В какой клетке крови содержатся хромосомы. Клетки, хромосомы, деление клетки

Хромосомы (др.-греч. χρῶμα - цвет и σῶμα - тело) - нуклеопротеидные структуры в ядре эукариотической клетки(клетки, содержащей ядро), которые становятся легко заметными в определённых фазах клеточного цикла (во время митоза или мейоза).

Хромосомы представляют собой высокую степень конденсации хроматина, постоянно присутствующего в клеточном ядре. Исходно термин был предложен для обозначения структур, выявляемых в эукариотических клетках, но в последние десятилетия всё чаще говорят о бактериальных хромосомах. В хромосомах сосредоточена большая часть наследственной информации.

Хромосомы эукариот

Хромосомы эукариот имеют сложное строение. Основу хромосомы составляет линейная (не замкнутая в кольцо) макромолекула дезоксирибонуклеиновой кислоты (ДНК) значительной длины (например, в молекулах ДНК хромосом человека насчитывается от 50 до 245 миллионов пар азотистых оснований). В растянутом виде длина хромосомы человека может достигать 5 см. Помимо неё, в состав хромосомы входят пять специализированных белков - H1, H2A, H2B, H3 и H4 (так называемые гистоны) и ряд негистоновых белков. Последовательность аминокислот гистонов высококонсервативна и практически не различается в самых разных группах организмов. В интерфазе хроматин не конденсирован, но и в это время его нити представляют собой комплекс из ДНК и белков. Макромолекула ДНК обвивает октомеры (структуры, состоящую из восьми белковых глобул) гистоновых белков H2A, H2B, H3 и H4, образуя структуры, названные нуклеосомами.

В целом вся конструкция несколько напоминает бусы. Последовательность из таких нуклеосом, соединённых белком H1, называется нуклеофиламентом (nucleofilament), или нуклеосомной нитью, диаметром около 10 нм. В ранней интерфазе (фаза G1) основу каждой из будущих хромосом составляет одна молекула ДНК. В фазе синтеза (S) молекулы ДНК вступают в процесс репликации и удваиваются. В поздней интерфазе (фаза G2) основа каждой из хромосом состоит из двух идентичных молекул ДНК, образовавшихся в результате репликации и соединённых между собой в районе центромерной последовательности. Перед началом деления клеточного ядра хромосома, представленная на этот момент цепочкой нуклеосом, начинает спирализовываться, или упаковываться, образуя при помощи белка H1 более толстую хроматиновую нить, или хроматиду, (chromatin fiber) диаметром 30 нм. В результате дальнейшей спирализации диаметр хроматиды достигает ко времени метафазы 700 нм. Значительная толщина хромосомы (диаметр 1400 нм) на стадии метафазы позволяет, наконец, увидеть её в световой микроскоп.

Конденсированная хромосома имеет вид буквы X (часто с неравными плечами), поскольку две хроматиды, возникшие в результате репликации, по-прежнему соединены между собой в районе центромеры. Каждая клетка тела человека содержит в точности 46 хромосом . Хромосомы всегда парны. В клетке всегда имеется по 2 хромосомы каждого вида, пары отличаются друг от друга по длине, форме и наличию утолщений или перетяжек. В большинстве случаев хромосомы достаточно разнятся, чтобы цитолог мог отличить пары хромосом (всего 23 пары).

Следует отметить, что во всех соматических клетках (все клетки организма, кроме половых) хромосомы в парах всегда одинаковые по величине, форме, расположению центромер, в то время как половые хромосомы (23-я пара) у мужчин не одинаковые (ХУ), а у женщин одинаковые (ХХ). Хромосомы в клетке под микроскопом можно увидеть только во время деления - митоза, во время стадии метафазы. Такие хромосомы называются метафазными. Когда клетка не делится хромосомы имеют вид тонких, темноокрашенных нитей, называемых хроматином .

Хроматин представляет собой дезоксирибонуклеопротеид, выявляемый под световым микроскопом в виде тонких нитей и гранул. В процессе митоза (деления клетки) хроматин путем спирализации образует хорошо видимые (особенно в метафазе) интенсивно окрашивающиеся структуры - хромосомы. Метафазная хромосома состоит из двух продольных нитей дезоксирибонуклеопротеида - хроматид, соединенных друг с другом в области первичной перетяжки - центромеры.

Центромера - особым образом организованный участок хромосомы, общий для обеих сестринских хроматид. Центромера делит тело хромосомы на два плеча. В зависимости от расположения первичной перетяжки различают следующие типы хромосом: равноплечие (метацентрические), когда центромера расположена посередине, а плечи примерно равной длины; неравноплечие (субметацентрические), когда центромера смещена от середины хромосомы, а плечи неравной длины; палочковидные (акроцентрические), когда центромера смещена к одному концу хромосомы и одно плечо очень короткое. Существуют еще точковые (телоцентрические) хромосомы, у них одно плечо отсутствует, но в кариотипе (хромосомном наборе) человека их нет. В некоторых хромосомах могут быть вторичные перетяжки, отделяющие от тела хромосомы участок, называемый спутником.

