Векторы, определение, действия над векторами, их свойства. Операции над векторами и их свойства

1) + = + - коммутативность.

2) + (+ ) = ( + )+

3) + =

4) +(-1) =

5) () = () – ассоциативность

6) (+) =  +  - дистрибутивность

7) ( + ) =  + 

8) 1 =

Определение.

1) Базисом в пространстве называются любые 3 некомпланарных вектора, взятые в определенном порядке.

2) Базисом на плоскости называются любые 2 неколлинеарные векторы, взятые в определенном порядке.

3)Базисом на прямой называется любой ненулевой вектор.

Определение. Если
- базис в пространстве и
, то числа ,  и  - называются компонентами или координатами вектора в этом базисе.

В связи с этим можно записать следующие свойства :

    равные векторы имеют одинаковые координаты,

    при умножении вектора на число его компоненты тоже умножаются на это число,

    при сложении векторов складываются их соответствующие компоненты.

;
;

+ = .

Линейная зависимость векторов.

Определение. Векторы
называются линейно зависимыми , если существует такая линейная комбинация , при не равных нулю одновременно  i , т.е.
.

Если же только при  i = 0 выполняется , то векторы называются линейно независимыми.

Свойство 1. Если среди векторов есть нулевой вектор, то эти векторы линейно зависимы.

Свойство 2. Если к системе линейно зависимых векторов добавить один или несколько векторов, то полученная система тоже будет линейно зависима.

Свойство 3. Система векторов линейно зависима тогда и только тогда, когда один из векторов раскладывается в линейную комбинацию остальных векторов.

Свойство 4. Любые 2 коллинеарных вектора линейно зависимы и, наоборот, любые 2 линейно зависимые векторы коллинеарны.

Свойство 5. Любые 3 компланарных вектора линейно зависимы и, наоборот, любые 3 линейно зависимые векторы компланарны.

Свойство 6. Любые 4 вектора линейно зависимы.

Система координат.

Для определения положения произвольной точки могут использоваться различные системы координат. Положение произвольной точки в какой- либо системе координат должно однозначно определяться. Понятие системы координат представляет собой совокупность точки начала отсчета (начала координат) и некоторого базиса. Как на плоскости, так и в пространстве возможно задание самых разнообразных систем координат. Выбор системы координат зависит от характера поставленной геометрической, физической или технической задачи. Рассмотрим некоторые наиболее часто применяемые на практике системы координат.

Декартова система координат.

Зафиксируем в пространстве точку О и рассмотрим произвольную точку М.

Вектор
назовем радиус- вектором точки М. Если в пространстве задать некоторый базис, то точке М можно сопоставить некоторую тройку чисел – компоненты ее радиус- вектора.

Определение. Декартовой системой координат в пространстве называется совокупность точки и базиса. Точка называется началом координат . Прямые, проходящие через начало координат называются осями координат .

1-я ось – ось абсцисс

2-я ось – ось ординат

3-я ось – ось апликат

Чтобы найти компоненты вектора нужно из координат его конца вычесть координаты начала.

Если заданы точки А(x 1 , y 1 , z 1), B(x 2 , y 2 , z 2), то
= (x 2 – x 1 , y 2 – y 1 , z 2 – z 1).

Определение. Базис называется ортонормированным , если его векторы попарно ортогональны и равны единице.

Определение. Декартова система координат, базис которой ортонормирован называется декартовой прямоугольной системой координат .

Пример. Даны векторы(1; 2; 3), (-1; 0; 3), (2; 1; -1) и (3; 2; 2) в некотором базисе. Показать, что векторы , и образуют базис и найти координаты вектора в этом базисе.

Векторы образуют базис, если они линейно независимы, другими словами, если уравнения, входящие в систему:

линейно независимы.

Тогда
.

Это условие выполняется, если определитель матрицы системы отличен от нуля.

Для решения этой системы воспользуемся методом Крамера.

;

 3 =

Итого, координаты вектора в базисе , , : { -1/4, 7/4, 5/2}.

При использовании компьютерной версии “Курса высшей математики ” можно запустить программу, которая позволит разложить любой вектор по любому новому базису, т.е. решить предыдущий пример для любых векторов , , , .

Для запуска программы дважды щелкните по значку:

В открывшемся окне программы введите координаты векторов и нажмитеEnter.

Примечание: Для запуска программы необходимо чтобы на компьютере была установлена программа Maple ( Waterloo Maple Inc.) любой версии, начиная с MapleV Release 4.

