Ваш кот опаснее ветряка. Влияние виэ на стабильность энергосистем Что такое возобновляемые источники энергии

Источник: http://zvt.abok.ru/articles/148/Alternativnaya_energetika_Rossii,

Одна из основных тенденций современного мира – активный сдвиг растущего с каждым днем энергопотребления в сторону использования альтернативных источников энергии.

В России также наметились положительные изменения. Так, поворотным моментом в российской истории альтернативной энергетики можно назвать вступление в действие постановления Правительства, направленного на стимулирование использования возобновляемых источников энергии на оптовом рынке электрической энергии и мощности.

Зелёная энергетика, использующая неисчерпаемые «запасы» энергии солнца, ветра, рек, геотермальную энергию и тепловую энергию постоянно воспроизводимой биомассы*, сегодня стала предметом обсуждения всех важных политических встреч и форумов.

* Статья посвящена только трём секторам ВИЭ: солнечной, ветровой энергетике и малой гидроэнергетике. Сектор биоэнергетики очень обширный и заслуживает отдельной темы для рассмотрения.

С каждым годом зеленая энергетика обеспечивает всё бóльшую часть потребностей в энергоресурсах ведущих экономик мира. По существу, сегодня наблюдается выстраивание новой парадигмы мировой энергетики, предполагающей определяющий вклад возобновляемых источников энергии (ВИЭ) в общее энергопотребление и постепенное вытеснение традиционных ископаемых энергоресурсов. Согласно энергетической стратегии, принятой в ЕС, уже к 2020 году страны – члены Содружества должны обеспечить 20 %-е сокращение выбросов парниковых газов, увеличение до 20 % доли возобновляемой энергии и 20 %-е повышение энергоэффективности. В более отдалённой перспективе многие страны идут существенно дальше. В частности, Германия планирует достичь к 2050 году 60 %-й доли ВИЭ в общем энергобалансе страны и 80 %-й – в производстве электроэнергии .

Ветровая, солнечная энергетика и производство биотоплива – наиболее быстрорастущие отрасли современной индустрии, на освоение которых брошен весь научно-технический потенциал ведущих стран мира. В указанных условиях дискуссия об экономической целесообразности активного развития ВИЭ в Российской Федерации трансформируется в осознание политической неизбежности движения в направлении альтернативной энергетики. Ставка только на углеводородное топливо грозит стране перспективой существенного технологического отставания от ведущих государств мира в базовом для экономики энергетическом секторе и, как следствие, потери лидирующих позиций России в глобальной экономике. Именно поэтому в последние годы, несмотря на полную обеспеченность России традиционными энергоресурсами, наметился позитивный перелом в отношении российского государства и бизнеса к альтернативным видам энергии.

Законодательство и поддержка ВИЭ. Особый путь России

Не секрет, что из-за дороговизны ВИЭ их бурное развитие в ведущих странах мира в последнее десятилетие стало возможным лишь благодаря финансовой поддержке со стороны государств. В настоящее время в мировой практике существует несколько механизмов поддержки проектов электрогенерации на основе ВИЭ. Наиболее популярны из них два: зелёные тарифы и зелёные сертификаты. В первом случае государство гарантирует приобретение у производителей электроэнергии из ВИЭ по специальным, более высоким тарифам. Их устанавливают для конкретного объекта на альтернативных источниках энергии на 20–25 лет, что обеспечивает хорошую рентабельность таких проектов. Во втором случае производитель по факту продажи на свободном рынке электроэнергии, сгенерированной на ВИЭ, получает специальный подтверждающий сертификат (подобная схема действует, например, в Швеции и Норвегии ), который впоследствии может быть продан. Государство обеспечивает спрос на такие сертификаты, вводя законодательные требования на долю ВИЭ в энергетике страны, в том числе льготы для компаний, использующих ВИЭ, и штрафы для «грязных» компаний.

ЗЕЛЁНЫЕ СЕРТИФИКАТЫ В ШВЕЦИИ

Система зелёных сертификатов на электроэнергию, введённая в Шве­ции в 2003 году, заменила применяемую ранее систему грантов и субсидий.

Основная цель зелёных сертификатов – увеличить производство электроэнергии из ВИЭ на 20 ТВт ч к 2020 году относительно уровня 2002 года.

Система поддерживает компании, использующие ВИЭ: гидроэлектростан­ции и производителей электроэнергии, генерирующих её из энергии ве­тра, при сжигании биотоплива и торфа.

Работа системы основана на следующих принципах:

  • Министерство по устойчивому развитию выдаёт генерирующим ком­паниям, использующим ВИЭ, один сертификат (в электронном виде) на каждый МВт ч произведённой энергии. Срок действия сертификата – один год.
  • Правительство Швеции законодательно вводит годовые квоты по по­купке зелёных сертификатов для энергоснабжающих организаций и крупных потребителей электроэнергии в Швеции. Квоты устанавлива­ются на несколько лет вперёд.
  • Торговля зелёными сертификатами осуществляется на свободном рын­ке. Цена сертификата определяется соотношением спроса и предложе­ния на рынке.
  • В конце каждого отчётного периода организации, имеющие квоты, обя­заны отчитаться об их выполнении.

Отследить динамику изменения стоимости сертификатов можно, напри­мер, на сайте одного из брокеров, оперирующих на рынке зелёных серти­фикатов.

Стоит отметить, что в конечном итоге за поддержку производителей элек­троэнергии, использующих ВИЭ, платит конечный пользователь – все граж­дане Швеции. По оценке экспертов, доля зелёных сертификатов в стоимо­сти электроэнергии для конечных пользователей составляет около 3 %.

Преимущества зелёных сертификатов:

  • отсутствие бюрократических проволочек, характерных для системы грантов и субсидий;
  • открытость и прозрачность системы;
  • отсутствие прямой нагрузки на государственный бюджет;
  • возможность контролировать динамику прироста электроэнергии, полу­ченной из ВИЭ.

Зелёные сертификаты отлично зарекомендовали себя в Швеции, что ста­ло примером для других стран в Европе. Великобритания, Италия, Польша и Бельгия ввели подобные схемы поддержки производства электроэнер­гии из ВИЭ. Норвегия полностью повторила у себя шведскую систему, бла­годаря чему стало возможным объединить рынок зелёных сертификатов этих стран.

Оба механизма стимулируют конечных производителей зелёной энергии, при этом обеспечивается высокий рыночный спрос на оборудование для ВИЭ и, соответственно, конкурентное развитие производящих его предприятий. Всё это гарантирует привлечение в отрасль новых технологий и борьбу производителей за низкую себестоимость.

Как результат, активный рост альтернативной энергетики в прошлые годы, эффекты масштабирования и технологического усовершенствования производства в отрасли привели к существенному удешевлению ВИЭ и достижению сетевого паритета во всё большем числе регионов мира (состояние паритета стоимости энергии, полученной из обычных источников и альтернативных). Тем не менее для стимулирования старта развития отраслей ВИЭ на новых рынках, особенно в странах, не имеющих острой нужды в энергетических ресурсах, всё ещё требуется государственная помощь.

Россия на протяжении последних лет искала собственный путь поддержки ВИЭ, необходимость которого обусловлена специфическими особенностями внутреннего энергорынка. Отличительной чертой рынка электроэнергетики России является схема ОАО РАО «ЕЭС России», предполагающая функционирование одновременно двух механизмов торговли электроэнергией: продажа собственно электроэнергии (её физически выработанных объёмов) и продажа мощности. Реализация мощности осуществляется посредством договоров о предоставлении мощности (ДПМ), в которых прописаны, с одной стороны, обязательство поставщика электроэнергии содержать в готовности генерирующее оборудование для выработки электроэнергии установленного качества в объёме, необходимом для удовлетворения потребности в электроэнергии потребителя, а с другой стороны – гарантия оплаты мощности потребителем.

После тщетных попыток стимулирования развития ВИЭ в России через надбавки к рыночной цене электроэнергии 28 мая 2013 года Правительство РФ приняло Постановление № 449 «О механизме стимулирования использования возобновляемых источников энергии на оптовом рынке электрической энергии и мощности» . Разработчики данного постановления попытались обеспечить максимальное интегрирование механизма поддержки ВИЭ в существующую в стране специфическую архитектуру рынка электроэнергетики. Поддержка ВИЭ (предусмотрена для трёх видов: солнечной, ветровой энергетики и малой гидроэнергетики) осуществляется через ДПМ ВИЭ – договоры о предоставлении мощности, видоизменённые с учётом особенностей ВИЭ. Изменения, внесённые в стандартный ДПМ, обеспечивают работу объектов на ВИЭ по правилам, аналогичным тем, которые применяются к объектам электрогенерации, работающим в вынужденном режиме.

В самом факте применения механизма ДПМ (который, по сути, является торговлей гарантиями) для продажи нестабильной, зависящей от капризов погоды альтернативной энергии заложены противоречия.

Попытки реализации этого механизма уже сегодня выявляют массу проблем. Сетевые операторы на местах не всегда правильно понимают специфику работы нового законодательства, что приводит к необоснованному требованию к собственникам генерирующих объектов предоставить гарантию поставки необходимой мощности.

Для адаптации всех участников рынка ВИЭ к новым условиям необходимо время. Потребуются разъяснения законодателей операторам на местах, разработка дополнительных подзаконных актов.

Согласно действующему законодательству, ВИЭ в России будут поддерживать в рамках ежегодных квот (целевых параметров), выделенных для каждого вида ВИЭ на период до 2020 года (табл. 1). Отбор инвестиционных проектов строительства генерирующих объектов на основе ВИЭ осуществляется на специализированных конкурсах, где устанавливаются предельные уровни капитальных затрат. Основным условием для получения максимальной финансовой помощи от государства является требование локализации, т. е. обеспечение производства части оборудования для проекта внутри страны. Данное требование не просто отражает стремление государства стимулировать использование альтернативной энергии, но и определяет его как первоочередную задачу развития отрасли в целом с привлечением огромного научного и технологического потенциала российской экономики.

