Условия возникновения колебаний. Условия возникновения свободных колебаний — Гипермаркет знаний

Колебания - движения, которые точно или приблизительно повторяются через определенные интервалы времени.
Свободные колебания - колебания в системе под действием внутренних тел, после того как система выведена из положения равновесия.
Колебания груза, подвешенного на нити, или груза, прикрепленного к пружине, - это примеры свободных колебаний. После выведения этих систем из положения равновесия создаются условия, при которых тела колеблются без воздействия внешних сил.
Система - группа тел, движение которых мы изучаем.
Внутренние силы - силы, действующие между телами системы.
Внешние силы - силы, действующие на тела системы со стороны тел, не входящих в нее.

Условия возникновения свободных колебаний.

  1. При выведении тела из положения равновесия в системе должна возникать сила, направленная к положению равновесия и, следовательно, стремящаяся возвратить тело в положение равновесия.
    Пример: при перемещении шарика, прикрепленного к пружине, влево и при его перемещении вправо сила упругости направлена к положению равновесия.
  2. Трение в системе должно быть достаточно мало. Иначе колебания быстро затухнут или вовсе не возникнут. Незатухающие колебания возможны лишь при отсутствии трения.

Выясним, при соблюдении каких условий возникает и поддерживается в течение некоторого времени колебательное движение.

Первым условием, необходимым для возникновения колебаний, является наличие у материальной точки избыточной энергии (кинетической или потенциальной) по сравнению с ее энергией в положении устойчивого равновесия (§ 24.1).

Второе условие можно установить, проследив за движением груза 3 на рис. 24.1. В положении б на груз 3 действует сила упругости направленная к положению равновесия груза (см. рис. 24.1, б). действием этой силы груз смещается к положению равновесия с постепенно возрастающей скоростью движения V, а сила уменьшается и исчезает, когда груз попадает в это положение (рис. 24.1, в). Скорость груза в этот момент максимальна по величине, и груз, проскакивая через положение равновесия, продолжает двигаться вправо. При этом возникает сила упругости которая тормозит движение груза 3 и останавливает его (рис. 24.1, г). Сила в этом положении имеет максимальную величину; под действием этой силы груз 3 начинает двигаться влево. В положении равновесия (рис. 24.1, 5) сила исчезает, а скорость груза достигает, наибольшего значения, поэтому груз продолжает двигаться влево, пока не займет положение на рис. 24.1. Далее весь описанный процесс повторяется снова в том же порядке.

Таким образом, колебания груза 3 происходят вследствие действия силы и наличия у груза инерции. Силу, приложенную к

матермальной точке, всегда направленную к положению устойчивого равновесия точки, называют возвращающей силой. В положении устойчивого равновесия возвращающая сила равна нулю и возрастает по мере удаления точки от этого положения.

Итак, вторым условием, необходимым для возникновения и продолжения колебаний материальной точки, является действие на материальную точку возвращающей силы. Напомним, что. эта сила всегда возникает, когда какое-либо тело выводится из положения устойчивого равновесия.

В идеальном случае, при отсутствии трения и сопротивления среды, полная механическая энергия колеблющейся точки остается постоянной, так как в процессе таких колебаний происходит лишь переход кинетической энергии в потенциальную и обратно. Такое колебание должно продолжаться неопределенно долгое время.

Если колебания материальной точки происходят при наличии трения и сопротивления среды, то полная механическая энергия материальной точки постепенно убывает, размах колебаний уменьшается и через некоторое время точка останавливается в положении устойчивого равновесия.

Бывают случаи, когда потери энергии материальной точкой настолько велики, что если внешняя сила отклоняет эту точку из положения равновесия, то она теряет всю свою избыточную энергию при возвращении в положение равновесия. В этом случае колебаний не получится. Итак, третье условие, необходимое для возникновения и продолжения колебаний, следующее: избыточная энергия, полученная материальной точкой при смещении из положения устойчивого равновесия, не должна полностью расходоваться на преодоление сопротивления при возвращении в это положение.

Общие сведения

Генератором называется устройство, преобразующее энергию постоянного тока в энергию электрических колебаний постоянной формы и частоты.