Длина вектора в координатах определяется как расстояние между точками начала и конца вектора. Если заданы две точки в пространстве А(х 1 , y 1 , z 1), B(x 2 , y 2 , z 2), то .

Если точка М(х, у, z) делит отрезок АВ в соотношении / , считая от А, то координаты этой точки определяются как:

В частном случае координаты середины отрезка находятся как:

x = (x 1 + x 2)/2; y = (y 1 + y 2)/2; z = (z 1 + z 2)/2.

Определение Упорядоченную совокупность (x 1 , x 2 , ... , x n) n вещественных чисел называют n-мерным вектором , а числа x i (i = ) - компонентами, или координатами,

Пример. Если, например, некоторый автомобильный завод должен выпустить в смену 50 легковых автомобилей, 100 грузовых, 10 автобусов, 50 комплектов запчастей для легковых автомобилей и 150 комплектов для грузовых автомобилей и автобусов, то производственную программу этого завода можно записать в виде вектора (50, 100, 10, 50, 150), имеющего пять компонент.

Обозначения. Векторы обозначают жирными строчными буквами или буквами с чертой или стрелкой наверху, например, a или . Два вектора называются равными , если они имеют одинаковое число компонент и их соответствующие компоненты равны.

Компоненты вектора нельзя менять местами, например, (3, 2, 5, 0, 1) и (2, 3, 5, 0, 1) разные вектора.
Операции над векторами. Произведением x = (x 1 , x 2 , ... ,x n) на действительное число λ называется вектор λ x = (λ x 1 , λ x 2 , ... , λ x n).

Суммой x = (x 1 , x 2 , ... ,x n) и y = (y 1 , y 2 , ... ,y n) называется вектор x + y = (x 1 + y 1 , x 2 + y 2 , ... , x n + + y n).

Пространство векторов. N -мерное векторное пространство R n определяется как множество всех n-мерных векторов, для которых определены операции умножения на действительные числа и сложение.

Экономическая иллюстрация. Экономическая иллюстрация n-мерного векторного пространства: пространство благ (товаров ). Под товаром мы будем понимать некоторое благо или услугу, поступившие в продажу в определенное время в определенном месте. Предположим, что существует конечное число наличных товаров n; количества каждого из них, приобретенные потребителем, характеризуются набором товаров

x = (x 1 , x 2 , ..., x n),

где через x i обозначается количество i-го блага, приобретенного потребителем. Будем считать, что все товары обладают свойством произвольной делимости, так что может быть куплено любое неотрицательное количество каждого из них. Тогда все возможные наборы товаров являются векторами пространства товаров C = { x = (x 1 , x 2 , ... , x n) x i ≥ 0, i = }.

Линейная независимость. Система e 1 , e 2 , ... , e m n-мерных векторов называется линейно зависимой , если найдутся такие числа λ 1 , λ 2 , ... , λ m , из которых хотя бы одно отлично от нуля, что выполняется равенство λ 1 e 1 + λ 2 e 2 +... + λ m e m = 0; в противном случае данная система векторов называется линейно независимой , то есть указанное равенство возможно лишь в случае, когда все . Геометрический смысл линейной зависимости векторов в R 3 , интерпретируемых как направленные отрезки, поясняют следующие теоремы.

Теорема 1. Система, состоящая из одного вектора, линейно зависима тогда и только тогда, когда этот вектор нулевой.

Теорема 2. Для того, чтобы два вектора были линейно зависимы, необходимо и достаточно, чтобы они были коллинеарны (параллельны).

Теорема 3 . Для того, чтобы три вектора были линейно зависимы, необходимо и достаточно, чтобы они были компланарны (лежали в одной плоскости).

Левая и правая тройки векторов. Тройка некомпланарных векторов a, b, c называется правой , если наблюдателю из их общего начала обход концов векторов a, b, c в указанном порядке кажется совершающимся по часовой стрелке. B противном случае a, b, c - левая тройка . Все правые (или левые) тройки векторов называются одинаково ориентированными.

Базис и координаты. Тройка e 1, e 2 , e 3 некомпланарных векторов в R 3 называется базисом , а сами векторы e 1, e 2 , e 3 - базисными . Любой вектор a может быть единственным образом разложен по базисным векторам, то есть представлен в виде

а = x 1 e 1 + x 2 e 2 + x 3 e 3, (1.1)

числа x 1 , x 2 , x 3 в разложении (1.1) называются координатами a в базисе e 1, e 2 , e 3 и обозначаются a (x 1 , x 2 , x 3).