ТАБЛ. 1. ЦЕЛЕВЫЕ ПАРАМЕТРЫ ВВОДА НОВЫХ МОЩНОСТЕЙ НА ОСНОВЕ ВИЭ, МВт
Объекты Год ввода объектов в эксплуатацию
2014 2015 2016 2017 2018 2019 2020 Всего
100 250 250 500 750 750 1 000 3 600
120 140 200 250 270 270 270 1 520
18 26 124 124 141 159 159 751
Всего 238 416 574 874 1161 1179 1429 5871

Законодательством предусмотрены жёсткие требования локализации (табл. 2). Все объекты в каждом секторе возобновляемой энергетики, получившие государственную поддержку, должны не менее чем на 50 % базироваться на российском оборудовании.

ТАБЛ. 2. ЦЕЛЕВЫЕ ПАРАМЕТРЫ ЛОКАЛИЗАЦИИ ГЕНЕРИРУЮЩИХ ОБЪЕКТОВ НА ОСНОВЕ ВИЭ
Объекты Год ввода в эксплуатацию Целевой показатель степени локализации, %
Генерирующие объекты, функционирующие на основе энергии ветра 2014 35
2015 55
С 2016 по 2020 65
Генерирующие объекты, функционирующие на основе фотоэлектрического преобразования энергии солнца С 2014 по 2015 50
С 2016 по 2017 70
Генерирующие объекты установленной мощностью менее 25 МВт, функционирующие на основе энергии вод С 2014 по 2015 20
С 2016 по 2017 45
С 2018 по 2020 65

Более мягкие условия – по малым гидроэлектростанциям (МГЭС). В 2014–2015 годах действует требование 20 %-й локализации, однако это скорее виртуальная опция, поскольку с учётом специфики сектора первые объекты появятся не раньше 2016–2017 годов, когда вступит в действие требование 45 %-й локализации.

Первый конкурс отбора проектов ВИЭ на 2014–2017 годы проходил с августа по сентябрь 2013 года. Результаты его в значительной степени оценены специалистами как провальные. Основная причина в том, что участникам на подготовку к конкурсу, который проводился всего через три месяца после принятия соответствующего постановления, было выделено слишком мало времени. Многие компании просто не успели вовремя выполнить все условия для подачи заявок.

Современное состояние ВИЭ в России

Возобновляемая энергетика делает свои первые шаги в России. По сути, единственным направлением альтернативной энергетики в стране, которое достигло в последние годы весомых результатов, является биотопливная отрасль, в частности производство древесных гранул. Россия является ведущим поставщиком этой продукции на рынки Европы.

В производстве электроэнергии на основе ВИЭ существенного развития достигла только гидроэнергетика, на долю которой приходится до 16 % в энергобалансе страны. Однако и здесь зелёные электростанции, т. е. минимально влияющие на экосистему МГЭС (мощностью до 30 МВт), составляют ничтожно малую часть, при этом большинство из них построено ещё в советские времена. Секторы солнечной и ветровой электроэнергетики сегодня находятся практически на нулевой (стартовой) отметке.

Малая гидроэнергетика

Малые гидроэлектростанции (по международным стандартам – ГЭС мощностью до 25–30 МВт) были важнейшим источником электроэнергии для народного хозяйства СССР в первой половине прошлого столетия. В 1950‑е годы в СССР насчитывалось около 6 500 МГЭС (большинство на территории России) суммарной мощностью более 320 МВт, которые вырабатывали четверть электроэнергии, потребляемой в сельской местности. Последующая централизация энергообеспечения привела практически к полному отказу от малой гидроэнергетики.

В новом тысячелетии МГЭС вновь набирают популярность в Российской Федерации, причём развитие этой отрасли идёт двумя возможными путями: восстановление устаревших заброшенных МГЭС и строительство новых. Энергетический потенциал российских малых рек представляет интерес с точки зрения замещения привозных энергоресурсов в удалённых сельских регионах страны.

Сегодня отрасль малой гидроэнергетики в России после длительного периода забвения делает лишь первые шаги, о чём свидетельствует конкурс отбора инвестиционных проектов ВИЭ, прошедший в прошлом году. В секторе МГЭС конкурс был провален, т. к. на него не было подано ни одного проекта. Причины в неопределённости процедур аттестации мощности и подтверждения степени локализации оборудования. Немаловажную роль в неудаче конкурса сыграли также специфика малой гидроэнергетики и нехватка времени на подготовку документов. Вышеупомянутое постановление должно обеспечить законодательное поле для активизации процесса развития отрасли малой гидроэнергетики в России уже в ближайшем будущем.

Сейчас в России действуют порядка 300 МГЭС общей мощностью около 1 300 МВт. Основным игроком рынка МГЭС является компания ОАО «РусГидро», которая объединяет более 70 объектов возобновляемой энергетики. В организации разработаны программы строительства МГЭС, предполагающие сооружение 384 станций суммарной мощностью 2,1 ГВт. В ближайшие несколько лет в России можно ожидать ввода новых мощностей в малой гидроэнергетике в объёме 50–60 МВт установленной мощности ежегодно.

Ветровая энергетика

Ветровая энергетика в последнее десятилетие стабильно удерживает мировое лидерство среди новых технологий возобновляемой энергетики. К концу 2013 года общее количество установленных мощностей ветровых электростанций (ВЭС) в мире превысило 320 ГВт.

РИС. 1. ИСТОРИЯ РАЗВИТИЯ МИРОВОГО РЫНКА ВЕТРОВОЙ ЭНЕРГЕТИКИ. РОСТ СУММАРНОГО КОЛИЧЕСТВА УСТАНОВОК В 1997–2012 ГОДАХ, МВт (ПО ДАННЫМ WWEA )

Россия, благодаря огромной территории, охватывающей несколько климатических поясов, имеет самый большой в мире потенциал ветровой электрогенерации (оценивается в 260 млрд кВт ч электроэнергии в год, что составляет около 30 % нынешнего производства электроэнергии всеми электростанциями страны).

Следует отметить, что бóльшая часть наиболее «богатых на ветер» регионов России – это местности, удалённые от основных электрогенерирующих мощностей страны. К таковым относятся Камчатка, Магаданская область, Чукотка, Сахалин, Якутия, Бурятия, Таймыр и др. Здесь в основном отсутствуют собственные ископаемые энергетические ресурсы, а удалённость от магистральных линий электропередачи и транспортных энергетических нефте- и газопроводов делают экономически необоснованным подключение регионов к централизованному энергообеспечению. По сути, единственным постоянным источником электроэнергии в удалённых местностях России служат дизель-генераторы, работающие на дорогом привозном топливе. Производимая с их помощью электроэнергия имеет чрезвычайно высокую себестоимость (20–40 руб. за 1 кВт ч). В таких регионах строительство ВЭС как основного источника электроснабжения является экономически выгодным даже без какой-либо финансовой поддержки со стороны государства.

Несмотря на безусловную экономическую обоснованность применения ВЭС во многих удалённых регионах страны, развитие ветроэнергетики (в масштабе общей электрогенерации) в настоящее время находится практически на нулевом уровне. В стране действует немногим более 10 ветровых электростанций, общая установленная мощность которых составляет всего 16,8 МВт. Всё это устаревшие ВЭС, использующие ветрогенераторы малых мощностей. Для сравнения отметим, что в соседней Украине, не имеющей сегодня недостатка в электроэнергии, общая установленная мощность ветропарков достигла 400 МВт, причём 80 % мощностей было установлено за последние два года.

ВЭС чаще строят в прибрежной полосе морей и океанов, где
постоянно дуют ветра

Самым крупным ветропарком в России в настоящее время является Куликовская (Зеленоградская) ВЭС, принадлежащая компании «Янтарьэнерго». Она построена в Калининградской области в период с 1998 по 2002 год. Электростанция общей мощностью 5,1 МВт состоит из 21 ветрогенератора, из которых 20 агрегатов мощностью по 225 кВт каждый были получены в виде гранта правительства Дании от компании SЕАS Energi Service А. S. До инсталляции на Куликовской ВЭС ветроагрегаты около восьми лет отслужили в датском ветропарке «Нойсомхед Винд Фарм».

В первом конкурсе инвестиционных проектов по строительству объектов электрогенерации на основе ВИЭ в сегменте ветровой энергетики приняла участие всего одна компания – ООО «Комплекс Индустрия», которая подала всего семь равных проектов с установленной мощностью по 15 МВт каждый. Общие плановые капитальные затраты компании на выполнение всех проектов – около 6,8 млрд руб. Средняя плановая стоимость инсталляции 1 кВт установленной мощности ВЭС составляет 64 918,3 руб. Все проекты компании без изменений прошли оба тура и были отобраны для выполнения.

На 2014–2015 годы не запланировано ни одного проекта. Только один проект (ВЭС «Аксарайская» в Астраханской области) планируется ввести в строй в 2016 году. Остальные шесть проектов введут в эксплуатацию в 2017 году. В общей сложности будет реализовано по два проекта в Астраханской и Оренбургской областях и три проекта в Ульяновской области.

Участники отрасли сегодня просто не готовы к столь быстрой реализации масштабных проектов ВЭС, в том числе и по причине необходимости выполнения требования локализации производства.

Солнечная энергетика

Солнечная энергетика занимает первое место в мире среди всех типов ВИЭ по популярности и динамике развития.

РИС. 2. ИСТОРИЯ РАЗВИТИЯ МИРОВОГО РЫНКА ФОТОВОЛЬТАИКИ. РОСТ СУММАРНОГО КОЛИЧЕСТВА УСТАНОВОК В 2000–2012 ГОДАХ, МВТ (ПО ДАННЫМ EPIA )

В России же эта область энергетики является наименее развитой среди альтернативных источников энергии. В стране действуют не более 3 МВт общих установленных мощностей солнечных электростанций (СЭС), причём в основном это электрогенерирующие системы с единичной мощностью в пределах от единиц до десятков киловатт. Свыше 90 % всех установок приходится на субъекты малого и среднего предпринимательства, менее 10 % – на частные домохозяйства. Во многих случаях такие системы обеспечивают автономное электроснабжение удалённых от центральной электросети объектов и работают в комплексе с дизель-генераторами.