Изучение химической организации хромосом эукариотических клеток показало, что они состоят в основном из ДНК и белков. Как было доказано многочисленными исследованиями, ДНК является материальным носителем свойств наследственности и изменчивости и заключает в себе биологическую информацию - программу развития клетки, организма, записанную с помощью особого кода. Белки составляют значительную часть вещества хромосом (около 65% массы этих структур). Хромосома как комплекс генов представляет собой эволюционно сложившуюся структуру, свойственную всем особям данного вида. Взаимное расположение генов в составе хромосомы играет немаловажную роль в характере их функционирования. Изменение числа хромосом в кариотипе человека может привести к различным заболеваниям.

Наиболее частым хромосомным заболеванием у человека является синдром Дауна , обусловленный трисомией (к паре нормальных хромосом прибавляется еще одна такая же, лишняя) по 21-й хромосоме. Встречается этот синдром с частотой 1-2 на 1000. Нередко трисомия по 21 паре хромосом является причиной гибели плода, однако иногда люди с синдромом Дауна доживают до значительного возраста, хотя в целом продолжительность их жизни сокращена.

Известны трисомии по 13-й хромосоме - Синдром Патау , а также по 18-й хромосоме - синдром Эдвардса , при которых жизнеспособность новорожденных резко снижена. Они гибнут в первые месяцы жизни из-за множественных пороков развития. Достаточно часто у человека встречается изменение числа половых хромосом. Среди них известна моносомия Х (из пары хромосом присутствует только одна (Х0)) - это синдром Шерешевского-Тернера . Реже встречается трисомия Х и синдром Клайнфельтера (ХХУ, ХХХУ, ХУУ и т.д.). Люди с изменением числа половых хромосом при наличии У-хромосомы развиваются по мужскому типу. Это является следствием того, что факторы, определяющие мужской тип развития, находятся в У-хромосоме. В отличии от мутаций аутосом (все хромосомы, кроме половых), дефекты умственного развития у больных выражены не столь отчетливо, у многих оно в пределах нормы, а иногда даже выше среднего. Вместе с тем у них постоянно наблюдается нарушения развития половых органов и роста. Реже встречаются пороки развития других систем.

Хромосомы - это основные структурные элементы клеточного ядра, являющиеся носителями генов, в которых закодирована наследственная информация. Обладая способностью к самовоспроизведению, хромосомы обеспечивают генетическую связь поколений.

Морфология хромосом связана со степенью их спирализации. Например, если в стадии интерфазы (см. Митоз, Мейоз) хромосомы максимально развернуты, т. е. деспирализованы, то с началом деления хромосомы интенсивно спирализуются и укорачиваются. Максимальной спирализации и укорочения хромосомы достигают в стадии метафазы, когда происходит формирование относительно коротких, плотных, интенсивно окрашивающихся основными красителями структур. Эта стадия наиболее удобна для изучения морфологических характеристик хромосом.

Метафазная хромосома состоит из двух продольных субъединиц - хроматид [ выявляет в строении хромосом элементарные нити (так называемые хромонемы, или хромофибриллы) толщиной 200 Å, каждая из которых состоит из двух субъединиц].

Размеры хромосом растений и животных значительно колеблются: от долей микрона до десятков микрон. Средние длины метафазных хромосом человека лежат в пределах 1,5-10 микрон.

Химической основой строения хромосом являются нуклеопротеиды - комплексы (см.) с основными белками - гистонами и протаминами.

Рис. 1. Строение нормальной хромосомы.
А - внешний вид; Б - внутреннее строение: 1-первичная перетяжка; 2 - вторичная перетяжка; 3 -спутник; 4 - центромера.

Индивидуальные хромосомы (рис. 1) различают по локализации первичной перетяжки, т. е. места расположения центромеры (во время митоза и мейоза к этому месту прикрепляются нити веретена, подтягивая ее при этом к полюсу). При утрате центромеры фрагменты хромосом утрачивают способность расходиться при делении. Первичная перетяжка делит хромосомы на 2 плеча. В зависимости от расположения первичной перетяжки хромосомы подразделяют на метацентрические (оба плеча равной или почти равной длины), субметацентрические (плечи неравной длины) и акроцентрические (центромера смещена на конец хромосомы). Помимо первичной, в хромосомах могут встречаться менее выраженные вторичные перетяжки. Небольшой концевой участок хромосом, отделенный вторичной перетяжкой, называют спутником.

Каждый вид организмов характеризуется своим специфическим (по числу, размерам и форме хромосом) так называемым хромосомным набором. Совокупность двойного, или диплоидного, набора хромосом обозначают как кариотип.



Рис. 2. Нормальный хромосомный набор женщины (в правом нижнем углу две X-хромосомы).


Рис. 3. Нормальный хромосомный набор мужчины (в правом нижнем углу - последовательно Х- и Y-хромосомы).