Ортонормированный базис. Если векторы e 1, e 2 , e 3 попарно перпендикулярны и длина каждого из них равна единице, то базис называется ортонормированным , а координаты x 1 , x 2 , x 3 - прямоугольными. Базисные векторы ортонормированного базиса будем обозначать i, j, k.

Будем предполагать, что в пространстве R 3 выбрана правая система декартовых прямоугольных координат {0, i, j, k }.

Векторное произведение. Векторным произведением а на вектор b называется вектор c , который определяется следующими тремя условиями:

1. Длина вектора c численно равна площади параллелограмма, построенного на векторах a и b, т. е.
c
= |a||b| sin (a ^b ).

2. Вектор c перпендикулярен к каждому из векторов a и b.

3. Векторы a, b и c , взятые в указанном порядке, образуют правую тройку.

Для векторного произведения c вводится обозначение c = [ab ] или
c = a × b.

Если векторы a и b коллинеарны, то sin(a^b ) = 0 и [ab ] = 0, в частности, [aa ] = 0. Векторные произведения ортов: [ij ]= k, [jk ] = i , [ki ]= j .

Если векторы a и b заданы в базисе i, j, k координатами a (a 1 , a 2 , a 3), b (b 1 , b 2 , b 3), то


Смешанное произведение. Если векторное произведение двух векторов а и b скалярноумножается на третий вектор c, то такое произведение трех векторов называется смешанным произведением и обозначается символом a b c.

Если векторы a, b и c в базисе i, j, k заданы своими координатами
a (a 1 , a 2 , a 3), b (b 1 , b 2 , b 3), c (c 1 , c 2 , c 3), то

.

Смешанное произведение имеет простое геометрическое толкование - это скаляр, по абсолютной величине равный объему параллелепипеда, построенного на трех данных векторах.

Если векторы образуют правую тройку, то их смешанное произведение есть число положительное, равное указанному объему; если же тройка a, b, c - левая, то a b c <0 и V = - a b c , следовательно V = |a b c| .

Координаты векторов, встречающиеся в задачах первой главы, предполагаются заданными относительно правого ортонормированного базиса. Единичный вектор, сонаправленный вектору а, обозначается символом а о. Символом r =ОМ обозначается радиус-вектор точки М, символами а, АВ или |а| , | АВ| обозначаются модули векторов а и АВ.

Пример 1.2. Найдите угол между векторами a = 2m +4n и b = m-n , где m и n - единичные векторы и угол между m и n равен 120 о.

Решение . Имеем: cos φ = ab /ab, ab = (2m +4n ) (m-n ) = 2 m 2 - 4n 2 +2mn =
= 2 - 4+2cos120 o = - 2 + 2(-0.5) = -3; a = ; a 2 = (2m +4n ) (2m +4n ) =
= 4 m 2 +16mn +16 n 2 = 4+16(-0.5)+16=12, значит a = . b = ; b 2 =
= (m-n
)(m-n ) = m 2 -2mn + n 2 = 1-2(-0.5)+1 = 3, значит b = . Окончательно имеем: cos
φ = = -1/2, φ = 120 o .

Пример 1.3. Зная векторы AB (-3,-2,6) и BC (-2,4,4),вычислите длину высоты AD треугольника ABC.

Решение . Обозначая площадь треугольника ABC через S, получим:
S = 1/2 BC AD. Тогда
AD=2S/BC, BC= = = 6,
S = 1/2| AB × AC| . AC=AB+BC , значит, вектор AC имеет координаты
.
.

Пример 1.4 . Даны два вектора a (11,10,2) и b (4,0,3). Найдите единичный вектор c, ортогональный векторам a и b и направленный так, чтобы упорядоченная тройка векторов a, b, c была правой.

Решение. Обозначим координаты вектора c относительно данного правого ортонормированного базиса через x, y, z.

Поскольку c a, c b , то ca = 0, cb = 0. По условию задачи требуется, чтобы c = 1 и a b c >0.

Имеем систему уравнений для нахождения x,y,z: 11x +10y + 2z = 0, 4x+3z=0, x 2 + y 2 + z 2 = 0.

Из первого и второго уравнений системы получим z = -4/3 x, y = -5/6 x. Подставляя y и z в третье уравнение, будем иметь: x 2 = 36/125, откуда
x = ± . Используя условие a b c > 0, получим неравенство

С учетом выражений для z и y перепишем полученное неравенство в виде: 625/6 x > 0, откуда следует, что x>0. Итак, x = , y = - , z =- .