Крупнейшими действующими объектами солнечной энергетики в России по состоянию на сентябрь 2013 года были две электростанции примерно одинаковой мощности (100 кВт). Первая в России сетевая СЭС промышленного масштаба введена в эксплуатацию в октябре 2010 года вблизи хутора Крапивенские Дворы Яковлевского района Белгородской области компанией «АльтЭнерго». В начале июня 2013 года в эксплуатацию также запущена первая в России автономная дизель-солнечная электростанция мощностью 100 кВт (мощность установленных солнечных модулей – 60 кВт) в селе Яйлю Турочакского района Республики Алтай. Тонкоплёночные фотоэлектрические модули тандемного типа для СЭС разработаны на основе плёнок a‑Si/µk-Si. Произведено оборудование в России на заводе компании «Хевел» в Новочебоксарске (совместное предприятие группы «Ренова» и ОАО «Роснано»).

В декабре 2013 года в Дагестане запущена первая очередь самой крупной в России СЭС «Каспийская». Пока в строй введён 1 МВт мощностей, но уже весной 2014 года электростанция будет доведена до плановой мощности в 5 МВт. Осуществляет проект дагестанский филиал ОАО «РусГидро», строительство ведёт компания «МЭК-Инжиниринг». Запуск данной электростанции можно считать отправной точкой в развитии крупных СЭС мегаваттного класса в России. В 2014 году планируется завершить ещё два проекта СЭС в Дагестане общей мощностью 45 МВт.

Солнечная энергетика – единственный сектор ВИЭ в России, в котором конкурс отбора инвестиционных проектов в 2013 году состоялся в полном объёме. Количество поданных заявок на 289 МВт превысило выделенные для «солнечного» сектора квоты на 2014–2017 годы (согласно целевым параметрам, эта цифра составляет 710 МВт). В общей сложности подано 58 заявок на суммарную мощность 999,2 МВт. При этом на 2014 год объём поданных заявок превышал целевые показатели величин объёмов ввода установленной мощности на 29 %; на 2015 год – на 75 %; на 2016 год – на 59,5 %; на 2017 год – на 12 %.

По итогам конкурса отобраны проекты пяти компаний общей мощностью 399 МВт (рис. 3). Однако квота проектов, указанная в целевых параметрах, не заполнена, несмотря на широкий выбор. Как и в секторах ветровой энергетики и малой гидроэнергетики, недозаполненная целевая квота на 2014 год сгорает.

РИС. 3. ДИАГРАММА РАСПРЕДЕЛЕНИЯ ПРОШЕДШИХ ОТБОР ПРОЕКТОВ ПО КОМПАНИЯМ

Подводя итоги, можно сказать о том, что отрасли ВИЭ в России остаются «законсервированными», хотя есть положительный сдвиг и гарантии государства, подкреплённые законодательно. Тем не менее уже в 2014 году будут реализованы первые крупные проекты по строительству СЭС суммарной мощностью немногим более 35 МВт. Участникам рынка возобновляемой энергетики ещё предстоит пройти длинный путь становления, но общие очертания этой отрасли уже сегодня вырисовываются в оптимистичных тонах.

Литература

  1. The Federal Government’s Energy Concept of 2010 and the Transformation of the Energy System of 2011 // Federal Ministry for the Environment, Nature Conservation and Nuclear Safety. 2011. Oct.
  2. Renewable Electricity with Green Certificates // Ministry of Sustainable Development. 2006. May.
  3. Постановление Правительства РФ от 28 мая 2013 года № 449 «О механизме стимулирования использования возобновляемых источников энергии на оптовом рынке электрической энергии и мощности».
  4. Annual Report of World Wind Energy Association. 2012.
  5. Global Market Outlook for Photovoltaics 2013–2017. European Photovoltaic Industry Association.
  6. Рынок возобновляемых источников энергии в России – 2013: информационно-аналитический отчёт компании IBCentre.

Примечание: Приведенная выше статья написана в 2014 году. В текущем, 2015 году, Министерство энергетики России разработало стратегию энергетического развития России до 2035 года, о которой мы рассказывали в одной из ранее опубликованных на сайте статей . Впрочем, существенных изменений в развитии альтернативной энергетики по сравнению с ситуацией, изложенной в статье Виктор Андриенко, новая стратегия не несет. Кажется, что наша страна по-прежнему надеется на то, что потребности в энергии будут удовлетворяться в основном за счет ископаемого топлива.

Человечество давно научилось добывать возобновляемую (регенеративную) энергию, используя мощь рек. Но к концу ХХ века из-за энергетического кризиса, стремительного уменьшения запасов , газа, ухудшения экологии стал вопрос об использовании других источников, находящихся в окружающей среде. Благодаря разработкам ученых, стало возможно добывать энергию солнца, ветра, приливов, геотермальных вод.

Интересно! В мире из возобновляемых источников получают 18% энергии, из которых на долю древесины приходится 13%.

По данным, предоставленным журналу Forbes Международным агентством по возобновляемой энергетике IRENA, к 2015 году в мире доля добываемой таким способом энергии составила около 60%. В перспективе к 2030 году ВИЭ выйдет в лидеры по производству электричества, оттеснив на второе место использование угля.

Гидроэнергия добывается на протяжении очень длительного времени, а вот новые виды возобновляемых источников энергии, такие как ветер, геотермальные воды, солнце, приливы, стали использовать совсем недавно – около 30-40 лет. В 2014 году доля гидроэнергетики составила 16,4%, энергия солнца и ветра – 6,3%, а в перспективе до 2030 года эти доли могут сравняться.

В европейских странах и США ежегодный прирост добычи энергии при помощи ветра составляет примерно 30% (196600 МВт). В Германии, Испании и США широко используется фотоэлектрический способ. Калифорнийская гейзерная геотермальная установка вырабатывает 750 МВт ежегодно.

Интересно! Датские ветряные электростанции в 2015 году обеспечили 42% энергии, а в перспективе до 2050 года планируется выйти на проектные 100% выработки «зеленой энергии» и полностью отказаться от ископаемых ресурсов.

Примеры возобновляемых источников энергии

Применение ВИЭ позволит решить проблемы энергетики районов с плохой экологической обстановкой. Провести электричество в отдаленные и труднодоступные области без использования ЛЭП. Такие установки позволят децентрализовать энергоснабжение в районах, куда доставка топлива экономически невыгодна. Большинство разрабатываемых проектов относится к автономным источникам энергии, работающим на таком сырье, как нетрадиционные возобновляемые источники энергии, получаемые из биомассы, торфа, продуктов жизнедеятельности животных, человека, бытовых отходов.

Активное развитие АИЭ получили в США, Канаде, Новой Зеландии, Южной Африке. Такие энергетические источники используются китайскими, индийскими, немецкими, итальянскими и скандинавскими потребителями. В России пока эта индустрия не вышла на промышленный уровень, поэтому применение регенеративной энергии очень невысоко.

На планете можно использовать не только такие, какие есть возобновляемые источники энергии, предоставляемые природными ресурсами. Сейчас ведется разработка технологий по добыче термоядерной, водородной энергии. Согласно последним исследованиям, лунные запасы изотопа гелий-3 огромны, поэтому сейчас ведется подготовка к работам по доставке этого топлива в сжиженном виде. По расчетам российского академика Э. Алимова (РАН) двух «Шаттлов» вполне хватит, чтобы обеспечить электроэнергией всю планету на целый год.

Возобновляемые источники энергии в России

В отличие от мирового сообщества, где «зеленую энергию» давно и успешно используют, в России этим вопросом занялись совсем недавно. И, если гидроэнергетика давно снабжает электричеством города и поселки, то регенеративные источники считались неперспективными. Однако после 2000 года из-за ухудшения экологической обстановки, уменьшения природных ресурсов и других не менее важных факторов, стало очевидно, что необходимо развивать альтернативные источники, вырабатывающие энергию.

Наиболее перспективным направлением является разработка установок, напрямую преобразующих излучение солнца в электроэнергию. В них используются фотобатареи на основе монокристаллов, поликристаллов и аморфного кремния. Электроэнергия добывается даже при рассеянном солнечном свете. Мощность можно регулировать, снимая или добавляя модули. Они практически не расходуют энергию на себя, автоматизированы, надежны, безопасны, их можно ремонтировать.

Для развития возобновляемых источников энергии в Дагестане, Ростовской области, Ставропольском и Краснодарском крае установлены и работают солнечные коллекторы, обеспечивающие автономной энергией потребителей.

Интересно! 1 м 2 солнечного коллектора экономит до 150 кг условного топлива в год.

В России электроэнергетика, основанная на силе ветра, дает до 20000 МВт. Использование таких установок при средней скорости ветра 6 м/с и мощности 1 МВт экономит 1000 тонн условного топлива в год. Основываясь на научных данных, сейчас ведутся разработки, и вводятся в эксплуатацию энергетические комплексы. Однако использование таких возобновляемых источников энергии, как ветер, в России затруднено. Согласно закону, принятому в 2008 году, для ветряков должен использоваться очень мощный фундамент, а дороги, ведущие к строительству, должны быть отлично асфальтированы. Для примера, в европейских странах и США используется грунтовка.

Интересно! если в Тюменской области, Магадане, на Камчатке и Сахалине использовать установки, то с 1 квадратного километра можно собрать 2,5-3,5 млн. кВт/ч. Это в 200 раз выше потребления энергии на данный момент.

На сегодняшний день построены и работают ГеоТЭС на Камчатке, Курильских островах. Три модуля Верхне-Мутновская ГеоТЭС (Камчатка) вырабатывают 12 МВт, завершается строительство Мутновской ГеоТЭС на 4 блока, которые будут выдавать 100 МВт. В перспективе в этом районе возможно использование геотермальных вод для выработки 1000 МВт, плюс отсепарированная вода и конденсат могут отапливать здания.

На территории страны существует 56 уже разведанных месторождений, в которых скважины могут выдавать более 300 тысяч кубометров геотермальных вод в сутки.

Перспективы развития приливной электроэнергетики

1968 года на Кольском п-ове работает первая в мире экспериментальная приливная электростанция, вырабатывающая 450 кВт/ч. На основе работ этого проекта, было решено продолжить развитие приливных электростанций в России, как перспективных возобновляемых источников энергии на побережье Тихого и Северного Ледовитого океанов. Начато строительство в Хабаровском крае Тугурской ПЭС, проектная мощность которой составит 6,8 млн. кВт. Возводится Мезенская ПЭС в Белом море с проектной мощностью 18,2 млн. кВт. Такие установки сейчас разрабатываются и устанавливаются для китайских, корейских, индийских потребителей. Оборудование альтернативной приливной энергетики также изображено на первой картинке этой статьи.