По форме генерируемых колебаний генераторы можно условно разделить на генераторы гармонических (синусоидальных) колебаний и генераторы релаксационных колебаний.

Электрические колебания, генерируемые идеальным генератором гармонических колебаний, имеет одну спектральную составляющую. Выходной сигнал реальных генераторов гармонических колебаний наряду с основной гармоникой содержит также ряд гармоник с меньшими амплитудами. Существование этих гармоник связано как с тем, что реальное колебание имеет начало, так и с тем, что генераторы в своем составе содержат нелинейные элементы.

Релаксационные колебания по форме сильно отличаются от гармонических, их спектр содержит ряд гармонических составляющих с соизмеримыми амплитудами. Примером релаксационных колебаний могут служить последовательности импульсов различной формы.

Гармонические колебания можно получить только в генераторах, в состав которых входят колебательные цепи. Релаксационные колебания могут иметь место в генераторах с как колебательными цепями, так и без них.

Аналогично усилителям генераторы гармонических колебаний по диапазону частот делятся на низкочастотные генераторы и высокочастотные генераторы.

Различают также генераторы с независимым (внешним) возбуждением и с самовозбуждением. Первые без подачи на них внешнего сигнала вырабатывать колебания не могут. Для генератора с самовозбуждением источника входных сигналов не требуется, колебания в них возникают автоматически при подключении их к источнику питания. Генераторы с самовозбуждением обычно называют автогенераторами.

В дальнейшем под термином "генератор" будем понимать автогенератор.

Условия возникновения колебаний

генератор частота схемотехника резонансный

Любой автогенератор гармонических колебаний состоит из источника питания , пассивной колебательной цепи , в которой возбуждаются и поддерживаются колебания, и активного элемента , управляющего процессом преобразования энергии источника питания в энергию генерируемых колебаний.

В качестве активного элемента могут использоваться электронные лампы, транзисторы, операционные усилители, туннельные диоды и другие приборы; в качестве колебательных цепей как цепи, обладающие колебательными свойствами (колебательный контур), так и цепи, не имеющие этих свойств (например, RC-цепи, колебательный контур с добротностью меньше 1). Существенно, что эти цепи должны описываться дифференциальным уравнением второго порядка или выше.

Указанная структура автогенератора является условной, удобной для выяснения общих принципов генерации. Часто бывает трудно разделить цепь, в которой возбуждаются колебания, и активный элемент.

Условия, необходимые для возникновения колебаний в генераторе поясним на следующем примере.

Как известно, при введении в колебательный контур порции энергии в нем возникают затухающие колебания синусоидальной формы с частотой, равной резонансной частоте контура. Затухание колебаний обусловлено наличием в реальном колебательном контуре активных потерь. Чтобы эти колебания не затухали, необходимо компенсировать эти потери. Это эквивалентно тому, что к сопротивлению потерь реального контура (R ) добавляется отрицательное сопротивление (-R ), то есть вносятся "отрицательные потери". Эффект внесения в контур отрицательного сопротивления возникает благодаря усилительным свойствам активных электронных элементов за счет положительной обратной связи.

Если величина отрицательного сопротивления больше сопротивления потерь, то амплитуда колебаний в контуре будет неограниченно возрастать со временем. Установление постоянной амплитуды колебаний возможно только в случае, когда величина отрицательного сопротивления равна сопротивлению потерь. Последнее условие выполнить достаточно сложно, поэтому в состав генератора должен входить элемент, устанавливающий колебания на заданном уровне. В роли такого элемента часто выступает активный элемент.

Для возбуждения колебаний необходимо иметь "начальный" сигнал, в качестве которого могут выступать либо скачки напряжения (тока) в момент включения источника питания, либо флуктуационные напряжения (токи), обусловленные тепловыми или другими процессами в электронных цепях.

Если определить отрицательное сопротивление как свойство элемента, ток через который уменьшается при возрастании падения напряжения на нем, то это сопротивление можно представить себе в виде падающего участка вольтамперной характеристики элемента. На рис. 1,а приведена вольтамперная характеристика туннельного диода, из которой видно, что в некоторой области напряжений имеется участок с отрицательным дифференциальным сопротивлением (сопротивлением переменному току).