Прежде чем приступить к тематике статьи, напомним основные понятия.

Yandex.RTB R-A-339285-1 Определение 1

Вектор – отрезок прямой, характеризующийся численным значением и направлением. Вектор обозначается строчной латинской буквой со стрелкой сверху. При наличии конкретных точек границ обозначение вектора выглядит как две прописные латинские буквы (маркирующие границы вектора) также со стрелкой сверху.

Определение 2

Нулевой вектор – любая точка плоскости, обозначается как нуль со стрелкой сверху.

Определение 3

Длина вектора – величина, равная или большая нуля, определяющая длину отрезка, составляющего вектор.

Определение 4

Коллинеарные векторы – лежащие на одной прямой или на параллельных прямых. Не выполняющие это условие векторы называют неколлинеарными.

Определение 5

Исходные данные: векторы a → и b → . Для выполнения над ними операции сложения необходимо из произвольной точки undefined отложить вектор A B → , равный вектору а → ; из полученной точки undefined – вектор В С → , равный вектору b → . Соединив точки undefined и C , получаем отрезок (вектор) А С → , который и будет являться суммой исходных данных. Иначе описанную схему сложения векторов называют правилом треугольника.

Геометрически сложение векторов выглядит так:

Для неколлинеарных векторов:

Для коллинеарных (сонаправленных или противоположнонаправленных) векторов:

Взяв за основу описанную выше схему, мы получаем возможность произвести операцию сложения векторов в количестве более 2: поочередно прибавляя каждый последующий вектор.

Определение 6

Исходные данные: векторы a → , b → , c → , d → . Из произвольной точки А на плоскости необходимо отложить отрезок (вектор), равный вектору a → ; затем от конца полученного вектора откладывается вектор, равный вектору b → ; далее – по тому же принципу откладываются последующие векторы. Конечной точкой последнего отложенного вектора будет точка B , а полученный отрезок (вектор) A B → – суммой всех исходных данных. Описанную схему сложения нескольких векторов называют также правилом многоугольника .

Геометрически оно выглядит следующим образом:

Определение 7

Отдельной схемы действия по вычитанию векторов нет, т.к. по сути разность векторов a → и b → есть сумма векторов a → и - b → .

Определение 8

Чтобы произвести действие умножения вектора на некое число k , необходимо учитывать следующие правила:
- если k > 1 , то это число приведет к растяжению вектора в k раз;
- если 0 < k < 1 , то это число приведет к сжатию вектора в 1 k раз;
- если k < 0 , то это число приведет к смене направления вектора при одновременном выполнении одного из первых двух правил;
- если k = 1 , то вектор остается прежним;
- если одно из множителей – нулевой вектор или число, равное нулю, результатом умножения будет нулевой вектор.

Исходные данные:
1) вектор a → и число k = 2 ;
2) вектор b → и число k = - 1 3 .

Геометрически результат умножения в соответствии с указанными выше правилами будет выглядеть следующим образом:

Описанным выше операциям над векторами присущи свойства, некоторые из которых очевидны, а прочие можно обосновать геометрически.

Исходные данные: векторы a → , b → , c → и произвольные действительные числа λ и μ .


Свойства коммутативности и ассоциативности дают возможность складывать векторы в произвольном порядке.

Перечисленные свойства операций позволяют осуществлять необходимые преобразования векторно-числовых выражений аналогично привычным числовым. Рассмотрим это на примере.

Пример 1

Задача: упростить выражение a → - 2 · (b → + 3 · a →)
Решение
- используя второе распределительное свойство, получим: a → - 2 · (b → + 3 · a →) = a → - 2 · b → - 2 · (3 · a →)
- задействуем сочетательное свойство умножения, выражение приобретет следующий вид: a → - 2 · b → - 2 · (3 · a →) = a → - 2 · b → - (2 · 3) · a → = a → - 2 · b → - 6 · a →
- используя свойство коммутативности, меняем местами слагаемые: a → - 2 · b → - 6 · a → = a → - 6 · a → - 2 · b →
- затем по первому распределительному свойству получаем: a → - 6 · a → - 2 · b → = (1 - 6) · a → - 2 · b → = - 5 · a → - 2 · b → Краткая запись решения будет выглядеть так: a → - 2 · (b → + 3 · a →) = a → - 2 · b → - 2 · 3 · a → = 5 · a → - 2 · b →
Ответ: a → - 2 · (b → + 3 · a →) = - 5 · a → - 2 · b →

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Геометрическим вектором называют направленный отрезок. Для описания векторов используют обозначения ; .