Подробности Опубликовано 21.07.2015 19:21

Возобновляемыми принято называть те ресурсы планеты, которые могут восстанавливаться природным путем. Например: ветер, свет солнца, приливы, геотермальное тепло. Стоит отметить, что эти источники называются возобновляемыми, исходя из масштабов человеческого времени. Ведь даже солнце однажды перестанет светить, но произойдет это лишь через несколько миллиардов лет.

Сегодня существует уже более 20 стран, доля возобновляемых источников энергии, в общем энергетическом балансе которых превышает 20 %. Среди них: Исландия, Норвегия, Шотландия, Дания, Германия и другие. Существуют и .

Электроэнергия возобновляемых источников может быть использована как в промышленных масштабах всей страны, так и в отдельных сельских регионах. Генеральный секретарь ООН, Пан Ги Мун заявил о том, что возобновляемые источники энергии помогут бедным странам во всем мире стать процветающими.

К основным возобновляемым источникам планеты относят:

  • Реки и океаны
  • Ветер
  • Солнце
  • Геотермальные источники
  • Биомассу

Энергия воды

Отрасль энергетики, занимающаяся преобразованием энергии воды в электроэнергию, называется гидроэнергетика.

Существует несколько разновидностей источников энергии воды:

Энергия рек
Энергия волн
Энергия приливов

Ветряки также устанавливаются в океане, где энергия ветра обычно выше из-за отсутствия преград.

Наземные ветряные турбины

Солнечная энергия

Солнечная энергия может быть напрямую преобразована в электроэнергию с помощью солнечных батарей. Или же использоваться для нагрева воды, полученный пар приводит в движение турбины. Солнечный свет может попадать прямо на солнечные батареи, или же предварительно концентрироваться с помощью линз.


Концентрированная солнечная электростанция (CSP)

Фотоэлектрическая солнечная электростанция
Энергия солнца может быть использована для искусственного фотосинтеза. Это когда в результате действия солнца, происходит расщепление воды на кислород и водород.
На данный момент наибольшим препятствием развития солнечной энергетики остается высокая цена на солнечные панели. Ученые продолжают поиск новых материалов, которые смогут снизить цены на солнечные панели.

Геотермальная энергия

Наша земля является огромным источником тепловой энергии. Эта энергия исходит от ядра, а также является результатом распада органических веществ.

Вода, нагретая в недрах земли, может быть использована для отопления домов или преобразована в электроэнергию. Как получают электроэнергию из геотермальных источников читайте

Учебный год

Лекция 20

Энергосберегающие технологии и освоение новых источников энергии

Условно источники энергии можно поделить на два типа: невозобновляемые и возобновляемые . К первым относятся газ, нефть, уголь, уран и т. д. Технология получения и преобразования энергии из этих источников отработана, но, как правило, не экологична, и многие из них истощаются.

Возобновляемые источники энергии - это источники, которые по человеческим масштабам являются неисчерпаемыми. Основной принцип использования возобновляемой энергии заключается в её извлечении из природных ресурсов - таких как солнечный свет, ветер, движении воды в реках или морях, приливы, биотопливо и геотермальная теплота - которые являются возобновляемыми, т.е. пополняются естественным путем.

Перспективы использования возобновляемых источников энергии связаны с их экологической чистотой, низкой стоимостью эксплуатации и ожидаемым топливным дефицитом в традиционной энергетике.

Примеры использования возобновляемой энергии.

1.Ветроэнергетика является бурно развивающейся отраслью. Мощность ветрогенератора зависит от площади, заметаемой лопастями генератора. Например, турбины мощностью 3 МВт (V90) производства датской фирмы Vestas имеют общую высоту 115 метров, высоту башни 70 метров и диаметр лопастей 90 метров. Наиболее перспективными местами для производства энергии из ветра считаются прибрежные зоны. В море, на расстоянии 10-12 км от берега (а иногда и дальше), строятся офшорные ветряные электростанции. Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров. Использование энергии ветра растет примерно на 30 процентов в год и широко используется в странах Европы и США.

2. На гидроэлектростанциях (ГЭС) в качестве источника энергии используется потенциальная энергия водного потока, первоисточником которой является Солнце, испаряющее воду, которая затем выпадает на возвышенностях в виде осадков и стекает вниз, формируя реки. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища. Также возможно использование кинетической энергии водного потока на так называемых свободнопоточных (бесплотинных) ГЭС.

Особенности этого источника энергии:

Себестоимость электроэнергии на ГЭС существенно ниже, чем на всех иных видах электростанций;

Генераторы ГЭС можно достаточно быстро включать и выключать в зависимости от потребления энергии;

Возобновляемый источник энергии;

Значительно меньше воздействует на воздушную среду, чем другие виды электростанций;


Строительство ГЭС обычно более капиталоёмкое;

Часто эффективные ГЭС удалены от потребителей;

Водохранилища часто занимают значительные территории;

Лидерами по выработке гидроэнергии на человека являются Норвегия, Исландия и Канада. Наиболее активное гидростроительство ведёт Китай, для которого гидроэнергия является основным потенциальным источником энергии, в этой же стране размещено до половины малых гидроэлектростанций мира.

3.Солнечная энергетика - направление нетрадиционной энергетики, основанное на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует неисчерпаемый источник энергии и является экологически чистой, то есть не производящей вредных отходов.

Способы получения электричества и тепла из солнечного излучения:

Получение электроэнергии с помощью фотоэлементов;

Преобразование солнечной энергии в электричество с помощью тепловых машин: паровые машины (поршневые или турбинные), использующие водяной пар, углекислый газ, пропан-бутан, фреоны;

Гелиотермальная энергетика - нагревание поверхности, поглощающей солнечные лучи, и последующее распределение и использование тепла (фокусирование солнечного излучения на сосуде с водой для последующего использования нагретой воды в отоплении или в паровых электрогенераторах);

Термовоздушные электростанции (преобразование солнечной энергии в энергию воздушного потока, направляемого на турбогенератор);

Солнечные аэростатные электростанции (генерация водяного пара внутри баллона аэростата за счет нагрева солнечным излучением поверхности аэростата, покрытой селективно-поглощающим покрытием), преимущество - запаса пара в баллоне достаточно для работы электростанции в темное время суток и в ненастную погоду.

Достоинства солнечной энергетики :

Общедоступность и неисчерпаемость источника;

Теоретически полная безопасность для окружающей среды, хотя существует вероятность того, что повсеместное внедрение солнечной энергетики может изменить альбедо (характеристику отражательной способности) земной поверхности и привести к изменению климата.

Недостатки солнечной энергетики :

Зависимость от погоды и времени суток;

Как следствие необходимость аккумуляции энергии;

Высокая стоимость конструкции;

Необходимость периодической очистки отражающей поверхности от пыли;

Нагрев атмосферы над электростанцией.

4.Приливные электростанции . Электростанциями этого типа являются особым видом гидроэлектростанции, использующим энергию приливов, а фактически кинетическую энергию вращения Земли. Приливные электростанции строят на берегах морей, где гравитационные силы Луны и Солнца дважды в сутки изменяют уровень воды.

Для получения энергии залив или устье реки перекрывают плотиной, в которой установлены гидроагрегаты, которые могут работать как в режиме генератора, так и в режиме насоса (для перекачки воды в водохранилище для последующей работы в отсутствие приливов и отливов). В последнем случае они называются гидроаккумулирующая электростанция.

Преимуществами ПЭС является экологичность и низкая себестоимость производства энергии. Недостатками - высокая стоимость строительства и изменяющаяся в течение суток мощность, из-за чего ПЭС может работать только в единой энергосистеме с другими типами электростанций.

5.Геотермальная энергетика - направление энергетики, основанное на производстве электрической и тепловой энергии за счёт тепловой энергии, содержащейся в недрах земли, на геотермальных станциях. В вулканических районах циркулирующая вода перегревается выше температур кипения на относительно небольших глубинах и по трещинам поднимается к поверхности, иногда проявляя себя в виде гейзеров. Доступ к подземным тёплым водам возможен при помощи глубинного бурения скважин. Более распространены сухие высокотемпературные породы, энергия которых доступна при помощи закачки и последующего отбора из них перегретой воды. Высокие горизонты пород с температурой менее 100 °C распространены и на множестве геологически малоактивных территорий, потому наиболее перспективным считается использование геотерм в качестве источника тепла. Хозяйственное применение геотермальных источников распространено в Исландии и Новой Зеландии, Италии и Франции, Литве, Мексике, Никарагуа, Коста-Рике, Филиппинах, Индонезии, Китае, Японии, Кении. Крупнейшей в мире геотермальной установкой является установка на гейзерах в Калифорнии, с номинальной мощностью 750 МВт.

6.Биотопливо - это топливо из биологического сырья, получаемое, как правило, в результате переработки биологических отходов. Существуют также проекты разной степени проработанности, направленные на получение биотоплива из целлюлозы и различного типа органических отходов, но эти технологии находятся в ранней стадии разработки или коммерциализации. Различается жидкое биотопливо (для двигателей внутреннего сгорания, например, этанол, метанол, биодизель), твёрдое биотопливо (дрова, брикеты,топливные гранулы, щепа, солома, лузга) и газообразное (биогаз, водород).

США и Бразилия производят 95 % мирового объёма биоэтанола. Этанол в Бразилии производится преимущественно из сахарного тростника, а в США из кукурузы. По оценкам Merrill Lynch прекращение производства биотоплив приведёт к росту цен на нефть и бензин на 15%.

Этанол является менее «энергоплотным» источником энергии чем бензин; пробег машин, работающих на Е85 (смесь 85 % этанола и 15 % бензина; буква «Е» от английского Ethanol), на единицу объёма топлива составляет примерно 75 % от пробега стандартных машин. Обычные машины не могут работать на Е85, хотя двигатели внутреннего сгорания прекрасно работают на Е10 (некоторые источники утверждают, что можно использовать даже Е15). На «настоящем» этаноле могут работать только т. н. «Flex-Fuel» машины («гибкотопливные» машины). Эти автомобили также могут работать на обычном бензине (небольшая добавка этанола всё же требуется) или на произвольной смеси того и другого. Бразилия является лидером в производстве и использовании биоэтанола из сахарного тростника в качестве топлива.