В зрелых , яйцеклетках и содержится одиночный, или гаплоидный, набор хромосом (n), составляющий половину диплоидного набора (2n), присущего хромосомам всех остальных клеток организма. В диплоидном наборе каждая хромосома представлена парой гомологов, один из которых материнского, а другой отцовского происхождения. В большинстве случаев хромосомы каждой пары идентичны по размерам, форме и генному составу. Исключение составляют половые хромосомы, наличие которых определяет развитие организма в мужском или женском направлении. Нормальный хромосомный набор человека состоит из 22 пар аутосом и одной пары половых хромосом. У человека и других млекопитающих женский определяется наличием двух Х-хромосом, а мужской - одной X-и одной Y-хромосомы (рис. 2 и 3). В женских клетках одна из Х-хромосом генетически неактивна и обнаруживается в интерфазном ядре в виде (см.). Изучение хромосом человека в норме и патологии составляет предмет медицинской цитогенетики. Установлено, что отклонения в числе или структуре хромосом от нормы, возникающие в половых! клетках или на ранних этапах дробления оплодотворенной яйцеклетки, вызывают нарушения нормального развития организма, обусловливая в некоторых случаях возникновение части спонтанных абортов, мертворождений, врожденных уродств и аномалий развития после рождения (хромосомные болезни). Примерами хромосомных болезней могут служить болезнь Дауна (лишняя G-хромосома), синдром Клайнфелтера (лишняя Х-хромосома у мужчин) и (отсутствие в кариотипе Y- или одной из Х-хромосом). В медицинской практике хромосомный анализ проводят или прямым методом (на клетках костного мозга), или после кратковременного культивирования клеток вне организма (периферическая кровь, кожа, эмбриональные ткани).

Хромосомы (от греч. chroma - окраска и soma - тело) - нитевидные, самовоспроизводящиеся структурные элементы клеточного ядра, содержащие в линейном порядке факторы наследственности - гены. Хромосомы отчетливо видны в ядре во время деления соматических клеток (митоза) и во время деления (созревания) половых клеток - мейоза (рис. 1). В том и в другом случае хромосомы интенсивно окрашиваются основными красителями, а также видны на неокрашенных цитологических препаратах в фазовом контрасте. В интерфазном ядре хромосомы деспирализованы и не видны в световой микроскоп, так как их поперечные размеры выходят за пределы разрешающей способности светового микроскопа. В это время отдельные участки хромосом в виде тонких нитей диаметром 100-500 Å можно различить при помощи электронного микроскопа. Отдельные не деспирализовавшиеся участки хромосом в интерфазном ядре видны через световой микроскоп как интенсивно красящиеся (гетеропикнотические) участки (хромоцентры).

Хромосомы непрерывно существуют в клеточном ядре, претерпевая цикл обратимой спирализации: митоз-интерфаза-митоз. Основные закономерности строения и поведения хромосом в митозе, мейозе и при оплодотворении одинаковы у всех организмов.

Хромосомная теория наследственности . Впервые хромосомы описали И. Д. Чистяков в 1874 г. и Страсбургер (Е. Strasburger) в 1879 г. В 1901 г. Уилсон (Е. В. Wilson), а в 1902 г. Саттон (W. S. Sutton) обратили внимание на параллелизм в поведении хромосом и менделевских факторов наследственности - генов - в мейозе и при оплодотворении и пришли к выводу, что гены находятся в хромосомах. В 1915-1920 гг. Морган (Т. Н. Morgan) и его сотрудники доказали это положение, локализовали в хромосомах дрозофилы несколько сот генов и создали генетические карты хромосом. Данные о хромосомах, полученные в первой четверти 20 века, легли в основу хромосомной теории наследственности, согласно которой преемственность признаков клеток и организмов в ряду их поколений обеспечивается преемственностью их хромосомах.

Химический состав и ауторепродукция хромосом . В результате цитохимических и биохимических исследований хромосом в 30 и 50-х годах 20 века установлено, что они состоят из постоянных компонентов [ДНК (см. Нуклеиновые кислоты), основных белков (гистонов или протаминов), негистонных белков] и переменных компонентов (РНК и связанного с ней кислого белка). Основу хромосом составляют дезоксирибонуклеопротеидные нити диаметром около 200 Å (рис. 2), которые могут соединяться в пучки диаметром 500 А.

Открытие Уотсоном и Криком (J. D. Watson, F. Н. Crick) в 1953 г. строения молекулы ДНК, механизма ее авторепродукции (редупликации) и нуклеинового кода ДНК и развитие возникшей после этого молекулярной генетики привело к представлению о генах как участках молекулы ДНК. (см. Генетика). Вскрыты закономерности авторепродукции хромосом [Тейлор (J. Н. Taylor) и др., 1957], оказавшиеся аналогичными закономерностям авторепродукции молекул ДНК (полуконсервативная редупликация).

Хромосомный набор - совокупность всех хромосом в клетке. Каждый биологический вид обладает характерным и постоянным набором хромосом, закрепленным в эволюции данного вида. Различают два основных типа наборов хромосом: одиночный, или гаплоидный (в половых клетках животных), обозначаемый n, и двойной, или диплоидный (в соматических клетках, содержащий пары сходных, гомологичных хромосом от матери и отца), обозначаемый 2n.

Наборы хромосом отдельных биологических видов значительно различаются по числу хромосом: от 2 (лошадиная аскарида) до сотен и тысяч (некоторые споровые растения и простейшие). Диплоидные числа хромосом некоторых организмов таковы: человека - 46, гориллы - 48, кошки - 60, крысы - 42, дрозофилы - 8.

Размеры хромосом у разных видов также различны. Длина хромосом (в метафазе митоза) варьирует от 0,2 мк у одних видов до 50 мк у других, а диаметр от 0,2 до 3 мк.