Упрощенная принципиальная схема генератора на туннельном диоде приведена на рис. 1,.б. Положение рабочей точки А выбирается на падающем участке вольтамперной характеристики. Средний наклон рабочего участка характеристики должен обеспечивать полную компенсацию потерь в активном сопротивлении R контура и в сопротивлении нагрузки R 1.

Поскольку область вольтамперной характеристики с отрицательным сопротивлением ограничена и за ее пределами туннельный диод ведет себя как диод с положительным сопротивлением, амплитуда колебаний устанавливается на уровне, соответствующем изменению напряжений и токов в этой области. Форма колебаний в общем случае отличается от синусоидальной и тем меньше, чем выше добротность колебательного контура.

Генераторы на туннельных диодах могут работать на частотах до нескольких десятков гигагерц. Обычно их используют в диапазоне 100 МГц 10 ГГц. Мощность таких генераторов невелика: 10-6 Вт 10-3 Вт.

Рис. 1. Вольт - амперная характеристика туннельного диода (а ) и принципиальная схема генератора на туннельном диоде (б )

Отрицательное сопротивление можно получить также в усилителе с положительной обратной связью. Так в усилителе, охваченном на частоте щ0 положительной обратной связью по напряжению, полное выходное сопротивление

где - выходное сопротивление усилителя без обратной связи,

Его коэффициент усиления на частоте щ 0 ,

Коэффициент передачи цепи обратной связи на частоте щ 0 .

Как видно из приведенной формулы, выходное сопротивление усилителя при введении в него положительной обратной связи по напряжению уменьшается, а в случае становится отрицательным.

Такой метод получения отрицательного сопротивления в настоящее время наиболее широко применяется при построении автогенераторов с внешней обратной связью.

Отметим, что туннельному диоду тоже присуща положительная обратная связь, которая является внутренней (неявной) и приводит к отрицательному наклону вольтамперной характеристики.

Понятия положительной обратной связи и отрицательного сопротивления - в сущности две формы описания одного и того же физического процесса, связанного с добавлением в систему энергии для компенсации ее убыли вследствие наличия активных потерь.

«Физический и математический маятник» - Принято различать: Презентация по теме: «Маятник». Математический маятник. Выполнила Юнченко Татьяна. Математический маятник физический маятник. Маятник.

«Звуковой резонанс» - То же получается и с двумя одинаково настроенными струнами. Проведя смычком по одной струне, мы вызовем колебанья и другой. Приведя в колебание один камертон, можно заметить, что и другой камертон зазвучит сам собою. Понятие. Подготовил: Великая Юлия Проверил: Сергеева Елена Евгеньевна МОУ «СОШ №36» 2011 год.

«Колебательное движение» - Крайнее левое положение. Качели. Примеры колебательных движений. Условия возникновения колебаний. Амплитудное смещение. V=max а=0 м/с?. Игла швейной машинки. Колебательное движение. Положение равновесия. Ветки деревьев. V=0 м/с а=max. Крайнее правое положение. Рессоры вагона. Маятник часов. Особенность колебательного движения.

«Урок механические колебания» - Виды маятников. К положению равновесия. Свободные колебания. Г. Клин, Московская область 2012. Пример: маятник. Виды колебательных систем 3. Основное свойство колебательных систем 4. Свободные колебания. Презентация к уроку по физике. Выполнила: учитель физики Демашова Людмила Антоньевна. 6. Колебательная система – система тел, способных совершать колебательные движения.

«Колебания маятника» - Косинуса. «Мир, в котором мы живем, удивительно склонен к колебаниям» Р. Бишоп. Виды колебаний. Основные характеристики колебательного процесса (движения). Тесты по математическому и пружинному маятнику. 7. Грузик, подвешенный на пружине, вывели из положения равновесия и отпустили. Единица измерения (секунда с).

«Физика механические колебания» - Поговорим о колебаниях… Параметры механических колебаний. Показывает максимальное смещение тела от положения равновесия. Колебательные системы. «В замке был веселый бал, Музыканты пели. Период. Видеозадача. Бажина Г.Г. – учитель физики МОУ «ГИМНАЗИЯ№11» г. Красноярска. Ветерок в саду качал Легкие качели» Константин Бальмонт.

Всего в теме 14 презентаций