Длиной вектора называют расстояние между начальной точкой и точкой конца вектора. Длину вектора будем обозначать , или просто АВ, а.

Вектор называют нулевым, если его начало и конец совпадают. Такой вектор не имеет направления, его длина равна нулю, обозначают его как .

Векторы называют коллинеарными, если они лежат на одной прямой или на параллельных прямых. Обозначают это как .

Векторы называют компланарными, если они лежат в одной плоскости.

Два вектора называют равными, если они коллинеарны, имеют одинаковую длину и направление.

Свободным называют вектор, который можно перемещать в пространстве параллельно его направлению.

Отметим, что для свободного вектора его начало можно совмещать с любой точкой пространства.

В дальнейшем будем иметь дело лишь со свободными векторами.

Линейные операции над векторами и их свойства

Линейными операциями над векторами являются сложение векторов и умножение вектора на число.

Суммой двух геометрических векторов и называется вектор , который можно построить или по правилу треугольника или по правилу параллелограмма.

1.По правилу треугольника

Параллельным переносом совместим конец вектора с началом вектора . Тогда суммой + будем называть вектор , начало которого совпадает с началом вектора , а конец с концом вектора .

2. По правилу параллелограмма

Параллельным переносом совместим начало вектора и начало вектора . Достроим параллелограмм на концах векторов. Суммой векторов и будем называть вектор , являющийся диагональю параллелограмма, начало которого совпадает с началом векторов и .

Свойства сложения векторов.

1. Коммутативность

2.Ассоциативность

3.Существование нулевого вектора такого, что

4. Для любого вектора существует противоположный вектор ()такой, что

С помощью свойств сложения векторов также можно доказать, что для любых векторов и существует такой вектор , который, будучи сложен с , даст вектор .

Такой вектор называют геометрической разностью векторов и :

Произведением вектора на вещественное число называется вектор , имеющий длину, равную произведению чисел и направление, совпадающее с направлением вектора , если , и противоположное, если .

Свойства произведения вектора на число.

5. Ассоциативность сомножителей

6. Дистрибутивность суммы векторов относительно умножения на вещественное число



7. Дистрибутивность относительно суммы чисел

8. Существование числа 1, не меняющего вектора при умножении

Все восемь свойств линейных операций получены из геометрических свойств векторов.

Можно поступить иначе. Положить эти восемь свойств в основу определения векторов.

Определение.

Любая совокупность объектов, для которых введено соотношение равенства, а также операции сложения и умножения на число, удовлетворяющие свойствам 1-8, называется линейным векторным пространством.

Элементы такого пространства называют векторами или точками этого пространства.

Примеры линейных векторных пространств

1. Множество всех геометрических векторов.

2. Множество всех вещественных чисел. Обозначим его или .

3. Множество всевозможных пар вещественных чисел. Обозначим его .

Пусть = и = – элементы этого множества. Будем называть числа и координатами векторов и . Векторы и считаются равными, если равны их координаты, т.е. и

Суммой векторов и будем называть вектор , имеющий координаты и .

При таком введении линейных операций выполняются все свойства 1-8 и пространство можно считать линейным векторным пространством.

4. Множество всевозможных наборов из n вещественных чисел. Будем обозначать это множество . Элементами этого множества являются наборы из чисел.

10.Скалярное произведение векторов и его свойства

В качестве нелинейных операций над векторами рассмотрим скалярное произведение и векторное произведение, наиболее часто встречающиеся в приложениях.

Углом между двумя векторами будем называть угол, который не превосходит p.

Угол между векторами будем обозначать

Скалярным произведением двух геометрических векторов называется число, равное произведению длин этих векторов на косинус угла между ними:



Если ,то ,т.к. ,

если ,то ,т.к. ,

если ,то ,т.к. .

а)Ортогональной проекцией вектора на направление, задаваемое вектором , будем называть число

б) Аналогично число = является ортогональной проекцией вектора на направление .

Из определения скалярного произведения следует, что

Следствие.

Скалярное произведение двух ненулевых векторов равно нулю тогда и только тогда, когда эти векторы ортогональны (угол между ними равен ).

Свойства скалярного произведения.

Коммутативность

1) Ассоциативность

2) Дистрибутивность относительно суммы векторов

4) , если и , если

Свойства 1-4 доказываются исходя из геометрических свойств векторов.