Морфология хромосом хорошо выражена в метафазе митоза. Именно метафазные хромосомы используют для идентификации хромосом. В таких хромосомах хорошо видны обе хроматиды, на которые продольно расщеплена каждая хромосома и центромер (кинетохор, первичная перетяжка), соединяющий хроматиды (рис. 3). Центромер виден как суженный участок, не содержащий хроматина (см.); к нему крепятся нити ахроматинового веретена, благодаря чему центромер определяет движение хромосом к полюсам в митозе и мейозе (рис. 4).

Потеря центромера, например при разрыве хромосомы ионизирующими излучениями или другими мутагенами, приводит к потере способности куска хромосомы, лишенного центромера (ацентрический фрагмент), участвовать в митозе и мейозе и к потере его из ядра. Это может привести к тяжелому повреждению клетки.

Центромер делит тело хромосомы на два плеча. Расположение центромера строго постоянно для каждой хромосомы и определяет три типа хромосом: 1) акроцентрические, или палочкообразные, хромосомы с одним длинным и вторым очень коротким плечом, напоминающим головку; 2) субметацентрические хромосомы с длинными плечами неравной длины; 3) метацентрические хромосомы с плечами одинаковой или почти одинаковой длины (рис. 3, 4, 5 и 7).


Рис. 4. Схема строения хромосом в метафазе митоза после продольного расщепления центромера: А и А1 - сестринские хроматиды; 1 - длинное плечо; 2 - короткое плечо; 3 - вторичная перетяжка; 4- центромер; 5 - волокна веретена.

Характерными чертами морфологии определенных хромосом являются вторичные перетяжки (не обладающие функцией центромера), а также спутники - маленькие участки хромосом, соединенные с остальным ее телом тонкой нитью (рис. 5). Спутничные нити обладают способностью формировать ядрышки. Характерная структура в хромосоме (хромомеры) - утолщения или более плотно спирализованные участки хромосомной нити (хромонемы). Рисунок хромомер специфичен для каждой пары хромосом.


Рис. 5. Схема морфологии хромосомы в анафазе митоза (хроматида. отходящая к полюсу). А - внешний вид хромосомы; Б - внутреннее строение той же хромосомы с двумя составляющими ее хромонемами (полухроматидами): 1 - первичная перетяжка с хромомерами, составляющими центромер; 2 - вторичная перетяжка; 3 - спутник; 4 - нить спутника.

Число хромосом, их размеры и форма на стадии метафазы характерны для каждого вида организмов. Совокупность этих признаков набора хромосом называется кариотипом. Кариотип можно представить в виде схемы, называемой идиограммой (см. ниже хромосомы человека).

Половые хромосомы . Гены, детерминирующие пол, локализованы в специальной паре хромосом - половых хромосомах (млекопитающие, человек); в других случаях иол определяется соотношением числа половых хромосом и всех остальных, называемых аутосомами (дрозофила). У человека, как и у других млекопитающих, женский пол определяется двумя одинаковыми хромосомами, обозначаемыми как Х-хромосомы, мужской пол определяется парой гетероморфных хромосом: Х и Y. В результате редукционного деления (мейоза) при созревании ооцитов (см. Овогенез) у женщин все яйца содержат по одной Х-хромосоме. У мужчин в результате редукционного деления (созревания) сперматоцитов половина спермиев содержит Х-хромосому, а другая половина Y-хромосому. Пол ребенка определяется случайным оплодотворением яйцеклетки спермием, несущим Х- или Y-хромосому. В результате возникает зародыш женского (XX) или мужского (XY) пола. В интерфазном ядре у женщин одна из Х-хромосом видна как глыбка компактного полового хроматина.

Функционирование хромосом и метаболизм ядра . Хромосомная ДНК является матрицей для синтеза специфических молекул информационной РНК. Этот синтез происходит тогда, когда данный участок хромосомы деспирализован. Примерами локальной активации хромосом служат: образование деспирализованных петель хромосом в ооцитах птиц, амфибий, рыб (так называемые Х-ламповые щетки) и вздутий (пуффов) определенных локусов хромосом в многонитчатых (политенных) хромосомах слюнных желез и других секреторных органов двукрылых насекомых (рис. 6). Примером инактивации целой хромосомы, т. е. выключения ее из метаболизма данной клетки, является образование одной из Х-хромосом компактного тела полового хроматина.

Рис. 6. Политенные хромосомы двукрылого насекомого Acriscotopus lucidus: А и Б - участок, ограниченный пунктирными линиями, в состоянии интенсивного функционирования (пуфф); В - тот же участок в нефункционирующем состоянии. Цифрами обозначены отдельные локусы хромосом (хромомеры).
Рис. 7. Хромосомный набор в культуре лейкоцитов периферической крови мужчины (2n=46).

Вскрытие механизмов функционирования политенных хромосом типа ламповых щеток и других типов спирализации и деспирализации хромосом имеет решающее значение для понимания обратимой дифференциальной активации генов.

Хромосомы человека . В 1922 г. Пейнтер (Т. S. Painter) установил диплоидное число хромосом человека (в сперматогониях), равное 48. В 1956 г. Тио и Леван (Н. J. Tjio, A. Levan) использовали комплекс новых методов исследования хромосом человека: культуру клеток; исследование хромосом без гистологических срезов на тотальных препаратах клеток; колхицин, приводящий к остановке митозов на стадии метафазы и накоплению таких метафаз; фитогемагглютинин, стимулирующий вступление клеток в митоз; обработку метафазных клеток гипотоническим солевым раствором. Все это позволило уточнить диплоидное число хромосом у человека (оно оказалось равным 46) и дать описание кариотипа человека. В 1960 г. в Денвере (США) международная комиссия разработала номенклатуру хромосом человека. Согласно предложениям комиссии, термин «кариотип» следует применять к систематизированному набору хромосом единичной клетки (рис. 7 и 8). Термин «идиотрамма» сохраняется для представления о наборе хромосом в виде диаграммы, построенной на основании измерений и описания морфологии хромосом нескольких клеток.

