связи, и которые соответствуют общей формуле C n H 2 n -2 , где n =3 или n >3. Их также называют диеновыми углеводородами.

Простейшим представителем алкадиенов является пропадиен.

Гомологический ряд.

Общая формула диеновых углеводородов C n H 2n-2 . В названии алкадиенов содержится корень, обозначающий число атомов углерода в углеродной цепи, и суффикс –диен («две» «двойные связи»), обозначающий принадлежность соединения к данному классу.

C 3 H 4 – пропадиен

C 4 H 6 – бутадиен

C 5 H 8 – пентадиен

C 6 H 10 – гексадиен

C 7 H 12 – гептадиен

C 9 H 16 – нонадиен

Номенклатура алкадиенов.

1. Выбор главной цепи. Образование названия углеводорода по номенклатуре ИЮПАК начинается с определения главной цепи - самой длинной цепочки атомов углерода в молекуле. В случае алкадиенов главную цепь необходимо выбирать так, чтобы в нее входили обе двойные связи.

2. Нумерация атомов главной цепи. Нумерация атомов главной цепи начинается с того конца, с которого ближе расположены по старшинству (по преимуществу):

кратная связь → заместитель → углеводородный радикал .

Т.е. при нумерации в определении названия алкадиена положение кратной связи имеет преимущество перед остальными.

Нумеровать атомы в цепи нужно таким образом, чтобы атомы углерода, связанные двойными связями, получили минимальные номера.

Если по положению двойных связей нельзя определить начало нумерации атомов в цепи, то его определяет положение заместителей так же, как для алкенов.

3. Формирование названия. , После корня, обозначающего числа атомов углерода в цепи, и суффикса –диен, обозначающий принадлежность соединения к классу алкенов, через в конце названия указывают местоположение двойных связей в углеродной цепи, т.е. номер атомов углерода, у которых начинаются двойные связи.

Если есть заместители, то в начале названия указывают цифры − номера атомов углерода, при которых находятся заместители. Если при данном атоме находятся несколько заместителей, то соответствующий номер в названии повторяется дважды через запятую (2,2-). После номера через дефис указывают количество заместителей (ди – два, три – три, тетра − четыре, пента − пять) и название заместителя (метил. этил, пропил). Затем без пробелов и дефисов − название главной цепи. Главная цепь называется как углеводород − член гомологического ряда влкадиенов (пропадиен, бутадиен, пентадиен и т.д.).