Критики развития биотопливной индустрии заявляют, что растущий спрос на биотопливо вынуждает сельхозпроизводителей сокращать посевные площади под продовольственными культурами и перераспределять их в пользу топливных. По расчётам экономистов из Университета Миннесоты, в результате биотопливного бума число голодающих на планете к 2025 году возрастёт до 1,2 млрд. человек.

С другой стороны, продовольственная и сельскохозяйственная организация ООН (FAO) в своем отчете говорит о том, что рост потребления биотоплив может помочь диверсифицировать сельскохозяйственную и лесную деятельность, способствуя экономическому развитию. Производство биотоплив позволит создать в развивающихся странах новые рабочие места, снизить зависимость развивающихся стран от импорта нефти. Кроме этого производство биотоплив позволит вовлечь в оборот ныне не используемые земли. Например, в Мозамбике сельское хозяйство ведётся на 4,3 млн. га из 63,5 млн. га потенциально пригодных земель. По оценкам Стэндфордского университета во всём мире из сельскохозяйственного оборота выведено 385-472 миллиона гектаров земли. Выращивание на этих землях сырья для производства биотоплив позволит увеличить долю биотоплив до 8 % в мировом энергетическом балансе. На транспорте доля биотоплив может составить от 10 % до 25 %.

7.Водородная энергетика - развивающаяся отрасль энергетики, направление выработки и потребления энергии человечеством, основанное на использовании водорода в качестве средства для аккумулирования, транспортировки и потребления энергии людьми, транспортной инфраструктурой и различными производственными направлениями. Водород выбран как наиболее распространенный элемент на поверхности земли и в космосе, теплота сгорания водорода наиболее высока, а продуктом сгорания в кислороде является вода (которая вновь вводится в оборот водородной энергетики).

Топливный элемент - электрохимическое устройство, подобное гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне - в отличие от ограниченного количества энергии, запасенного в гальваническом элементе или аккумуляторе. Топливные элементы - это электрохимические устройства, которые могут иметь очень высокий коэффициент преобразования химической энергии в электрическую (~80 %). Обычно в низкотемпературных топливных элементах используются: водород со стороны анода и кислород на стороне катода (водородный элемент). В отличие от топливных элементов, одноразовые гальванические элементы содержат твердые реагенты, и когда электрохимическая реакция прекращается, должны быть заменены, электрически перезаряжены, чтобы запустить обратную химическую реакцию, или, теоретически, в них можно заменить электроды. В топливном элементе реагенты втекают, продукты реакции вытекают, и реакция может протекать так долго, как поступают в нее реагенты и сохраняется работоспособность самого элемента. Топливные элементы не могут хранить электрическую энергию, как гальванические или аккумуляторные батареи, но для некоторых применений, таких как работающие изолированно от электрической системы электростанции, использующие непостоянные источники энергии (солнце, ветер), они совместно с электролизёрами, компрессорами и ёмкостями для хранения топлива (например, баллоны для водорода), образуют устройство для хранения энергии. Общий КПД такой установки (преобразование электрической энергии в водород, и обратно в электрическую энергию) 30-40 %.

Топливные элементы обладают рядом ценных качеств, среди которых:

7.1 Высокий КПД : у топливных элементов нет жёсткого ограничения на КПД, как у тепловых машин. Высокий КПД достигается благодаря прямому превращению энергии топлива в электроэнергию. Если в дизель-генераторных установках топливо сначала сжигается, полученный пар или газ вращает турбину или вал двигателя внутреннего сгорания, которые в свою очередь вращают электрический генератор. Результатом становится КПД максимум в 42 %, чаще же составляет порядка 35-38 %. Более того, из-за множества звеньев, а также из-за термодинамических ограничений по максимальному КПД тепловых машин, существующий КПД вряд ли удастся поднять выше. У существующих топливных элементов КПД составляет 60-80 %.

7.2Экологичность . В воздух выделяется лишь водяной пар, что является безвредным для окружающей среды. Но это лишь в локальном масштабе. Нужно учитывать экологичность в тех местах, где производятся данные топливные ячейки, так как производство их само по себе уже составляет некую угрозу.

7.3 Компактные размеры . Топливные элементы легче и занимают меньший размер, чем традиционные источники питания. Топливные элементы производят меньше шума, меньше нагреваются, более эффективны с точки зрения потребления топлива. Это становится особенно актуальным в военных приложениях.

Проблемы топливных элементов .

Внедрению топливных элементов на транспорте мешает отсутствие водородной инфраструктуры. Возникает проблема «курицы и яйца» - зачем производить водородные автомобили, если нет инфраструктуры? Зачем строить водородную инфраструктуру, если нет водородного транспорта? Топливные элементы, в силу низкой скорости химических реакций, обладают значительной инертностью и для работы в условиях пиковых или импульсных нагрузок требуют определённого запаса мощности или применения других технических решений (сверхконденсаторы, аккумуляторные батареи). Также существует проблема получения водорода и хранения водорода. Во-первых, он должен быть достаточно чистый, чтобы не произошло быстрого отравления катализатора, во-вторых, достаточно дешёвый, чтобы его стоимость была рентабельна для конечного потребителя.

Существует множество способов производства водорода, но в настоящее время около 50 % водорода, производимого во всём мире, получают из природного газа. Все остальные способы пока дорогостоящи. Существует мнение, что с ростом цен на энергоносители стоимость водорода также растёт, так как он является вторичным энергоносителем. Но себестоимость энергии, производимой из возобновляемых источников, постоянно снижается.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

«РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГЕОЛОГОРАЗВЕДОЧНЫЙ УНИВЕРСИТЕТ ИМЕНИ СЕРГО ОРДЖОНИКИДЗЕ»

Факультет геоэкологии и географии

Кафедра экологии и природопользования

По курсу “Техногенные системы и экориск”

“Возобновляемые и не возобновляемые источники энергии”

1. Возобновляемые энергоресурсы. 4

1.1. Классификация возобновляемых источников энергии. 4

1.2. Ветроэнергетика. 5

1.3. Гидроэнергетика. 7

1.4 Гелиоэнергетика. 9

1.5 Энергия биомассы. 11

2. Невозобновляемые источники энергии. 13

2.1. Представители невозобновляемых энергоисточников. 14

2.1.3. Природный газ. 17

2.2. Получение атомной энергии. 17

2.2.1. Атомные электростанции. 18

2.2.2. Преимущества и недостатки АЭС. 19

2.2.3. Аварии на АЭС. 20

Список использованной литературы. 22

В современном мире существуют несколько глобальных проблем. Одна из них – истощение природных ресурсов. С каждой минутой в мире используется огромное количество нефти и газа для нужд человека. Поэтому возникает вопрос: на долго ли нам хватит этих ресурсов, если продолжать их использовать в таком же огромном объеме? По расчетам, запас нефтяных ресурсов планеты исчерпается к концу нынешнего столетия. То есть, нашим внукам и правнукам будет нечего использовать для получения энергии? Звучит пугающе. Также использование традиционных полезных ископаемых плохо влияет на экологическую обстановку мира. Поэтому, человечество сейчас все больше задумывается об альтернативных источниках получения энергии. В этом и состоит актуальность данной реферативной работы.

Классификация возобновляемых источников энергии

Возобновляемые источники энергии (ВИЭ) – это энергоресурсы постоянно существующих природных процессов на планете, а также энергоресурсы продуктов. жизнедеятельности биоцентров растительного и животного происхождения Характерной особенностью ВИЭ является цикличность их возобновления, которая позволяет использовать эти ресурсы без временных ограничений.

Обычно, к возобновляемым источникам энергии относят энергию солнечного излучения, потоков воды, ветра, биомассы, тепловую энергию верхних слоев земной коры и океана.

ВИЭ можно классифицировать по видам энергии:

· механическая энергия (энергия ветра и потоков воды);

· тепловая и лучистая энергия (энергия солнечного излучения и тепла Земли);

· химическая энергия (энергия, заключенная в биомассе).

Потенциальные возможности ВИЭ практически неограниченны, но несовершенство техники и технологии, отсутствие необходимых конструкционных и других материалов пока не позволяет широко вовлекать ВИЭ в энергетический баланс. Однако за последние годы в мире особенно заметен научно-технический прогресс в сооружении установок по использованию ВИЭ и в первую очередь: фотоэлектрических преобразований солнечной энергии, ветроэнергетических агрегатов и биомассы.

Целесообразность и масштабы использования возобновляемых источников энергии определяются в первую очередь их экономической эффективностью и конкурентоспособностью с традиционными энергетическими технологиями. Это объясняется несколькими причинами:

· Нет потребности в транспортировке;

· ВИЭ – экологически выгодны и не загрязняют окружающую среду;

· Отсутствие топливных затрат;

· При определенных условиях, в малых автономных энергосистемах, ВИЭ могут оказаться экономически выгоднее, чем традиционные ресурсы;

· Нет необходимости в использовании воды в производстве.

Энергия ветра уже более 6000 тысяч лет используется людьми. Первые простейшие ветродвигатели применяли в глубокой древности в Египте и Китае. В Египте (около Александрии) сохранились остатки каменных ветряных мельниц барабанного типа, построенных ещё во II-I вв. до н. э. Ветряные мельницы использовались для размола зерна в Персии уже в 200-м году до н. э. Мельницы такого типа были распространены в исламском мире и в 13-м веке принесены в Европу крестоносцами.

Начиная с XIII в., ветродвигатели получили широкое распространение в Западной Европе, особенно в Голландии, Дании и Англии, для подъёма воды, размола зерна и приведения в движение различных станков.

Ветряные мельницы, производящие электричество, были изобретены в 19-м веке в Дании. Там в 1890-м году была построена первая ветроэлектростанция, а к 1908-му году насчитывалось уже 72 станции мощностью от 5 до 25 кВт. Крупнейшие из них имели высоту башни 24 м и четырехлопастные роторы диаметром 23 м.

Однако в начале 19-20 вв. НТП затормозил развитие ветроэнергетики. Полезные ископаемые, такие как нефть и газ, заменили ветер в качестве источника энергии. Но человечество такими темпами истощает природные ресурсы Земли, что вновь встает вопрос о возврате к истокам, т.е. к новому этапу развития ветровой энергетики.