Хромосомы человека пронумерованы (отчасти серийно) от 1 до 22 в соответствии с особенностями морфологии, допускающими их идентификацию. Половые хромосомы не имеют номеров и обозначаются как Х и Y (рис. 8).

Обнаружена связь ряда заболеваний и врожденных дефектов в развитии человека с изменениями в числе и структуре его хромосом. (см. Наследственность).

См. также Цитогенетические исследования.

Все эти достижения создали прочную базу для развития цитогенетики человека.

Рис. 1. Хромосомы: А - на стадии анафазы митоза в микроспороцитах трилистника; Б - на стадии метафазы первого деления мейоза в материнских клетках пыльцы у традесканции. В обоих случаях видно спиральное строение хромосом.
Рис. 2. Элементарные хромосомные нити с диаметром 100 Å (ДНК + гистон) из интерфазных ядер вилочковой железы теленка (электронная микроскопия): А - изолированные из ядер нити; Б - тонкий срез через пленку того же препарата.
Рис. 3. Хромосомный набор Vicia faba (конские бобы) в стадии метафазы.
Рис. 8. Хромосомы того же, что на рис. 7, набора, систематизированные согласно денверовской номенклатуре в пары гомологов (кариотип).


Хромосомы - это интенсивно окрашенное тельце, состоящее из молекулы ДНК, связанной с белками-гистонами. Хромосомы формируются из хроматина в начале деления клеток (в профазе митоза), но лучше их изучать в метафазе митоза. Когда хромосомы располагаются в плоскости экватора и хорошо видны в световой микроскоп, ДНК в них достигают максимальной спирализации.

Хромосомы состоят из 2 сестринских хроматид (удвоенных молекул ДНК), соединенных друг с другом в области первичной перетяжки - центромеры. Центромера делит хромосому на 2 плеча. В зависимости от расположения центромеры хромосомы подразделяются на:

    метацентрические центромера расположена в середине хромосомы и плечи ее равны;

    субметацентрические центромера смещена от середины хромосом и одно плече короче другого;

    акроцентрические - центромера расположена близко к концу хромосомы и одно плечо значительно короче другого.

В некоторых хромосомах есть вторичные перетяжки, отделяющие от плеча хромосомы участок, называемый спутником, из которого в интерфазном ядре образуется ядрышко.

Правила хромосом

1. Постоянство числа. Соматические клетки организма каждого вида имеют строго определенное число хромосом (у человека -46, у кошки- 38, у мушки-дрозофилы - 8, у собаки -78. у курицы -78).

2. Парность. Каждая хромосома в соматических клетках с диплоидным набором имеет такую же гомологичную (одинаковую) хромосому, идентичную по размерам, форме, но неодинаковую по происхождению: одну - от отца, другую - от матери.

3. Индивидуальность. Каждая пара хромосом отличается от другой пары размерами, формой, чередованием светлых и темных полос.

4. Непрерывность. Перед делением клетки ДНК удваивается и в результате получается 2 сестринские хроматиды. После деления в дочерние клетки попадает по одной хроматиде и, таким о6разом, хромосомы непрерывны - от хромосомы образуется хромосома.

Все хромосомы подразделяются на аутосомы и половые хромосомы. Аутосомы - все хромосомы в клетках, за исключением половых хромосом, их 22 пары. Половые - это 23-я пара хромосом, определяющая формирование мужского и женского организма.

В соматических клетках имеется двойной (диплоидный) набор хромосом, в половых - гаплоидный (одинарный).

Определенный набор хромосом клетки, характеризующийся постоянством их числа, размером и формой, называется кариотипом.

Для того чтобы разобраться в сложном наборе хромосом, их располагают попарно по мере убывания их величины, с учетом положения центромеры и наличия вторичных перетяжек. Такой систематизированный кариотип называется идиограммой.

Впервые такая систематизация хромосом была предложена на конгрессе генетиков в Денвере (США, 1960 г.)

В 1971 г. в Париже классифицировали хромосомы по окраске и чередованию темных и светлых полос гетеро-и эухроматина.

Для изучения кариотипа генетики используют метод цитогенетического анализа, при котором можно диагностировать ряд наследственных заболеваний, связанных с нарушением числа и формы хромосом.

1.2. Жизненный цикл клетки.

Жизнь клетки от момента возникновения в результате деления до ее собственного деления или смерти называется жизненным циклом клетки. В течение всей жизни клетки растут, дифференцируются и выполняют специфические функции.

Жизнь клетки между делениями называется интерфазой. Интерфаза состоит из 3-х периодов: пресинтетического, синтетического и постсинтетического.

Пресuнтетический период следует сразу за делением. В это время клетка интенсивно растет, увеличивая количество митохондрий и рибосом.

В синтетический период происходит репликация (удвоение) количества ДНК, а также синтез РНК и белков.