Угол между векторами.

Зная длины векторов и их скалярное произведение можно найти угол между векторами. Действительно, т.к. , то

11. Векторное произведение и его свойства , вычисление через координаты

Векторным произведением вектора на вектор называется вектор (обозначим его ), удовлетворяющий следующим условиям.

Определение: Векторным произведением упорядоченной пары векторов a и b называется вектор , такой что

Свойства векторного произведения:

Утверждение 2: В декартовой системе координат (базис i , j , k ), a={x 1 , y 1 , z 1 }, b={x 2 , y 2 , z 2 }

=> [a ,b ] =

=

12. Смешанное произведение векторов.

Определение: Смешанным произведением упорядоченной тройки векторов a, b и c называется число , т.ч. =(,c).

Утверждение: =V a , b , c , если a,b,c – правая тройка, или = -V a , b , c , если a,b,c – левая тройка. Здесь V a , b , c – объём параллелепипеда, построенного на векторах a, b и c. (Если a, b и c компланарны, то V a , b , c =0.)

Утверждение: В декартовой системе координат, если a={x 1 , y 1 , z 1 }, b={x 2 , y 2 , z 2 },

с={x 3 , y 3 , z 3 }, => = .


В этой статье мы рассмотрим операции, которые можно производить с векторами на плоскости и в пространстве. Далее мы перечислим свойства операций над векторами и обоснуем их с помощью геометрических простроений. Также покажем применение свойств операций над векторами при упрощении выражений, содержащих векторы.

Для более качественного усвоения материала рекомендуем освежить в памяти понятия, данные в статье векторы - основные определения .

Навигация по странице.

Операция сложения двух векторов - правило треугольника.

Покажем как происходит сложение двух векторов .

Сложение векторов и происходит так: от произвольной точки A откладывается вектор , равный , далее от точки B откладываеься вектор , равный , и вектор представляет собой сумму векторов и . Такой способ сложения двух векторов называется правилом треугольника .

Проиллюстрируем сложение не коллинеарных векторов на плоскости по правилу треугольника.

А на чертеже ниже показано сложение сонаправленных и противоположно направленных векторов.


Сложение нескольких векторов - правило многоугольника.

Основываясь на рассмотренной операции сложения двух векторов, мы можем сложить три вектора и более. В этом случае складываются первые два вектора, к полученному результату прибавляется третий вектор, к получившемуся прибавляется четвертый и так далее.

Сложение нескольких векторов выполняется следующим построением. От произвольной точки А плоскости или пространства откладывается вектор, равный первому слагаемому, от его конца откладывается вектор, равный второму слагаемому, от его конца откладывается третье слагаемое, и так далее. Пусть точка B - это конец последнего отложенного вектора. Суммой всех этих векторов будет вектор .

Сложение нескольких векторов на плоскости таким способом называется правилом многоугольника . Приведем иллюстрацию правила многоугольника.

Абсолютно аналогично производится сложение нескольких векторов в пространстве.

Операция умножения вектора на число.

Сейчас разберемся как происходит умножение вектора на число .

Умножение вектора на число k соответствует растяжению вектора в k раз при k > 1 или сжатию в раз при 0 < k < 1 , при k = 1 вектор остается прежним (для отрицательных k еще изменяется направление на противоположное). Если произвольный вектор умножить на ноль, то получим нулевой вектор. Произведение нулевого вектора и произвольного числа есть нулевой вектор.

К примеру, при умножении вектора на число 2 нам следует вдвое увеличить его длину и сохранить направление, а при умножении вектора на минус одну треть следует уменьшить его длину втрое и изменить направление на противоположное. Приведем для наглядности иллюстрацию этого случая.

Свойства операций над векторами.

Итак, мы определили операцию сложения векторов и операцию умножения вектора на число. При этом для любых векторов и произвольных действительных чисел можно при помощи геометрических построений обосновать следующие свойства операций над векторами . Некоторые из них очевидны.

Рассмотренные свойства дают нам возможность преобразовывать векторные выражения.

Свойства коммутативности и ассоциативности операции сложения векторов позволяют складывать векторы в произвольном порядке.

Операции вычитания векторов как таковой нет, так как разность векторов и есть сумма векторов и .

Учитывая рассмотренные свойства операций над векторами, мы можем в выражениях, содержащих суммы, разности векторов и произведения векторов на числа, выполнять преобразования так же как и в числовых выражениях.

Разберем на примере.