Наиболее острый вопрос ветроэнергетики – экономическая эффективность ВЭУ. Очень важно выбрать правильное место для установки агрегатов. Для этого существуют специальные характеристики, позволяющие правильно подобрать местоположение. Наиболее перспективными местами для производства энергии из ветра считаются прибрежные зоны. В море, на расстоянии 10-12 км от берега (а иногда и дальше) строятся оффшорные фермы. Башни ветрогенераторов устанавливают фундаменты из свай, забитых на глубину до 30 метров. Также могут использоваться и другие типы подводных фундаментов, а также плавающие основания.

Не стоит забывать, что производительность энергии зависит от 2 главных факторов: направления и скорости ветра.

Скорость ветра – главное препятствие развития ветровой энергетики. Ветер характеризуется не только многолетней и сезонной изменчивостью. Он может менять скорость и направление в течение очень коротких промежутков времени. Отчасти кратковременные колебания скорости ветра компенсируются самим ветроагрегатом, особенно на больших скоростях ветра, когда он начинает подтормаживать своё вращение (обычно, после 13-15 м/с). Однако более длительные изменения или снижение скорости ветра влияют на выработку ветроагрегата и всего ветропарка в целом. Но в современной ветроэнергетике этот недостаток сводится к минимуму тем, что ветромониторинг, начинающийся еще на предпроектной стадии, продолжает вестись и в дальнейшем. Накопленная база данных ветропотенциала позволяет прогнозировать выработку ветропарка уже на 2-м году его эксплуатации на 24 часа вперед с достаточно высокой для электрических сетей точностью.

Все ветровые установки можно разделить на 2 больших типа: с вертикальной осью вращения ротора и с горизонтальной.

ВЭС с вертикальной осью вращения (на вертикальную ось «насажено» колесо, на котором закреплены «приемные поверхности» для ветра), в отличие от крыльчатых, могут работать при любом направлении ветра, не изменяя своего положения. Ветродвигатели этой группы тихоходны, поэтому не создают большого шума. В них используются многополюсные электрогенераторы, работающие на малых оборотах, что позволяет применять простые электрические схемы без риска потерпеть аварию при случайном порыве ветра. Главными недостатками таких агрегатов является их малый период вращения и малый КПД по сравнению с горизонтальными ВЭС. К побочным действиям работы таких установок следует отнести наличие низкочастотных вибраций, возникающих за счет дисбаланса ротора.

Ветроэнергетический рынок – один из самых динамично развивающихся в мире. Его рост за 2009 год – 31%.До сих пор ветроэнергетика наиболее динамично развивалась в странах ЕС, но сегодня эта тенденция начинает меняться. Всплеск активности наблюдается в США и Канаде, в то время как в Азии и Южной Америке возникают новые рынки. В Азии, как в Индии, так и в Китае, в 2005 году зарегистрирован рекордный уровень роста.

В настоящее время промышленным производством ВУЭ занимается более 300 фирм. Наиболее развитую промышленность имеют Дания, Германия, США. Серийное производство ветроустановок развито в Нидерландах, Великобритании, Италии и других странах.

Человек с давних пор использовал энергию воды и ее течения в своих нуждах. Поэтому история гидроэнергетики берет свое начало с древних времен: еще древние греки использовали водяные колеса для помола зерна. С течением времени технологии совершенствовались, и в 19 веке была изобретена первая водная турбина. Ее создали отдельно друг от друга 2 ученых: русский исследователь И. Сафонов в 1837 и французский ученый Фурнейрон в 1834 году. Однако изобретателем гидротурбины, можно даже сказать первой ГЭС, считается М. Доливо-Добровольский. Свое изобретение он продемонстрировал на выставке во Франкфурте. Оно состояло из генератора трехфазного тока, который вращала водяная турбина, а электричество, вырабатываемое ею, передавалось по 170 километровым проводам на всю территорию выставки. В настоящее время энергия воды составляет более 60 процентов от всех ВИЭ и является самой производительной из всех (КПД современных ГЭС составляет около 85-95%). После этого в мире начинается «гидроэнергетический бум».

Основными причинами столь бурного развития гидроэнергетики являются постоянное возобновление ресурсов круговоротом воды в природе и относительно простыми механизмами добычи самой энергии. Однако, зачастую, постройка и установка ГЭС очень трудоемкий и капиталоемкий процесс. Особенно это относится к сооружению плотин и накоплению огромных масс воды за ними. Также стоит отметить, что добыча гидроэнергии экологически чистый процесс. Но пока людям служит лишь небольшая часть гидроэнергетического потенциала земли. Ежегодно огромные потоки воды, образовавшиеся от дождей и таяния снегов, стекают в моря неиспользованными. Если бы удалось задержать их с помощью плотин, человечество получило бы дополнительно колоссальное количество энергии .

Если описывать работу ГЭС, то ее принцип заключается в выработке энергии турбиной, вращаемой с помощью падающей с неопределенной высоты воды. Гидравлическая турбина преобразует энергию воды, текущей под напором, в механическую энергию вращения вала. Существуют разные конструкции гидротурбин, соответствующие разным скоростям течения и разным напорам воды, но все они имеют только два лопастных венца. Ось вращения турбины, рассчитанной на большой расход и малый напор, обычно располагают горизонтально. Такие турбины называют осевыми или пропеллерными. Во всех крупных осевых турбинах лопасти рабочего колеса могут поворачиваться в соответствии с изменениями напора, что особенно ценно в случае приливных ГЭС, всегда работающих в условиях переменного напора. Турбины устанавливаются в зависимости от напора водяного потока на ГЭС.

Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:

· Мощные – вырабатывают от 25 МВТ до 250 МВт и выше;

· Средние – до 25 МВт;

· Малые гидроэлектростанции – до 5 МВт.

Мощность ГЭС напрямую зависит от напора воды, а также от КПД используемого генератора. Из-за того, что по природным законам уровень воды постоянно меняется, в зависимости от сезона, а также еще по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы гидроэлектростанции.

В гидроэлектрические станции, в зависимости от их назначения, также могут входить дополнительные сооружения, такие как шлюзы или судоподъемники, способствующие навигации по водоему, рыбопропускные, водозаборные сооружения, используемые для ирригации и многое другое.

В настоящее время лидерами по выработке гидроэнергии являются Норвегия, Китай, Канада, Россия. Лидером по количеству энергии воды на душу населения является Исландия.

Солнце – один из самых источников излучения в нашей Вселенной. И поэтому не случайно энергия звезды все больше используется человеком для переработки в электричество. Действительно, излучение Солнца, доходящее до всей поверхности Земли, имеет колоссальную мощность 1,2*10 14 кВт. И иногда очень обидно, что огромная часть этой энергии пропадает зря, особенно если она по своему количеству в разы превосходит ресурсы всех остальных ВИЭ вместе взятых. Поэтому в последние годы все активнее развивается гелиоэнергетика, в которой используется солнечная радиация для получения электричества.

Однако с помощью солнечного тепла можно не только получать ток, но обеспечивать теплопроводность. Такое возможно благодаря солнечным коллекторам, в которых нагревается вода при помощи солнечной радиации. И теперь она может использоваться для обогрева каких-либо сооружений.

Также как и в ветроэнергетике, для гелиостанций очень важно правильно выбрать место для их постройки. Не следует забывать, что солнечные лучи, прежде чем достигнуть поверхности Земли, преодолевают множество преград. Прежде всего, к ним можно отнести атмосферу, а в особенности озоновый слой. Именно благодаря ему на Земле вообще возможна жизнь, ведь он не пропускает вредное для всего живого ультрафиолетовое излучение. Также немаловажную роль играют содержащиеся в атмосфере частицы водяного пара, пыли, примесей газов и другие аэрозоли. Они частично рассеивают радиацию.

В целом, поступление радиации на земную поверхность зависит от:

· Климатических особенностей территории;

· Высоты места приема над уровнем моря;

· Высоты солнца над горизонтом и др.

Общее излучение, доходящее до Земли подразделяется на:

· Прямое излучение, дошедшее до Земли;

На основе этих величин составляется суммарный радиационный баланс земли, по которому определяются наиболее удачные места для расположения гелиостанций.

Классифицировать их можно по:

· Виду преобразования солнечной энергии в другие ее виды – тепло или электричество

· Концентрированию энергии – с концентраторами или без них

· Технической сложности – простые и сложные

К простым установкам относят опреснители, нагреватели воды, сушилки, печные нагреватели ит.д.

К сложным относятся установки, которые преобразуют поступившую солнечную энергию в электрическую путем фотоэлектрических приборов.

Одним из лидеров использования солнечной энергии является Швейцария. В данный момент в стране эффективно развивается программа по строительству гелиостанций. Также идет тенденция на производство солнечных батарей, устанавливающихся на крыши зданий или как фасады. Такие установки могут компенсировать 50…70% энергии, затрачиваемой на производство

К биомассе относятся все вещества органического происхождения.

1. Древесина. Уже многие тысячи лет человек использует дрова для получения тепла, приготовления пищи, освещения жилья. Да и до сих пор в мелких поселениях традиционно используется этот вид получения энергии. К сожалению это все приводит к одной из важнейших проблем мира – вырубки лесов. Однако эта задача решается с помощью использования энергии быстрорастущих деревьев, таких как тополь, ива и др.

2. Отстой сточных вод. Если вдуматься, то в использованных человеком водах таятся огромные запасы энергии. При отстаивании жидкости образуется огромное количество твердого вещества, которое при переработке анаэробными бактериями может содержать около 50% органического вещества. Однако существуют значительные трудности при переработке сточных вод. Главное из них – высушивание этих вод, так как на это тратится много тепла, которое по своим количественным характеристикам может превосходить теоретические значение энергии при полном сгорании отстоянного вещества. Также этот процесс не рентабелен с точки зрения экологии. Ведь при сгорании выделяется большое количество углекислого газа. Самым правильным вариантом в этом случае считается получение метана при помощи анаэробных бактерий. Но установки для этого весьма несовершенны, поэтому этот способ в современное время не получает большого размаха.