В постсинmетический период клетка запасается энергией, синтезируются белки ахроматинов ого веретена, идет подготовка к митозу.

Существуют различные типы деления клеток: амитоз, митоз, мейоз.

Амитоз - прямое деление прокариотических клеток и некоторых клеток у человека.

Митоз - непрямое деление клеток, во время которого из хроматина образуются хромосомы. Путем митоза делятся соматические клетки эукариотических организмов, в результате чего дочерние клетки получают точно такой же набор хромосом, какой имела дочерняя клетка.

Митоз

Митоз состоит из 4-х фаз:

    Профаза - начальная фаза митоза. В это время начинается спирализация ДНК и укорочение хромосом, которые из тонких невидимых нитей хроматина становятся короткими толстыми, видимыми в световой микроскоп, и располагаются в виде клубка. Ядрышко и ядерная оболочка исчезает, и ядро распадается, центриоли клеточного центра расходятся по полюсам клетки, между ними растягиваются нити веретена деления.

    Метафаза - хромосомы движутся к центру, к ним прикрепляются нити веретена. Хромосомы располагаются в плоскости экватора. Они хорошо видны в микроскоп и каждая хромосома состоит из 2-х хроматид. В этой фазе можно сосчитать число хромосом в клетке.

    Анафаза - сестринские хроматиды (появившиеся в синтетическом периоде при удвоении ДНК) расходятся к полюсам.

    Телофаза (telos греч. - конец) противоположна профазе: хромосомы из коротких толстых видимых становятся тонкими длинными невидимыми в световой микроскоп, формируются ядерная оболочка и ядрышко. Заканчивается телофаза разделением цитоплазмы с образованием двух дочерних клеток.

Биологическое значение митоза заключается в следующем:

    дочерние клетки получают точно такой же набор хромосом, который был у материнской клетки, поэтому во всех клетках тела (соматических) поддерживается постоянное число хромосом.

    делятся все клетки, кроме половых:

    происходит рост организма в эмбриональном и постэмбриональном периодах;

    все функционально устаревшие клетки организма (эпителиальные клетки кожи, клетки крови, клетки слизистых оболочек и др.) заменяются новыми;

    происходят процессы регенерации (восстановления) утраченных тканей.

Схема митоза

При воздействии неблагоприятных условий на делящуюся клетку веретено деления может неравномерно растянуть хромосомы к полюсам, и тогда образуются новые клетки с разным набором хромосом, возникает патология соматических клеток (гетероплоидия аутосом), что приводит к болезни тканей, органов, организма.

Хромосомы представляют собой нуклеопротеидные структуры, которые находятся в ядре эукариотической клетки, содержащей ядро. Хромосомы наиболее заметны в таких фазах клеточного цикла, как митоз и мейоз. Далее в статье будет приведено описание этих структур. Выясним также,

Общие сведения

В 1902 году были открыты человеческие хромосомы. С того времени наука шагнула далеко вперед. Однако только двадцать лет назад стало точно известно, сколько хромосом у человека. Но при этом споры о числе генов не утихают до сих пор. Предполагаемый диапазон в каждой клетке - от двух тысяч до ста тысяч пар. Тем не менее первая хромосомная карта человека уже составлена. Она показывает схематичное расположение генов в них. Безошибочно рассчитать такую сложную структуру кажется невозможным.

Область назначения

Хромосомные карты различных организмов используются для проведения генетических экспериментов в лабораторных условиях. Например, в них участвуют муха дрозофила, домовая мышь, томат, кукуруза и даже кишечная палочка. Несмотря на то что бактерии имеют приблизительно тысячу генов, удалось установить местонахождение почти всех. У дрозофилы их около пяти тысяч. На данный момент найдено расположение приблизительно 2-х тысяч. Составление таких карт базируется на многочисленных исследованиях и опытах. Скрещивались особи с различными признаками, а затем велась регистрация того, как и какие свойства наследовало потомство. Бесспорно, применять такой метод по отношению к человеку недопустимо. В данном случае возможно лишь проводить наблюдение.

Информация о ДНК

Итак, сколько хромосом у человека? Ученые сумели достаточно точно посчитать их число. В ядре любой клетки организма человека находится 46 хромосом. Из них обычных хромосом - 22 пары. А вот половых - всего одна. Говоря о том, сколько хромосом у человека, следует отметить, что некоторые элементы различаются по своему составу в зависимости от пола. Как это проявляется? У мужчин, например, половая пара содержит две различные хромосомы - X и Y. В то же время у женщин она состоит из двух одинаковых - XX. Самым главным компонентом хромосомы является дезоксирибонуклеиновая кислота. Средняя молекулярная длина ДНК в каждой человеческой клетке составляет приблизительно четыре метра. Вдоль ее нити находится вся генетическая информация. Считывая и распознавая ее, синтезирующие механизмы способны выстраивать различные белки. Они как бы являются органическими строительными блоками. Белки образуют множество жизненно важных соединений. К примеру, огромное количество ферментов, от которых зависят развитие организма и различные процессы биохимического характера. Также осуществляется выработка иммуноглобулинов, которые способны оказывать сопротивление в борьбе с микробами, и многих других необходимых организму ферментов.