3. Отходы животноводства. Экскременты животных содержат высокое количество органического вещества, которые может использоваться для получения энергии. Однако так же, как и в случае со сточными водами, в навозе содержится большое количество влаги, поэтому его высушивание не выгодно. Тогда существует другой вариант – это анаэробное перегнивание. С помощью него получают метан, а оставшиеся вещества могут пойти на удобрения для почв. Но стоит помнить, что количество перерабатываемого вещества гораздо больше в более свежем навозе, поэтому, чтобы его переработка была экономически выгодна, нужны специальные постройки, позволяющие собирать все экскременты в одно место, не теряя его свежести.

4. Растительные остатки. После сбора урожая всегда остаются неиспользуемые части растений. Они представляют еще один источник энергии. В них содержится целлюлоза – углеродсодержащий углевод. Благодаря относительно небольшому количеству влаги в останках, при сжигании они выделяют много энергии. Ограничивающим фактором развития этого источника энергии является сезонность произрастания культур. Чтобы обеспечить круглогодичное использование останков растений, нужны специальные сооружения для их роста . Также немаловажными факторами являются потребность в перевозки к месту переработки и легкость сбора культур.

5. Пищевые отходы. Они тоже могут служить источником получения энергии. Особенно учитывая, что, например, в отходах фруктов содержится большее количество углеродсодержащих сахаров, чем в остатках зерновых культур, а в остатках мясных продуктов значительное количество протеина. Но наличие влаги затрудняет возможность получения энергии путем сгорания отходов. Поэтому целесообразней из них получать метан с помощью бактерий. Но тут появляется другая трудность: пищевые отходы с успехом используются в животноводстве. Поэтому этот источник практически не развивается в наше время. Исключение только составляют отходы в виде семян и шелухи, а также остатки от сахарного тростника. Например, в странах, где произрастает много тростника, его отходы идут на производство этанола, который при сжигании выделяет большое количество энергии. Самым ярким примером могут послужить Гавайские острова.

Классификация возобновляемых источников энергии


Классификация возобновляемых источников энергии МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГЕОЛОГОРАЗВЕДОЧНЫЙ УНИВЕРСИТЕТ ИМЕНИ СЕРГО ОРДЖОНИКИДЗЕ»

Виды возобновляемой энергии

К возобновляемым источникам энергии, ресурсы которых по мере использования не уменьшаются, относятся: солнечная энергия, энергия ветра, гидроэнергия, энергия морских приливов и волн, энергия биомассы. Все эти виды энергии имеют солнечное происхождение. Гидроэнергия в больших объёмах используется для производства электроэнергии, поэтому не относится к нетрадиционным источникам, исключая малые ГЭС.

К возобновляемым источникам энергии обычно относят и геотермальную энергию – глубинное тепло Земли, образующееся в недрах Земли в результате химических реакций, распада радиоактивных элементов и других процессов.

Самый мощный источник возобновляемой энергии – солнечная радиация. Считается, что на один квадратный метр поверхности Земли приходится в среднем около 150 Вт солнечной радиации. Мощность, поступающая с солнечными лучами на площадку суши размером 100´100 км 2 , соизмерима с установленной мощностью всех электростанций планеты.

Однако преобразование солнечной энергии, как впрочем и других возобновляемых видов, в электрическую сопряжено с большими затратами. Это связано, главным образом, с низкой плотностью энергии, запасённой в любом возобновляемом источнике.

Другим недостатком возобновляемых источников является неравномерность поступления энергии. Наступила ночь, или солнце скрылось за тучами – резко снизилось поступление энергии.

Несмотря на это сегодня в мире использование нетрадиционных возобновляемых источников энергии (НВИЭ) достигло промышленного уровня, ощутимого в энергобалансе ряда стран. Масштабы применения НВИЭ в мире непрерывно и интенсивно возрастают. В 2012 г. мощность энергоустановок на НВИЭ по данным РАН составила 990 ГВт, что больше мощности всех АЭС. Это направление является одним из наиболее динамично развивающихся среди других направлений в энергетике. В 2012 г объем инвестиций в ВИЭ составил. 244 млрд. долларов США.

Существенный импульс развитию НВИЭ во многих западных странах придал нефтяной кризис 1973 г., который по существу перевел это направление из стадии разрозненных НИР к стадии реализации целенаправленных государственных программ НИОКР и создания опытных и головных образцов оборудования и демонстрационных объектов по использованию НВИЭ. Эти работы являлись составной частью предпринятых энергосберегающих мероприятий, направленных на снижение зависимости от импорта нефтепродуктов.

По мере стабилизации нефтяного рынка и снижения мировых цен на нефть в 80-е годы главным стимулом развития НВИЭ стали экологические соображения, так как природоохранная идеология к этому времени прочно укоренилась в общественном сознании в развитых странах. В целом же использование НВИЭ рассматривается как альтернативная резервная технология в области энергетики, развитие которой необходимо, поскольку наперед неизвестно, в какие сроки и какие масштабные ограничения могут быть наложены на традиционную топливную и ядерную энергетику вследствие ее влияния на окружающую среду. Поэтому данное направление признано во многих странах одним из приоритетных направлений в энергетике. В 2012 г. в 138 странах действуют программы развития НВИЭ.

Развитие этого направления поддерживается узаконенным правом подключения НВИЭ к электрическим сетям энергоснабжающих компаний и продажей электроэнергии, налоговыми льготами и государственными программами финансирования научно-исследовательских работ по использованию НВИЭ.

Наиболее приоритетными по объёму финансирования являются НВИЭ на основе солнечной энергетика (100 млрд.$), затем следует ветровая энергия (80 млрд.), биомасса, и замыкают этот список малые ГЭС и энергия океана.

В настоящее время суммарная установленная мощность солнечных электростанций составляет более 100 ГВт, геотермальных более 6000 МВт, ветроэлектростанций – более 280 ГВт, приливных более 250 МВт.

Успехи России на этом направлении более скромные. И это при том, что ещё в 30-е годы прошлого века в созданном при Академии наук энергетическом институте по инициативе Г.М. Кржижановского были начаты исследования по возобновляемым источникам энергии, направленные на использование в первую очередь солнечной и ветровой энергии, а в 40-е годы в институте была создана специализированная лаборатория для проведения исследований в данной области.

Оценка экономического потенциала НВИЭ по России составляет примерно 250 млн. т у.т. в год, в том числе геотермальная энергия – 115, малая гидроэнергетика – 65, энергия биомассы – 35, низкопотенциальное тепло – 32, солнечная энергия – 12, энергия ветра – 10.

Виды возобновляемой энергии


Виды возобновляемой энергии К возобновляемым источникам энергии, ресурсы которых по мере использования не уменьшаются, относятся: солнечная энергия, энергия ветра, гидроэнергия, энергия морских

7 Возобновляемые источники энергии

7.1. Возобновляемые источники энергии

Таблица 7.1 – Потенциальные запасы источников энергии на Земле

Энергия ископаемого топлива

Энергия солнечных лучей

Энергия морей и океанов

Энергия внутреннего тепла Земли

Европейское Сообщество с точки зрения энергоснабжения. Насколько различно количество ежегодно производимой электроэнергии в каждом государстве-участнике ЕС, настолько отличается и роль отдельных энергоносителей в этих странах.

Таблица 7.2. Потенциал альтернативной энергетики Украины

Показатель

Установленная мощность, млн кВт

Выработка электроэнергии, млрд кВт*ч

Экономия топлива, млн т в условном исчислении

солнечные коллекторы для обеспечения домов горячей водой;

солнечные фотоэлектрические батареи (особенно в сельских местностях);

солнечные тепловые электростанции (в дальней перспективе).

Фотоэлектрические (солнечные) батареи могут снабжать электричеством дома. Малые по величине и легко растяжимые панели могут вырабатывать электричество для поселков городского типа во всем мире без больших электростанций или силовых кабелей. Массивные комплекты таких батарей могут производить столько электричества, сколько производит малая электростанция. Сегодня, по крайней мере, две дюжины компаний США используют фотоэлектрические панели в своей работе. В 1990 во Флориде начали продавать здания, которые электрифицированы за счет установленных на их крыше солнечных батарей. Хотя системы солнечных батарей составляют около одной трети от стоимости каждого дома, они окупаются в счет оплаты за электричество. Новая технология позволяет встраивать солнечные батареи в кровельный материал крыш.

Рабочим телом в коллекторах служит вода, а в зимний период – водно-спиртовой раствор. Эффективность использования падающего на приемник излучения составляет от 20% до 35%, произведенная электроэнергия – от 10% до 30% эффективного падающего излучения. Принципиальная схема такой установки приведена на рис.7.4.

В настоящее время разработаны проекты гелиобашен на 12 МВт, на 100 МВт (США), их стоимость значительно меньше, чем “Салар-1”, и имеется перспектива дальнейшего удешевления (Компания “Southern California Edison” и др.). Построены гелиоэнергетические башни в Испании (Альмерия), на Сицилии (Адрано), во Франции (Телнес), в Японии (Нио Таун), но они несколько меньше, чем “Салар-1”.

7.2.2. Прямое преобразование солнечной энергии в электрическую

Единственным недостатком солнечных батарей пока остается их сравнительно высокая стоимость (8-12 центов за киловатт-час), но многими компаниями ведутся работы по удешевлению стоимости изготовления солнечных элементов. Германская компания успешно испытала гелиоэлектрическое окно, разрабатываются технологии установки солнечных элементов на фасадах зданий и сооружений. Комплексы солнечных элементов – идеальная технология для электрификации сельских местностей. В Индии установлены солнечные батареи в 38000 деревень, в Зимбабве – в 2500 деревень. На крышах домов в Южной Африке, Шри Ланке, Доминиканской республике и других слабо развитых странах установлено более 200000 комплексов солнечных элементов, в Норвегии – 50000, в США – около 100000.

7.2.3. Потенциал и перспективы использования солнечной энергии

7.3. Ветроэнергетика и малая гидроэнергетика

7.3.1. Потенциал и перспективы развития ветроэнергетики

Паровая тяга все еще обеспечивает значительную часть требуемой нам энергии. Даже лучшие из современных атомных реакторов всего лишь.

Характеристики возобновляемых источников энергии и основные аспекты их использования в России

Возобновляемые источники энергии

Это виды энергии, непрерывно возобновляемые в биосфере Земли. К ним относится энергия солнца, ветра, воды (в том числе сточных вод)

ВОСПИТАТЕЛЬНАЯ ПРОБЛЕМА ШКОЛЫ

Валеологическая направленность учебного и воспитательного процесса в образовательном учреждении

ВОСПИТАТЕЛЬНЫЕ ЗАДАЧИ ШКОЛЫ

Формировать активную гражданскую позицию, чувства патриотизма и национальной гордости, позитивное отношение к разнообразию культур.

Совершенствовать деятельность ученического самоуправления для формирования позитивных социальных качеств в процессе деятельности и коммуникативного взаимодействия.

Формировать здоровье сберегающую среду за счет совершенствования организации внеурочной деятельности учащихся.

Совершенствовать совместную работу семьи и школы по воспитанию конкурентоспособной, социально адаптированной личности.

Характеристики возобновляемых источников энергии

и основные аспекты их использования в России

1 Возобновляемые источники энергии

Это виды энергии, непрерывно возобновляемые в биосфере Земли. К ним относится энергия солнца, ветра, воды (в том числе сточных вод), исключая применения данной энергии на гидроаккумулирующих электроэнергетических станциях. Энергия приливов, волн водных объектов, в том числе водоемов, рек, морей, океанов. Геотермальная энергия с использованием природных подземных теплоносителей. Низко потенциальная тепловая энергия земли, воздуха, воды с применением особых теплоносителей. Биомасса, включающая в себя специально выращенные для получения энергии растения, в том числе деревья, а также отходы производства и потребления, за исключением отходов, полученных в процессе использования углеводородного сырья и топлива. А также биогаз; газ, выделяемый отходами производства и потребления на свалках таких отходов; газ, образующийся на угольных разработках.

Теоретически возможна и энергетика, основанная на использовании энергии волн, морских течений, теплового градиента океанов (ГЭС установленной мощностью более 25 МВт). Но пока она не получила распространения.

Способность источников энергии возобновляться не означает, что изобретен вечный двигатель. Возобновляемые источники энергии (ВИЭ) используют энергию солнца, тепла, земных недр, вращения Земли. Если солнце погаснет, то Земля остынет, и ВИЭ не будут функционировать.

2 Преимущества возобновляемых источников энергии в сравнении с традиционными

Традиционная энергетика основана на применении ископаемого топлива, запасы которого ограничены. Она зависит от величины поставок и уровня цен на него, конъюнктуры рынка.

Возобновляемая энергетика базируется на самых разных природных ресурсах, что позволяет беречь невозобновляемые источники и использовать их в других отраслях экономики, а также сохранить для будущих поколений экологически чистую энергию.

Независимость ВИЭ от топлива обеспечивает энергетическую безопасность страны и стабильность цен на электроэнергию

ВИЭ экологично чисты: при их работе практически нет отходов, выброса загрязняющих веществ в атмосферу или водоемы. Отсутствуют экологические издержки, связанные с добычей, переработкой и транспортировкой ископаемого топлива.

В большинстве случаев ВИЭ-электростанции легко автоматизируются и могут работать без прямого участия человека.

В технологиях возобновляемой энергетики реализуются новейшие достижения многих научных направлений и отраслей: метеорологии, аэродинамики, электроэнергетики, теплоэнергетики, генераторо- и турбостроения, микроэлектроники, силовой электроники, нанотехнологий, материаловедения и т. д. Развитие наукоемких технологий позволяет создавать дополнительные рабочие места за счет сохранения и расширения научной, производственной и эксплуатационной инфраструктуры энергетики, а также экспорта наукоемкого оборудования.

3 Наиболее распространенные возобновляемые источники энергии

И в России, и в мире – это гидроэнергетика. Около 20% мировой выработки электроэнергии приходится на ГЭС.

Активно развивается мировая ветроэнергетика: суммарные мощности ветрогенераторов удваиваются каждые четыре года, составляя более 150 000 МВт. Во многих странах ветроэнергетика занимает прочные позиции. Так, в Дании более 20% электроэнергии вырабатывается энергией ветра.

Доля солнечной энергетики относительно небольшая (около 0,1% мирового производства электроэнергии), но имеет положительную динамику роста.

Геотермальная энергетика имеет важное местное значение. В частности, в Исландии такие электростанции вырабатывают около 25% электроэнергии.

Приливная энергетика пока не получила значительного развития и представлена несколькими пилотными проектами.

4 Состояние возобновляемой энергетики в России

Этот вид энергетики представлен в России главным образом крупными гидроэлектростанциями, обеспечивающими около 19% производства электроэнергии в стране. Другие виды ВИЭ в России пока заметны слабо, хотя в некоторых регионах, например на Камчатке и Курильских островах, они имеют существенное значение в местных энергосистемах. Суммарная мощность малых гидроэлектростанций порядка 250 МВт, геотермальных электростанций – около 80 МВт. Ветроэнергетика позиционируется несколькими пилотными проектами общей мощностью менее 13 МВт. Приливная энергетика ограничена возможностями экспериментальной Кислогубской ПЭС.

Обзор возобновляемых источников энергии

5 Энергия солнца

Солнечная энергетика – использование солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует возобновляемый источник энергии и в перспективе может стать экологически чистой, то есть не производящей вредных отходов

Достоинства и недостатки солнечной энергетики

Достоинства Общедоступность и неисчерпаемость источника. Теоретически, полная безопасность для окружающей среды (однако в настоящее время в производстве фотоэлементов и в них самих используются вредные вещества). Существует вероятность того, что повсеместное внедрение солнечной энергетики может изменить альбедо земной поверхности и привести к изменению климата (однако при современном уровне потребления энергии это крайне маловероятно).

Солнечная электростанция не работает ночью и недостаточно эффективно работает в утренних и вечерних сумерках.

Дороговизна солнечных фотоэлементов. Вероятно, с развитием технологии этот недостаток преодолеют. В 1990-2005 гг. цены на фотоэлементы снижались в среднем на 4% в год.

Недостаточный КПД солнечных элементов (вероятно, будет вскоре увеличен).

Поверхность фотопанелей нужно очищать от пыли и других загрязнений. При их площади в несколько квадратных километров это может вызвать затруднения.

Эффективность фотоэлектрических элементов заметно падает при их нагреве, поэтому возникает необходимость в установке систем охлаждения, обычно водяных.

Через 30 лет эксплуатации эффективность фотоэлектрических элементов начинает снижаться.

Сегодня солнечная энергетика широко применяется в случаях, когда малодоступность других источников энергии в совокупности с изобилием солнечного излучения оправдывает её экономически. В России солнечная энергетика существует только в виде небольших установок автономного энергоснабжения, не подключенных к энергосистеме и применяемых частными лицами и небольшими организациями.

Ветер – поток воздуха, движущийся относительно земной поверхности со скоростью свыше 0,6 м/с.

Ветры над большими площадями образуют обширные воздушные течения – муссоны, пассаты, из которых слагается общая и местная циркуляция атмосферы.

Ветроэнергетика – отрасль энергетики, специализирующаяся на использовании энергии ветра – кинетической энергии воздушных масс в атмосфере. Энергию ветра относят к возобновляемым видам энергии, так как она является следствием деятельности солнца.

Получение энергии с помощью ветрогенераторов Ветрогенератор (ветроэлектрическая установка или сокращенно ВЭУ) – устройство для преобразования кинетической энергии ветра в электрическую. Мощность современных ветрогенераторов достигает 6 МВт.

Достоинства и недостатки ветрогенераторов

– Экологически-чистый вид энергии

Ветровая энергетика – лучшее решение для труднодоступных мест.

Относительно невысокий выход электроэнергии

Ветроэнергетика является наиболее развитой сферой практического использования природных возобновляемых энергоресурсов. Мировыми лидерами в ветроэнергетике являются США, Германия, Нидерланды, Дания, Индия. В настоящее время в России возникли новые организации, занимающиеся ветроэнергетикой, постепенно налаживается сотрудничество с зарубежными партнерами.

В России, по мнению экспертов, уникальное сочетание благоприятных факторов для развития ветроэнергетики:

богатый и хорошо изученный потенциал ветра (127 ТВтч);

большие объёмы энергопотребления, связанные с климатическими условиями и структурой экономики.

В настоящее время, прорабатывается и реализуется целый ряд проектов строительства ветроэнергетических станций (ВЭС), мощностью чаще всего от 100 до 300 МВт каждая, практически по всей территории страны, хотя большая часть сконцентрирована на северо-западе и юге европейской части России: Ленинградская область; Псковская область; Ростовская область и Северный Кавказ (Порт Кавказ, Анапа, Темрюк, Карачаево-Черкесия); Оренбург; Остров Русский в Приморье. Всего в России насчитывается 20-25 проектов ВЭС в разной степени продвижения.

Геотермальная энергетика – производство электроэнергии, а также тепловой энергии за счёт тепловой энергии, содержащейся в недрах земли. Обычно относится к альтернативным источникам энергии, возобновимым энергетическим ресурсам.

Тепловая энергия недр образуется за счет расщепления радионуклидов в середине планеты. Этот экологически чистый и постоянно обновляемый источник энергии может быть использован в регионах с вулканическими проявлениями и геологическими аномалиями, когда вода вблизи от поверхности земли нагревается до температуры кипения, в результате чего в виде водяного пара может подаваться на турбины для производства тока. Горячая вода естественных источников (гейзеров) может быть использована непосредственно.

Однако тепло Земли очень “рассеянно”, и в большинстве районов мира человеком может использоваться с выгодой только очень небольшая часть энергии. Из них пригодные для использования геотермальные ресурсы составляют около 1% общей теплоемкости верхней 10-километровой толщи земной коры.

Биогаз – газ, получаемый метановым брожением биомассы. В результате биохимической реакции, в которой принимают участие метановые бактерии, выделяется биогаз, его основными составляющими являются: метан (СН4, около 70%), углекислый газ (СО2, около 30%) и некоторое количество h3, h3S, N2. Теплотворная способность данной газовой смеси от 5000 до 8000 Ккал/м3, в зависимости от состава органических отходов.

Характеристики возобновляемых источников энергии и основные аспекты их использования в России


Возобновляемые источники энергии Это виды энергии, непрерывно возобновляемые в биосфере Земли. К ним относится энергия солнца, ветра, воды (в том числе сточных вод)