Особенности определения

Сколько хромосом у человека, мы с вами выяснили. Теперь следует определить некоторые другие понятия. Ген представляет собой некий участок ДНК, который содержит информацию о синтезе различных белков. Подсчитать количество хромосом у человека ученые смогли благодаря тому, что элементы отличаются по внешнему виду и размерам. Это, собственно, и позволило присвоить каждой структуре свой номер. На данный момент еще не удавалось увидеть в них различные гены. К тому же их наружность не позволила бы точно судить о том, какие именно функции они выполняют. Поэтому единственный способ выявлять гены - наблюдать за результатом их работы, а именно: за особенностями функционирования организма конкретного человека, за его внешним видом и составом крови.

Трудности исследований

Генетика - это наука, посвященная изучению наследственности и изменчивости, в том числе анализу наследственных заболеваний. Насколько усложняется задача, если ученые должны составить детальную схему и понять принцип работы системы, при этом не имея возможности проводить какие-либо опыты? В этом случае они могут ориентироваться исключительно на естественный результат деятельности структуры. В такой неоднозначной ситуации находятся генетики, когда пытаются изучать наследственный аппарат человека. Тем не менее они могут вести наблюдение не за одним объектом, а за множеством "экземпляров" сразу. Их работа заключается в изучении ошибок механизма наследования, таких как неисправность генетического аппарата и наследственные болезни. Пристальное исследование этих явлений часто способно облегчить состояние больных и частично восполнить природные аномалии. Сейчас ученые могут только выяснить причину заболевания и установить место возникновения ошибки. Однако в будущем это непременно поможет в устранении симптомов болезни и ее полном искоренении. На данный момент идет накопление теоретической базы, чтобы в дальнейшем ее можно было применять для коррекции ошибочных записей в нитях ДНК.

Открытия, сделанные с помощью делеции

В таком же неведении прозябала и физиология человека, пока не были найдены безвредные для организма способы ее изучения. Широкое распространение получил метод использования лабораторных животных, которые служили близкими моделями человека. Основным прорывом физиологов стало изучение редких заболеваний. Это почти всегда позволяло обнаружить различные методы лечения. К созданию специальных карт привели некоторые сбои генетического аппарата. К их числу относится и делеция. Это явление, которое заключается в пропаже отдельных участков хромосом. Изучая их у человека, который страдает наследственной болезнью, можно обнаружить, что одна из них подвержена делеции. Тогда следует предположение о том, что в утраченном кусочке хромосомы находилась именно та единица наследственности, отсутствие которой спровоцировало возникновение заболевания. Также делеция позволяет выявить гены, отвечающие за производство некоторых ферментов и белков крови. Порой встречается такое явление, как трисомия. Оно происходит, когда в ядре одна из хромосом представлена в тройном количестве, а не в положенном двойном.

Различные нарушения

На ранних стадиях формирования человеческого эмбриона в его организме вырабатывается особая разновидность гемоглобина. Затем она исчезает. У детей, страдающих трисомией тринадцатой хромосомы, данный тип гемоглобина сохраняется. Это позволяет сделать вывод о том, что ген, который отвечает за его синтез, находится именно здесь. Другие случаи нарушений хромосомного набора называют транслокациями. Они также дают возможность выявления дефектных генов. Транслокация представляет собой обрыв кусочка одной хромосомы и вклинивание его в другую, а иногда в ту же самую, но в неподходящем для него месте. С помощью этого явления получилось выяснить местонахождение генов, которые отвечают за определенные группы крови.

Современные способы исследования

В последнее время был создан новый метод картирования генов человека, который помог восполнить множество пробелов в генетике. Ученым наконец-то представилась возможность проводить эксперименты. В 1960 году французские исследователи получили результат слияния двух клеток из культуры тканей мышей. Гибрид оказался в два раз крупнее и обладал числом хромосом, которое было в источниках.

С того момента такие опыты стали проводиться в лабораториях по всему миру. Через пять лет была открыта возможность усовершенствовать метод и подвергать слиянию мышиные клетки не только с им подобными, но и с образцами других млекопитающих. В 1967 году американские ученые установили, что таким способом возможно гибридизировать клетки мыши и человека. Современная наука быстро развивает межвидовое скрещивание. Теперь для выявления связи между пропажей белка и исчезновением очередной хромосомы необходимо использовать ЭВМ. Некоторые специалисты считают, что буквально через десятилетие станет возможной диагностика почти всех наследственных болезней еще на ранней стадии эмбрионального развития. К тому времени, предположительно, на генетической карте человека будет расшифровано местонахождение более тысячи структурно-функциональных единиц.

Клетки, хромосомы, деление клетки. Тело каждого взрослого человека содержит более сотни миллионов клеток , микроскопических структур, достигающих в диаметре только сотую долю миллиметра. Ни одна клетка не в состоянии выжить вне тела, если только она специально не культивируется в искусственном растворе.
Клетки тела различаются по форме, величине и структуре в соответствии с функцией, которую они выполняют. Мышечные клетки, например, длинные и тонкие, могут сжиматься и расслабляться, позволяя таким образом телу двигаться. Многие нервные клетки тоже длинные и тонкие, но они призваны передавать импульсы, которые и составляют посылы нервной системы, в то время как шестиугольные клетки печени снабжены всем необходимым, чтобы осуществлять жизненно важные химические процессы. Красные кровяные клетки, имеющие форму пончика, переносят кислород и углекислоту, в то время как сферической формы клетки поджелудочной железы производят и восстанавливают гормон инсулин.

Несмотря на эти вариации все клетки тела сконструированы согласно одному основному образцу. Вдоль поверхности каждой клетки существует некая пограничная стена, или клеточная оболочка, заключающая в себе желеобразное вещество - цитоплазму. Внутри нее находится ядро клетки, где содержатся хромосомы. Цитоплазма хотя и содержит от 70 до 80 процентов воды, играет далеко не пассивную роль. Между веществами, растворенными в воде, происходят различные химические реакции; кроме того, в цитоплазме содержится множество мельчайших структур, называемых органеллами, которые выполняют важную роль.

Части клетки

Клеточная оболочка также имеет определенную структуру: она пористая и несколько походит на сэндвич из белка и жира, где жир как бы является начинкой. В процессе прохождения различных веществ через клетку одни из них растворяются в жире, другие выходят из клетки через пористую, полупроницаемую оболочку.
Некоторые клетки имеют на своих оболочках волосовидные отростки, называемые ресничками. В носу, например, реснички захватывают частички пыли. Эти реснички могут двигаться волнообразно в одном направлении, направляя какое-либо вещество.

Цитоплазма всех клеток содержит микроскопические, в виде колбасок, органы, называемые митохондриями, которые превращают кислород и питательные вещества в энергию, необходимую для всех действий клеток.
Эти «энергетические домики» работают при помощи энзимов - сложных белков, которые ускоряют химические реакции в клетках и являются самыми многочисленными элементами в мышечных клетках.

Лизосомы - другой тип микроскопических органов в цитоплазме - представляют собой мельчайшие мешочки, заполненные энзимами, которые дают клетке возможность переработать питательные вещества. Больше всего их в клетках печени.
Производимые клеткой вещества, необходимые для других частей тела, такие как, например, гормоны, сначала скапливаются, а затем хранятся в других мельчайших органах, называемых аппаратом Гольджи (внутриклеточный сетчатый аппарат).
Многие клетки имеют целую систему мелких трубок, которые рассматриваются как некий внутренний «скелет» клетки, но все клетки содержат систему каналов - эндоплазматическое сетчатое образование.
Вдоль всего сетчатого образования расположены мельчайшие сферические структуры, называемые рибосомами, которые отвечают за регуляцию образования основных белков, нужных всем клеткам. Белки требуются для восстановления структур и (в форме энзимов) для химических процессов в клетке и производства сложных молекул, таких как гормоны.

Хромосомы

Помимо зрелых красных кровяных клеток, которые теряют свои хромосомы на последних стадиях образования, и яиц и спермы (половых клеток), которые содержат половину обычного количества хромосом, каждая клетка тела содержит 46 хромосом, организованных в 23 пары. Одна хромосома происходит от матери, другая - от отца. Яйца и сперма имеют только половину этого количества для того, чтобы в процессе оплодотворения яйца новое существо могло иметь гарантию наличия нужного количества хромосом.
В момент оплодотворения гены начинают давать инструкции к моделировании! нового человеческого существа. Хромосомы отца отвечают за определение пола. Хромосомы называются X и У, в зависимости от их формы. У женщин обе хромосомы в паре являются X, но у мужчин одна хромосома - X, другая - У. Если сперма, содержащая X, оплодотворяет яйцо X, ребенок будет девочка, но если сперма У оплодотворяет яйцо, тогда ребенок будет мальчик.

Деление клетки

Наряду с тем, что ДНК несет информацию, она имеет еще способность воспроизводиться; без этого клетки не могли бы ни удваиваться, ни передавать информацию от одного поколения другому.
Процесс деления клетки, при котором она удваивается, называется митозом; это тип деления, который имеет место, когда оплодотворенное яйцо вырастает сначала в ребенка, потом во взрослого человека и когда отработанные клетки заменяются. Когда клетка не делится, хромосомы не видны в ядре, но когда клетка начинает делиться, хромосомы становятся короче и толще, и тогда видно, как они делятся надвое по длине. Эти двойные хромосомы затем отделяются друг от друга и движутся к противоположным концам клетки. На последней стадии цитоплазма делится по полам, и образуются новые стенки вокруг двух новых клеток, каждая из которых имеет нормальное число хромосом - 46.

Ежедневно огромное число клеток умирает и заменяется посредством митоза; одни клетки более активны, чем другие. Раз образовавшись, клетки мозга и нервов не в состоянии заменяться, но клетки печени, кожи и крови полностью заменяются несколько раз в год.
Создание клеток с половинным числом хромосом для того, чтобы определить наследственные характеристики, требует иного способа деления, он называется мейозом. При этом способе деления клеток хромосомы сначала, как при митозе, становятся короче и толще и делятся надвое, но затем хромосомы делятся на пары так, что одна от матери и одна от отца ложатся рядом друг с другом.

Затем хромосомы очень тесно переплетаются, и когда они время от времени отделяются друг от друга, каждая новая хромосома содержит уже несколько генов матери и несколько генов отца. После этого две новые клетки снова делятся так, что каждое яйцо или сперма содержат 23 хромосомы, им необходимы. Такой взаимообмен генетического материала в процессе мейоза объясняет, почему дети не полностью походят на родителей и почему каждый человек, кроме однояйцовых близнецов, имеет уникальный генетический состав.